
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO
Hands-on exercises

Profiling bt-mz
Optimising a code

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (GPP nodes)

 Login to the cluster

Set WORK to the directory you want to save MAQAO results (or use HOME)

Copy handson material to your WORK directory
> cd $WORK
> tar xf /gpfs/scratch/nct_362/exercises/maqao/MAQAO_HANDSON.tgz
> tar xf /gpfs/scratch/nct_362/exercises/maqao/NPB3.4-MZ-MPI.tgz

> ssh nct0XXXX@glogin[12].bsc.es

2VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> export WORK=/gpfs/scratch/nct_362/users/$USER
> vim ~/.bash_profile # append the line above to make it persist

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (bt-mz compilation with debug symbols)

 Ensure that the NAS are compiled with debug information (make.def)

Or copy the modified file from MAQAO_HANDSON directory

Compile bt-mz with debug information (on the login node)

3VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

FFLAGS = -O3 -fopenmp -g -fno-omit-frame-pointer

> cd $WORK/NPB3.4-MZ-MPI
> vi config/make.def

> make bt-mz CLASS=D

> cp $WORK/MAQAO_HANDSON/bt/make.def config

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (optional) run bt-mz

> cd $WORK/NPB3.4-MZ-MPI/bin
> cp $WORK/MAQAO_HANDSON/bt/bt.slurm .

> sbatch bt.slurm
> cat slurm-<jobid>.out
 BT-MZ Benchmark Completed.
 Class = D
 Size = 1632x 1216x 34
 Iterations = 250
 Time in seconds = 61.43
 …
 Verification = SUCCESSFUL

Copy sample jobscript file

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 4

Launch job

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling bt-mz with MAQAO

Cédric VALENSI
Emmanuel OSERET

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Setup ONE View for batch mode

The ONE View configuration file must contain all variables for executing the application.
Retrieve the configuration file prepared for bt-mz in batch mode from the
MAQAO_HANDSON directory

“executable”: "bt-mz.D.x"
...

“scripts”: {
 ”command”: "sbatch <myscript>"
 ”files”: [{“path”: "maqao_bt.slurm", “tag”: “myscript”}]
...

“number_nodes”: 2
“number_processes_per_node”: 2
...

“mpi_command”: "srun"
...

“environment_variables”: {"name": "OMP_NUM_THREADS", "value": 56}

6VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> cd $WORK/NPB3.4-MZ-MPI/bin

> cp $WORK/MAQAO_HANDSON/bt/config_bt_oneview_sbatch.json .

> less config_bt_oneview_sbatch.json

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Review jobscript for use with ONE View

All variables in the jobscript defined in the configuration file must be replaced with
their name from it.
Retrieve jobscript modified for ONE View from the MAQAO_HANDSON directory.

7VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

...

#SBATCH -N 2 <number_nodes>

#SBATCH --ntasks-per-node=2 <number_processes_per_node>

#SBATCH -c 56 <OMP_NUM_THREADS>
...

srun ./bt-mz.D.x

<mpi_command> <run_command>
...

> cd $WORK/NPB3.4-MZ-MPI/bin

> cp $WORK/MAQAO_HANDSON/bt/maqao_bt.slurm .

> less maqao_bt.slurm

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View on bt-mz (batch mode)

 Launch ONE View

The -xp parameter allows to set the path to the experiment directory, where ONE
View stores the analysis results and where the reports will be generated.
If -xp is omitted, the experiment directory will be named maqao_<timestamp>.

WARNING:
- If the directory specified with -xp already exists, ONE View will reuse its content
but not overwrite it.

> cd $WORK/NPB3.4-MZ-MPI/bin

> module load maqao/2026.0.0

> maqao oneview --create-report=one --with-POP \

-config=config_bt_oneview_sbatch.json -xp=ov_sbatch

8VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View in scalability mode on bt-mz (batch mode)

 Launch ONE View

The -xp parameter allows to set the path to the experiment directory, where ONE
View stores the analysis results and where the reports will be generated.
If -xp is omitted, the experiment directory will be named maqao_<timestamp>.

WARNING:
- If the directory specified with -xp already exists, ONE View will reuse its content
but not overwrite it.

> cd $WORK/NPB3.4-MZ-MPI/bin

> module load maqao/2026.0.0

> maqao oneview --create-report=one --with-scalability=strong \

 --with-POP -config=config_bt_oneview_sbatch.json -xp=ov_scal

9VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

(OPTIONAL) Review ONE View for interactive mode

Retrieve the configuration file prepared for bt-mz in interactive mode from the
MAQAO_HANDSON directory

“executable”: "bt-mz.D.x"
...

“number_nodes”: 2
“number_processes_per_node”: 2
...

“mpi_command”: "srun --reservation=POP3Tools -q gp_training -A nct_362 -
N <number_nodes> --ntasks-per-node=<number_processes_per_node> -c
<OMP_NUM_THREADS>"
...

“environment_variables”: {"name": "OMP_NUM_THREADS", "value": 56}

10VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> cp $WORK/MAQAO_HANDSON/bt/config_bt_oneview_interactive.json .

> less config_bt_oneview_interactive.json

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive mode)

Launch ONE View
> cd $WORK/NPB3.4-MZ-MPI/bin

> maqao OV -R1 -WS -c=config_bt_oneview_interactive.json \

-xp=ov_interactive

11VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Display MAQAO ONE View results

 The HTML files are located in <exp-dir>/RESULTS/<binary>_one_html, where
<exp-dir> is the path of the experiment directory (set with -xp) and <binary>
the name of the executable.

It is possible to compress and download the results to display them:

A sample result directory is in MAQAO_HANDSON/bt/offline.tgz

Results can also be viewed directly on the console:

12VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> tar czf $HOME/ov_html.tgz <exp-dir>/RESULTS/bt-mz.D.x_one_html

> maqao oneview -R1 -xp=<exp-dir> --output-format=text | less

[LOCAL] scp nct0XXXX@glogin[12].bsc.es:ov_html.tgz .

[LOCAL] tar xf ov_html.tgz

[LOCAL] firefox <exp-dir>/RESULTS/bt-mz.D.x_one_html/index.html

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Display MAQAO ONE View results using sshfs

 ● To install sshfs on Debian-based Linux distributions (like Ubuntu)

● Recommended to close a sshfs directory after use

Mount $WORK locally:

13

[LOCAL] mkdir mn5_work

[LOCAL] sshfs nct0XXXX@glogin[12].bsc.es:/gpfs/scratch/nct_362/users/nct0XXXX

mn5_work

[LOCAL] firefox mn5_work/NPB3.4-MZ-MPI/bin/ov_sbatch/RESULTS/bt-

mz.D.x_one_html/index.html

[LOCAL] sudo apt install sshfs

[LOCAL] fusermount -u /path/to/sshfs/directory

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Optimising a code with MAQAO

Emmanuel OSERET

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Matrix Multiply code

void kernel0 (int n,

 float a[n][n],

 float b[n][n],

 float c[n][n]) {

 int i, j, k;

 for (i=0; i<n; i++)

 for (j=0; j<n; j++) {

 c[i][j] = 0.0f;

 for (k=0; k<n; k++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

“Naïve” dense matrix multiply
implementation in C

15VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Setup environment (GPP node)

Allocate a GPP socket for 1 hour (2 users per node)

Load MAQAO and the latest GCC compiler
> module load maqao/2026.0.0

> module load gcc/14.1.0_binutils241

16VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> srun --reservation=POP3Tools -q gp_training -A nct_362 -t 60

--sockets-per-node=1 --pty bash

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Analysing matrix multiply with MAQAO

Compile naïve implementation of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

OR using configuration script:

> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_orig

17VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> maqao OV -R1 xp=ov_orig -- matmul_orig/matmul 200 10000

> maqao OV -R1 xp=ov_orig c=ov_orig.json

> matmul_orig/matmul 200 10000

ns per inner loop iter.: 0.67

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

> tar czf $HOME/ov_orig.tgz ov_orig/RESULTS/matmul_orig_one_html

18VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

[LOCAL] scp nct0XXXX@glogin[12].bsc.es:ov_orig.tgz .

[LOCAL] tar xf ov_orig.tgz

[LOCAL] firefox ov_orig/RESULTS/matmul_orig_one_html/index.html &

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (text)

19VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> maqao OV -R1 -xp=ov_orig \

 --output-format=text --text-global | less

+--+

+ Global Metrics +

+--+

 Total Time: 59.45 s

 Max (Thread Active Time): 59.44 s

 Average Active Time: 59.44 s

 Activity Ratio: 100.0 %

 Average number of active threads: 1.000

 Affinity Stability: 100.0 %

 Time spent in analyzed loops: 100.0 %

 Time spent in analyzed innermost loops: 99.0 %

 Time spent in user code: 100 %

 Compilation Options Score: 50

 Array Access Efficiency: 83.3 %

 Potential Speedups

 --

 Perfect Flow Complexity: 1.00

 Perfect OpenMP/MPI/Pthread/TBB: 1.00

 Perfect OpenMP/MPI/Pthread/TBB + L… : 1.00

 If No Scalar Integer:

 Potential Speedup: 1.00

 Nb Loops to get 80%: 1

 If FP Vectorized:

 Potential Speedup: 2.76

 Nb Loops to get 80%: 1

 If Fully Vectorized:

 Potential Speedup: 16.0

 Nb Loops to get 80%: 1

 If Only FP Arithmetic:

 Potential Speedup: 1.00

 Nb Loops to get 80%: 1

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (text)

20VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> maqao OV -R1 -xp=ov_orig \

 --output-format=text --text-loops | less

+---+

+ 1.1 - Top 10 Loops +

+---+

 Loop Id | Module | Source Location | Coverage (%) |

 ---------+---------+-----------------------------+--------------+

 1 | matm... | kernel_orig.c:9-10 | 99.64 |

 2 | matm... | kernel_orig.c:7-10 | 0.35 |

 3 | matm... | kernel_orig.c:6-10 | 0.02 |

Loop ID

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing CQA output (text)

21VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> maqao OV -R1 -xp=ov_orig \

 --output-format=text --text-cqa=1
 Vectorization

Your loop is not vectorized.

16 data elements could be processed at once in vector registers.

By vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.19 cycles (16.00x

speedup).

Details

All VPU instructions are used in scalar version (process only one data element in vector

registers).

Since your execution units are vector units, only a vectorized loop can use their full power.

Workaround

 - Try another compiler or update/tune your current one:

 * recompile with fassociative-math (included in Ofast or ffast-math) to extend loop vectorization

to FP reductions.

 - Remove inter-iterations dependences from your loop and make it unit-stride:

 * If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,

otherwise, try to permute loops accordingly…

Loop ID

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for the baseline kernel

22VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Impact of loop permutation on data access

a b c d e f g h i j k l m

m

a b c d

i j k l

e f g h

m n o p

i=0

i=1

j=0,1…
Logical mapping

(C stor. order: row-major)

for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 f(a[i][j]);

a b c d e f g h i j k l

for (j=0; j<n; j++)
 for (i=0; i<n; i++)
 f(a[i][j]);

a ei metc. etc.

etc.

etc.

b j etc. f n etc.

Efficient vectorization +
prefetching

Physical mapping

23VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Removing inter-iteration dependences and getting stride 1
by permuting loops on j and k

void kernel1 (int n,

 float a[n][n],

 float b[n][n],

 float c[n][n]) {

 int i, j, k;

 for (i=0; i<n; i++) {

 for (j=0; j<n; j++)

 c[i][j] = 0.0f;

 for (k=0; k<n; k++)

 for (j=0; j<n; j++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

24VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Compile permuted loops version of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

OR using configuration script:

Analyse matrix multiply with permuted loops

25VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm

> maqao OV -R1 xp=ov_perm c=ov_perm.json

> maqao OV -R1 xp=ov_perm -- matmul_perm/matmul 200 10000

> matmul_perm/matmul 200 10000

ns per inner loop iter.: 0.13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Loop permutation results

26VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

More efficient vectorization
(was 16.00)

Faster (was
59.44)

Let’s try this

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Loops/CQA output after loop permutation

27VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Impacts of architecture specialization: AVX512 and FMA

 Vectorization
 Default compilation ensures

compatibility for any x86-64
processor (SSE2: 128 bits)

 Extension to 256 or 512 bits with
AVX512

 FMA : AxB+C for the cost of AxB

28VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Compile architecture specialisation version of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

Analyse matrix multiply with unrolling and architecture
specialisation

29VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm_opt

> maqao OV -R1 c=ov_perm_opt.json xp=ov_perm_opt

> matmul_perm_opt/matmul 200 10000

ns per inner loop iter.: 0.11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Loop permutation + (-march=sapphirerapids -funroll-loops)

30VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

Faster (was 11.06)

Now 100% (-funroll-loops
-march=native/sapphirer

apids prev. missing)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Loops/CQA output after microarch specialization and loop unrolling

31VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Compile architecture specialisation version of matrix multiply

Run without MAQAO

Analyse matrix multiply with ONE View

Analyse matrix multiply with enforcing 512b vectorization

32VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm_opt512

> maqao OV -R1 c=ov_perm_opt512.json xp=ov_perm_opt512

> matmul_perm_opt512/matmul 200 10000

ns per inner loop iter.: 0.11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

After enforcing 512b vectorization

33VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

Faster (was 9.01)

Roughly 2x better (was 2.23)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output after enforcing 512b vectorization

34VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

More time spent in the inbetween loop than in the innermost one:
512b vec. is too wide for input size and unroll factor

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Reports comparison

35VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

> maqao OV -CR inputs=ov_orig,ov_perm,ov_perm_opt,ov_perm_opt512

xp=ov_cmp [-include-detailed]

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary of optimizations and gains

Baseline: 59.44 seconds

Loop permutation: 11.06 seconds

Loop perm. + march + unroll + 512b: 8.82 seconds

Action: loop permutation
Result: 128b vectorization5.37x speedup

6.74x speedup
Action: arch. specialization, loop unroll
Result: 256b vectorization, FMA and 8x unroll

36VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

Loop perm. + march + unroll: 9.01 seconds

Action: enforcing 512b vectorization
Result: 512b vectorization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

> cd $WORK/MAQAO_HANDSON/hydro

Hydro example

Switch to the hydro handson folder

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 37

> module load maqao/2026.0.0
> module load oneapi/2025.2

> make
Compile

Load MAQAO and the latest vendor compiler (oneAPI 2025.2)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro code

int build_index (int i, int j, int grid_size)
{
 return (i + (grid_size + 2) * j);
}

void linearSolver0 (...) {
 int i, j, k;

 for (k=0; k<20; k++)
 for (i=1; i<=grid_size; i++)
 for (j=1; j<=grid_size; j++)
 x[build_index(i, j, grid_size)] =
 (a * (x[build_index(i-1, j, grid_size)] +
 x[build_index(i+1, j, grid_size)] +
 x[build_index(i, j-1, grid_size)] +
 x[build_index(i, j+1, grid_size)]
) + x0[build_index(i, j, grid_size)]
) / c;
}

Iterative linear system solver
using the Gauss-Siedel
relaxation technique. « Stencil »
code

i-1,j i,j i+1,j

i,j+1

i,j-1

j
i

38VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro example : original version

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 39

> maqao OV -R1 xp=ov_orig c=ov_orig.json

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for original kernel

As for matmul, loops
should be permuted.
CF build_index

40VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

Consider loop unrolling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro example : loop permutation

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 41

> maqao OV -R1 xp=ov_perm c=ov_perm.json

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

LINEAR_SOLVER(i+0,j+0)

42VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)

43VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)

1 reuse

44VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1 1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

2 reuses

45VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)

4 reuses

46VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)

7 reuses

47VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

2

2 1

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)

10 reuses

48VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

2

2 1

1

2

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)
LINEAR_SOLVER(i+3,j+1)

12 reuses

49VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

j

i

1 11

1

2

1 1

2

2 1

1

22

1

3

1 1

3

2 1

2

22

1

3

1 1

3

2 1

2

2

LINEAR_SOLVER(i+0-3,j+0)

LINEAR_SOLVER(i+0-3,j+1)

LINEAR_SOLVER(i+0-3,j+2)

LINEAR_SOLVER(i+0-3,j+3)

32 reuses

50VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

4x4 unroll

#define LINEARSOLVER(...) x[build_index(i, j, grid_size)] = …

void linearSolver2 (...) {
 (...)

 for (k=0; k<20; k++)
 for (i=1; i<=grid_size-3; i+=4)
 for (j=1; j<=grid_size-3; j+=4) {
 LINEARSOLVER (…, i+0, j+0);
 LINEARSOLVER (…, i+0, j+1);
 LINEARSOLVER (…, i+0, j+2);
 LINEARSOLVER (…, i+0, j+3);

 LINEARSOLVER (…, i+1, j+0);
 LINEARSOLVER (…, i+1, j+1);
 LINEARSOLVER (…, i+1, j+2);
 LINEARSOLVER (…, i+1, j+3);

 LINEARSOLVER (…, i+2, j+0);
 LINEARSOLVER (…, i+2, j+1);
 LINEARSOLVER (…, i+2, j+2);
 LINEARSOLVER (…, i+2, j+3);

 LINEARSOLVER (…, i+3, j+0);
 LINEARSOLVER (…, i+3, j+1);
 LINEARSOLVER (…, i+3, j+2);
 LINEARSOLVER (…, i+3, j+3);
 }
}

grid_size must now be multiple
of 4. Or loop control must be
adapted (much less readable)
to handle leftover iterations

51VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro example : manual 4x4 unroll and jam

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 52

> maqao OV -R1 xp=ov_unroll c=ov_unroll.json

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for unrolled kernel

53VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

4x4 Unrolling were applied

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro example : comparison

VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH) 54

> maqao OV -CR inputs=ov_orig,ov_perm,ov_unroll \
 xp=ov_cmp [-include-detailed]

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary of optimizations and gains

Kernel orig: 9.30s

Kernel perm+unroll: 3.31s

Actions: loop perm, 4x4 unroll
Result: big loop body with mem reuse2.81x speedup

55VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

More sample codes

More codes to study with MAQAO in

56VIHPS TW48 BARCELONA (BSC MARENOSTRUM5, 2026 FEB 10TH)

$WORK/MAQAO_HANDSON/loop_optim_tutorial.tgz

	Diapo 1
	Setup
	Setup (bt-mz compilation with debug symbols)
	Diapo 4
	Diapo 5
	Setup ONE View for batch mode
	Review jobscript for use with ONE View
	Launch MAQAO ONE View on bt-mz (batch mode)
	Diapo 9
	(OPTIONAL) Review ONE View for interactive mode
	(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive mode)
	Display MAQAO ONE View results
	Diapo 13
	Diapo 14
	Matrix Multiply code
	Preparing interactive session
	Analysing matrix multiply with MAQAO
	Viewing results (HTML)
	Viewing results (text)_clipboard0
	Diapo 20
	Viewing CQA output (text)
	CQA output for the baseline kernel
	Impact of loop permutation on data access
	Diapo 24
	Analyse matrix multiply with permuted loops
	Loop permutation results
	CQA output after loop permutation
	Impacts of architecture specialization: vectorization and FMA
	Analyse matrix multiply with architecture specialisation
	Loop permutation + (-march=skylake-avx512 -funroll-loops)
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Summary of optimizations and gains
	Hydro example
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56

