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Setup (GPP nodes)

 Login to the cluster

Set WORK to the directory you want to save MAQAO results (or use HOME)

Copy handson material to your WORK directory
> cd $WORK
> tar xf /gpfs/scratch/nct_362/exercises/maqao/MAQAO_HANDSON.tgz
> tar xf /gpfs/scratch/nct_362/exercises/maqao/NPB3.4-MZ-MPI.tgz

> ssh nct0XXXX@glogin[12].bsc.es
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> export WORK=/gpfs/scratch/nct_362/users/$USER
> vim ~/.bash_profile # append the line above to make it persist
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Setup (bt-mz compilation with debug symbols)

 Ensure that the NAS are compiled with debug information (make.def)

Or copy the modified file from MAQAO_HANDSON directory

Compile bt-mz with debug information (on the login node)
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FFLAGS  = -O3 -fopenmp -g -fno-omit-frame-pointer 

> cd $WORK/NPB3.4-MZ-MPI
> vi config/make.def

> make bt-mz CLASS=D

> cp $WORK/MAQAO_HANDSON/bt/make.def config
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Setup (optional) run bt-mz

> cd $WORK/NPB3.4-MZ-MPI/bin
> cp $WORK/MAQAO_HANDSON/bt/bt.slurm .

> sbatch bt.slurm
> cat slurm-<jobid>.out
 BT-MZ Benchmark Completed.
 Class           =                        D
 Size            =           1632x 1216x 34
 Iterations      =                      250
 Time in seconds =                    61.43
 … 
 Verification    =               SUCCESSFUL

Copy sample jobscript file

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 4

Launch job
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Profiling bt-mz with MAQAO

Cédric VALENSI
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Setup ONE View for batch mode

The ONE View configuration file must contain all variables for executing the application.
Retrieve the configuration file prepared for bt-mz in batch mode from the 
MAQAO_HANDSON directory

“executable”: "bt-mz.D.x"
...

“scripts”: {
  ”command”: "sbatch <myscript>"
  ”files”: [ {“path”: "maqao_bt.slurm", “tag”: “myscript”} ]
...

“number_nodes”: 2
“number_processes_per_node”: 2
...

“mpi_command”: "srun"
...

“environment_variables”: {"name": "OMP_NUM_THREADS", "value": 56}
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> cd $WORK/NPB3.4-MZ-MPI/bin

> cp $WORK/MAQAO_HANDSON/bt/config_bt_oneview_sbatch.json .

> less config_bt_oneview_sbatch.json
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Review jobscript for use with ONE View

All variables in the jobscript defined in the configuration file must be replaced with 
their name from it.
Retrieve jobscript modified for ONE View from the MAQAO_HANDSON directory.
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...

#SBATCH -N 2 <number_nodes>

#SBATCH --ntasks-per-node=2 <number_processes_per_node>

#SBATCH -c 56 <OMP_NUM_THREADS>
...

srun ./bt-mz.D.x

<mpi_command> <run_command>
...

> cd $WORK/NPB3.4-MZ-MPI/bin

> cp $WORK/MAQAO_HANDSON/bt/maqao_bt.slurm .

> less maqao_bt.slurm



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View on bt-mz (batch mode)

 Launch ONE View

The -xp parameter allows to set the path to the experiment directory, where ONE 
View stores the analysis results and where the reports will be generated.
If -xp is omitted, the experiment directory will be named maqao_<timestamp>. 

WARNING:
- If the directory specified with -xp already exists, ONE View will reuse its content 
but not overwrite it. 

> cd $WORK/NPB3.4-MZ-MPI/bin

> module load maqao/2026.0.0

> maqao oneview --create-report=one --with-POP \

-config=config_bt_oneview_sbatch.json -xp=ov_sbatch
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Launch MAQAO ONE View in scalability mode on bt-mz (batch mode)

 Launch ONE View

The -xp parameter allows to set the path to the experiment directory, where ONE 
View stores the analysis results and where the reports will be generated.
If -xp is omitted, the experiment directory will be named maqao_<timestamp>. 

WARNING:
- If the directory specified with -xp already exists, ONE View will reuse its content 
but not overwrite it. 

> cd $WORK/NPB3.4-MZ-MPI/bin

> module load maqao/2026.0.0

> maqao oneview --create-report=one --with-scalability=strong \

 --with-POP -config=config_bt_oneview_sbatch.json -xp=ov_scal
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(OPTIONAL) Review ONE View for interactive mode

Retrieve the configuration file prepared for bt-mz in interactive mode from the 
MAQAO_HANDSON directory

“executable”: "bt-mz.D.x"
...

“number_nodes”: 2
“number_processes_per_node”: 2
...

“mpi_command”: "srun --reservation=POP3Tools -q gp_training -A nct_362 -
N <number_nodes> --ntasks-per-node=<number_processes_per_node> -c 
<OMP_NUM_THREADS>"
...

“environment_variables”: {"name": "OMP_NUM_THREADS", "value": 56}
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> cp $WORK/MAQAO_HANDSON/bt/config_bt_oneview_interactive.json .

> less config_bt_oneview_interactive.json
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(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive mode)

Launch ONE View
> cd $WORK/NPB3.4-MZ-MPI/bin

> maqao OV -R1 -WS -c=config_bt_oneview_interactive.json \

-xp=ov_interactive
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Display MAQAO ONE View results

 The HTML files are located in <exp-dir>/RESULTS/<binary>_one_html, where 
<exp-dir> is the path of the experiment directory (set with -xp) and <binary> 
the name of the executable.

It is possible to compress and download the results to display them:

A sample result directory is in MAQAO_HANDSON/bt/offline.tgz

Results can also be viewed directly on the console:
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> tar czf $HOME/ov_html.tgz <exp-dir>/RESULTS/bt-mz.D.x_one_html

> maqao oneview -R1 -xp=<exp-dir> --output-format=text | less

[LOCAL] scp nct0XXXX@glogin[12].bsc.es:ov_html.tgz .

[LOCAL] tar xf ov_html.tgz

[LOCAL] firefox <exp-dir>/RESULTS/bt-mz.D.x_one_html/index.html
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Display MAQAO ONE View results using sshfs

 ● To install sshfs on Debian-based Linux distributions (like Ubuntu)

● Recommended to close a sshfs directory after use

Mount $WORK locally:
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[LOCAL] mkdir mn5_work

[LOCAL] sshfs nct0XXXX@glogin[12].bsc.es:/gpfs/scratch/nct_362/users/nct0XXXX 

mn5_work

[LOCAL] firefox mn5_work/NPB3.4-MZ-MPI/bin/ov_sbatch/RESULTS/bt-

mz.D.x_one_html/index.html

[LOCAL] sudo apt install sshfs

[LOCAL] fusermount -u /path/to/sshfs/directory

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)
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Optimising a code with MAQAO

Emmanuel OSERET
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Matrix Multiply code

void kernel0 (int n,

              float a[n][n],

              float b[n][n],

              float c[n][n]) {

  int i, j, k;

  for (i=0; i<n; i++)

    for (j=0; j<n; j++) {

      c[i][j] = 0.0f;

      for (k=0; k<n; k++)

        c[i][j] += a[i][k] * b[k][j];

    }

}

“Naïve” dense matrix multiply 
implementation in C
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Setup environment (GPP node)

Allocate a GPP socket for 1 hour (2 users per node)

Load MAQAO and the latest GCC compiler
> module load maqao/2026.0.0

> module load gcc/14.1.0_binutils241
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> srun --reservation=POP3Tools -q gp_training -A nct_362 -t 60 

--sockets-per-node=1 --pty bash
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Analysing matrix multiply with MAQAO

Compile naïve implementation of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

OR using configuration script:

> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_orig
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> maqao OV -R1 xp=ov_orig -- matmul_orig/matmul 200 10000

> maqao OV -R1 xp=ov_orig c=ov_orig.json

> matmul_orig/matmul 200 10000

ns per inner loop iter.: 0.67
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Viewing results (HTML)

> tar czf $HOME/ov_orig.tgz ov_orig/RESULTS/matmul_orig_one_html
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[LOCAL] scp nct0XXXX@glogin[12].bsc.es:ov_orig.tgz .

[LOCAL] tar xf ov_orig.tgz

[LOCAL] firefox ov_orig/RESULTS/matmul_orig_one_html/index.html &
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Viewing results (text)
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> maqao OV -R1 -xp=ov_orig \

  --output-format=text --text-global | less

+----------------------------------------------------------------------------------------+

+                                   Global Metrics                                       +

+----------------------------------------------------------------------------------------+

  Total Time:                           59.45 s

  Max (Thread Active Time):             59.44 s

  Average Active Time:                  59.44 s

  Activity Ratio:                       100.0 %

  Average number of active threads:     1.000

  Affinity Stability:                   100.0 %

  Time spent in analyzed loops:         100.0 %

  Time spent in analyzed innermost loops: 99.0 %

  Time spent in user code:              100 %

  Compilation Options Score:            50

  Array Access Efficiency:              83.3 %

  Potential Speedups

  ----------------------------------------------------

  Perfect Flow Complexity:              1.00

  Perfect OpenMP/MPI/Pthread/TBB:       1.00

  Perfect OpenMP/MPI/Pthread/TBB + L… : 1.00

  If No Scalar Integer:

      Potential Speedup:                1.00

      Nb Loops to get 80%:              1

  If FP Vectorized:

      Potential Speedup:                2.76

      Nb Loops to get 80%:              1

  If Fully Vectorized:

      Potential Speedup:                16.0

      Nb Loops to get 80%:              1

  If Only FP Arithmetic:

      Potential Speedup:                1.00

      Nb Loops to get 80%:              1
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Viewing results (text)
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> maqao OV -R1 -xp=ov_orig \

  --output-format=text --text-loops | less

+-----------------------------------------------------------------+

+                      1.1  -  Top 10 Loops                       +

+-----------------------------------------------------------------+

   Loop Id | Module  | Source Location             | Coverage (%) |

  ---------+---------+-----------------------------+--------------+

   1       | matm... | kernel_orig.c:9-10          | 99.64        |

   2       | matm... | kernel_orig.c:7-10          | 0.35         |

   3       | matm... | kernel_orig.c:6-10          | 0.02         |

Loop ID
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Viewing CQA output (text)
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> maqao OV -R1 -xp=ov_orig \

  --output-format=text --text-cqa=1
      Vectorization

  --------------------

Your loop is not vectorized.

16 data elements could be processed at once in vector registers.

By vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.19 cycles (16.00x 

speedup).

Details

All VPU instructions are used in scalar version (process only one data element in vector 

registers).

Since your execution units are vector units, only a vectorized loop can use their full power.

Workaround

 - Try another compiler or update/tune your current one:

  * recompile with fassociative-math (included in Ofast or ffast-math) to extend loop vectorization 

to FP reductions.

 - Remove inter-iterations dependences from your loop and make it unit-stride:

  * If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, 

otherwise, try to permute loops accordingly… 

Loop ID
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CQA output for the baseline kernel
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Impact of loop permutation on data access

a b c d e f g h i j k l m

m

a b c d

i j k l

e f g h

m n o p

i=0

i=1

j=0,1…
Logical mapping

(C stor. order: row-major)

for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    f(a[i][j]);

a b c d e f g h i j k l

for (j=0; j<n; j++)
  for (i=0; i<n; i++)
    f(a[i][j]);

a ei metc. etc.

etc.

etc.

b j etc. f n etc.

Efficient vectorization + 
prefetching

Physical mapping
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Removing inter-iteration dependences and getting stride 1
by permuting loops on j and k

void kernel1 (int n,

              float a[n][n],

              float b[n][n],

              float c[n][n]) {

  int i, j, k;

  for (i=0; i<n; i++) {

    for (j=0; j<n; j++)

      c[i][j] = 0.0f;

    for (k=0; k<n; k++)

      for (j=0; j<n; j++)

        c[i][j] += a[i][k] * b[k][j];

  }

}
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Compile permuted loops version of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

OR using configuration script:

Analyse matrix multiply with permuted loops
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> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm

> maqao OV -R1 xp=ov_perm c=ov_perm.json

> maqao OV -R1 xp=ov_perm -- matmul_perm/matmul 200 10000

> matmul_perm/matmul 200 10000

ns per inner loop iter.: 0.13



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Loop permutation results
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More efficient vectorization 
(was 16.00 )

Faster (was 
59.44)

Let’s try this
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Loops/CQA output after loop permutation
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Impacts of architecture specialization: AVX512 and FMA

 Vectorization
 Default compilation ensures 

compatibility for any x86-64 
processor (SSE2: 128 bits)

 Extension to 256 or 512 bits with 
AVX512

 FMA : AxB+C for the cost of AxB
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Compile architecture specialisation version of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

Analyse matrix multiply with unrolling and architecture 
specialisation
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> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm_opt

> maqao OV -R1 c=ov_perm_opt.json xp=ov_perm_opt

> matmul_perm_opt/matmul 200 10000

ns per inner loop iter.: 0.11
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Loop permutation + (-march=sapphirerapids -funroll-loops)
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Faster (was 11.06)

Now 100% (-funroll-loops 
-march=native/sapphirer

apids prev. missing)
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Loops/CQA output after microarch specialization and loop unrolling
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Compile architecture specialisation version of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

Analyse matrix multiply with enforcing 512b vectorization
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> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm_opt512

> maqao OV -R1 c=ov_perm_opt512.json xp=ov_perm_opt512

> matmul_perm_opt512/matmul 200 10000

ns per inner loop iter.: 0.11
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After enforcing 512b vectorization
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Faster (was 9.01)

Roughly 2x better (was 2.23)
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CQA output after enforcing 512b vectorization
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More time spent in the inbetween loop than in the innermost one: 
512b vec. is too wide for input size and unroll factor
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Reports comparison
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> maqao OV -CR inputs=ov_orig,ov_perm,ov_perm_opt,ov_perm_opt512 

xp=ov_cmp [-include-detailed]
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Summary of optimizations and gains

Baseline: 59.44 seconds

Loop permutation: 11.06 seconds

Loop perm. + march + unroll + 512b: 8.82 seconds

Action: loop permutation
Result: 128b vectorization5.37x speedup

6.74x speedup
Action: arch. specialization, loop unroll
Result: 256b vectorization, FMA and 8x unroll
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Loop perm. + march + unroll: 9.01 seconds

Action: enforcing 512b vectorization
Result: 512b vectorization
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> cd $WORK/MAQAO_HANDSON/hydro

Hydro example

Switch to the hydro handson folder

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 37

> module load maqao/2026.0.0
> module load oneapi/2025.2

> make
Compile

Load MAQAO and the latest vendor compiler (oneAPI 2025.2)
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Hydro code

int build_index (int i, int j, int grid_size) 
{
  return (i + (grid_size + 2) * j);
}

void linearSolver0 (...) {
  int i, j, k;

  for (k=0; k<20; k++)
    for (i=1; i<=grid_size; i++)
      for (j=1; j<=grid_size; j++)
        x[build_index(i, j, grid_size)] =
  (a * ( x[build_index(i-1, j, grid_size)] +
         x[build_index(i+1, j, grid_size)] +
         x[build_index(i, j-1, grid_size)] +
         x[build_index(i, j+1, grid_size)]
       ) + x0[build_index(i, j, grid_size)]
  ) / c;
}

Iterative linear system solver 
using the Gauss-Siedel 
relaxation technique. « Stencil » 
code

i-1,j i,j i+1,j

i,j+1

i,j-1

j    
i  
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Hydro example : original version
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> maqao OV -R1 xp=ov_orig c=ov_orig.json
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CQA output for original kernel

As for matmul, loops 
should be permuted.
CF build_index
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Consider loop unrolling
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Hydro example : loop permutation

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 41

> maqao OV -R1 xp=ov_perm c=ov_perm.json
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Memory references reuse : 4x4 unroll footprint on loads

j

i

LINEAR_SOLVER(i+0,j+0)
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Memory references reuse : 4x4 unroll footprint on loads

j

i

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)

1 reuse
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1 1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

2 reuses
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)

4 reuses
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)

7 reuses
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

2

2 1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)

10 reuses
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

2

2 1

1

2

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)
LINEAR_SOLVER(i+3,j+1)

12 reuses
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Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

2

2 1

1

22

1

3

1 1

3

2 1

2

22

1

3

1 1

3

2 1

2

2

LINEAR_SOLVER(i+0-3,j+0)

LINEAR_SOLVER(i+0-3,j+1)

LINEAR_SOLVER(i+0-3,j+2)

LINEAR_SOLVER(i+0-3,j+3)

32 reuses
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4x4 unroll

#define LINEARSOLVER(...) x[build_index(i, j, grid_size)] = …

void linearSolver2 (...) {
  (...)

  for (k=0; k<20; k++)
    for (i=1; i<=grid_size-3; i+=4)
      for (j=1; j<=grid_size-3; j+=4) {
        LINEARSOLVER (…, i+0, j+0);
        LINEARSOLVER (…, i+0, j+1);
        LINEARSOLVER (…, i+0, j+2);
        LINEARSOLVER (…, i+0, j+3);

        LINEARSOLVER (…, i+1, j+0);
        LINEARSOLVER (…, i+1, j+1);
        LINEARSOLVER (…, i+1, j+2);
        LINEARSOLVER (…, i+1, j+3);

        LINEARSOLVER (…, i+2, j+0);
        LINEARSOLVER (…, i+2, j+1);
        LINEARSOLVER (…, i+2, j+2);
        LINEARSOLVER (…, i+2, j+3);

        LINEARSOLVER (…, i+3, j+0);
        LINEARSOLVER (…, i+3, j+1);
        LINEARSOLVER (…, i+3, j+2);
        LINEARSOLVER (…, i+3, j+3);
      }
}

grid_size must now be multiple 
of 4. Or loop control must be 
adapted (much less readable) 
to handle leftover iterations
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Hydro example : manual 4x4 unroll and jam
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> maqao OV -R1 xp=ov_unroll c=ov_unroll.json
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CQA output for unrolled kernel
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4x4 Unrolling were applied
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Hydro example : comparison
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> maqao OV -CR inputs=ov_orig,ov_perm,ov_unroll \
 xp=ov_cmp [-include-detailed]
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Summary of optimizations and gains

Kernel orig: 9.30s

Kernel perm+unroll: 3.31s

Actions: loop perm, 4x4 unroll
Result: big loop body with mem reuse2.81x speedup
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More sample codes

More codes to study with MAQAO in 
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$WORK/MAQAO_HANDSON/loop_optim_tutorial.tgz
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