e ¥ VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO
Hands-on exercises

Profiling bt-mz
Optimising a code

UNIVERSITE DE u
VERSAILLES
ST-QUENTIN-EN-YVELINES

Sopercomputing o R lmm Universitat
Cant Nacona do Supercamputscin for Simultion Sciences Minchen

[5 TECHNISCHE
A) jiLicH |8 e Lyernor R (0)

FORSCHUNGSZENTRUM

THE
UNIVERSITY OF OREGON

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (GPP nodes)

Login to the cluster
> ssh nctOXXXX@glogin[12].bsc.es

Set WORK to the directory you want to save MAQAO results (or use HOME)
> export WORK=/gpfs/scratch/nct_362/users/$USER
> vim ~/.bash_profile # append the line above to make it persist

Copy handson material to your WORK directory

> cd $WORK
> tar xf /gpfs/scratch/nct_362/exercises/magao/MAQAO_HANDSON. tgz
> tar xf /gpfs/scratch/nct_362/exercises/magqao/NPB3.4-MZ-MPI.tgz

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 2

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (bt-mz compilation with debug symbols)

Ensure that the NAS are compiled with debug information (make.def)

> cd $WORK/NPB3.4-MZ-MPI
> vi config/make.def

FFLAGS = -03 -fopenmp -g -fno-omit-frame-pointer

Or copy the modified file from MAQAO_HANDSON directory

> cp $WORK/MAQAO_HANDSON/bt/make.def config

Compile bt-mz with debug information (on the login node)

> make bt-mz CLASS=D

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

TE

HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (optional) run bt-mz

Copy sample jobscript file
> cd $WORK/NPB3.4-MZ-MPI/bin
> cp SWORK/MAQAO_HANDSON/bt/bt.slurm

Launch job

> sbatch bt.slurm

> cat slurm-<jobid>.out
BT-MZ Benchmark Completed.
Class = D
Size = 1632x 1216x 34
Iterations = 250
Time in seconds = 61.43
Verification = SUCCESSFUL

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS, 2026 FEB 10TH) 4

T —— ¥ VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling bt-mz with MAQAO

Cédric VALENSI
Emmanuel OSERET

UNIVERSITE DE u
VERSAILLES
ST-QUENTIN-EN-YVELINES

Barceiona (=) Technische
Center German Research School 'mm Un_lversnti!
Eant Nackn o Sugpermomaticie for Simultion Sciences Minchen

[5 TECHNISCHE
A) jiLicH |8 e Lyernor R (0)

FORSCHUNGSZENTRUM

THE
UNIVERSITY OF OREGON

ENSTITUTE < 'HIGH PROBDUCTIVITY SUPERCOMPUTING

Setup ONE View for batch mode

The ONE View configuration file must contain all variables for executing the application.
Retrieve the configuration file prepared for bt-mz in batch mode from the
MAQAO_HANDSON directory

> cd $WORK/NPB3.4-MZ-MPI/bin
> cp $WORK/MAQAO_HANDSON/bt/config_bt_oneview_sbatch. json
> less config_bt_oneview_sbatch. json

“executable”: "bt-mz.D.x"
“scripts”: {
"command”: "sbatch <myscript>"
"files”: [{“path”: "maqao_bt.slurm", “tag”: “myscript”}]

“number_nodes”: 2
“number_processes_per_node”: 2

“mpi_command”: "srun"

“environment_variables”: {"name": "OMP_NUM_THREADS", "value": 56}

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

ENSTITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Review jobscript for use with ONE View

All variables in the jobscript defined in the configuration file must be replaced with

their name from it.
Retrieve jobscript modified for ONE View from the MAQAO_HANDSON directory.

> cd $WORK/NPB3.4-MZ-MPI/bin
> cp $WORK/MAQAO_HANDSON/bt/maqao_bt.slurm .
> less maqao_bt.slurm

#SBATCH -N 2 <number nodes>
#SBATCH --ntasks-per-node=2 <number_processes_per_node>
#SBATCH -c 56 <OMP_NUM_THREADS=>

C A
<mpi_command> <run_command>

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

T-U-TE <HIGH PRODUYCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View on bt-mz (batch mode)

Launch ONE View

> cd $SWORK/NPB3.4-MZ-MPI/bin

> module load magao/2026.0.0

> maqao oneview --create-report=one --with-POP \
-config=config_bt_oneview_sbatch.json -xp=ov_sbatch

The -xp parameter allows to set the path to the experiment directory, where ONE
View stores the analysis results and where the reports will be generated.
If -xp is omitted, the experiment directory will be named maqgao_<timestamp>.

WARNING:

- If the directory specified with -xp already exists, ONE View will reuse its content
but not overwrite it.

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

T-U-TE <HIGH PRODUYCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View in scalability mode on bt-mz (batch mode)

Launch ONE View

> cd $SWORK/NPB3.4-MZ-MPI/bin

> module load magao/2026.0.0

> magao oneview --create-report=one --with-scalability=strong \
--with-POP -config=config_bt_oneview_sbhatch.json -xp=ov_scal

The -xp parameter allows to set the path to the experiment directory, where ONE
View stores the analysis results and where the reports will be generated.
If -xp is omitted, the experiment directory will be named maqgao_<timestamp>.

WARNING:

- If the directory specified with -xp already exists, ONE View will reuse its content
but not overwrite it.

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 9

{ INSTITUTE < 'HIGH PRODUCTIVITY SUPERCOMPUTING

(OPTIONAL) Review ONE View for interactive mode

Retrieve the configuration file prepared for bt-mz in interactive mode from the
MAQAO_HANDSON directory

> cp $WORK/MAQAO_HANDSON/bt/config_bt_oneview_interactive.json
> less config_bt_oneview_interactive.json

“executable”: "bt-mz.D.x"

“number_nodes”: 2
“number_processes_per_node”: 2

“mpi_command”: "srun --reservation=POP3Tools -q gp_training -A nct_362 -
N <number_nodes> --ntasks-per-node=<number_processes_per_node> -c
<OMP_NUM_THREADS>"

“environment_variables”: {"name": "OMP_NUM_THREADS", "value": 56}

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 10

AL STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive mode)

Launch ONE View

> cd $WORK/NPB3.4-MZ-MPI/bin
> magao OV -R1 -WS -c=config_bt_oneview_interactive.json \
-Xp=ov_1interactive

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 11

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Display MAQAO ONE View results

The HTML files are located in <exp-dir>/RESULTS/<binary>_one_htm1l, where
<exp-dir> is the path of the experiment directory (set with -xp) and <binary>
the name of the executable.

It is possible to compress and download the results to display them:
> tar czf $HOME/ov_html.tgz <exp-dir>/RESULTS/bt-mz.D.x_one_html

[LOCAL] scp nctOXXXX@glogin[12].bsc.es:ov_html.tgz .
[LOCAL] tar xf ov_html.tgz
[LOCAL] firefox <exp-dir>/RESULTS/bt-mz.D.x_one_html/index.html

A sample result directory is in MAQAO_HANDSON/bt/offline.tgz

Results can also be viewed directly on the console:

> magao oneview -R1 -xp=<exp-dir> --output-format=text | less

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 12

ENSTITUTE < 'HIGH PROBDUCTIVITY SUPERCOMPUTING

Display MAQAO ONE View results using sshfs

* To install sshfs on Debian-based Linux distributions (like Ubuntu)

[LOCAL] sudo apt install sshfs

* Recommended to close a sshfs directory after use
[LOCAL] fusermount -u /path/to/sshfs/directory

Mount $WORK locally:

[LOCAL] mkdir mn5_work
[LOCAL] sshfs nctOXXXX@glogin[12].bsc.es:/gpfs/scratch/nct_362/users/nctOXXXX

mn5_work
[LOCAL] firefox mn5_work/NPB3.4-MZ-MPI/bin/ov_sbatch/RESULTS/bt -

mz.D.x _one_html/index.html

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 13

e i VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Optimising a code with MAQAO

Emmanuel OSERET

— UNIVERSITE DE u
Universitit Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES.
THE|
UNIVERSITY OF OREGON m

Technische
e Gl B
for Simulston Sciences Minchen

[5 TECHNISCHE
A) jiLicH |8 e Lyernor R (0)

FORSCHUNGSZENTRUM

ﬁ
|

Matrix Multiply code

TITUTE < 'HIGH PROBDUYCTIVITY SUPERCOMPUTING

void kernel® (int n,
float a[n][n],
float b[n][n],
float c[n][n]) {
int 1, j, k;

for (1=0; i<n; 1i++)
for (3=0; j<n; J++) {
c[i][j] = o0.0f;
for (k=0; k<n; k++)
c[1][3] += a[1][k] * b[KI[Jl;

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

“Naive” dense matrix multiply
implementation in C

15

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Setup environment (GPP node)

Allocate a GPP socket for 1 hour (2 users per node)
> srun --reservation=POP3Tools -q gp_training -A nct_362 -t 60
--sockets-per-node=1 --pty bash

Load MAQAO and the latest GCC compiler
> module load magao/2026.0.0
> module load gcc/14.1.0_binutils241

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 16

T-U-TE <HIGH PRODUYCTIVITY SUPERCOMPUTING

Analysing matrix multiply with MAQAO

Compile naive implementation of matrix multiply
> cd $WORK/MAQAO_HANDSON/matmul
> make matmul_orig

Run without MAQAO
> matmul_orig/matmul 200 10000
ns per inner loop iter.: 0.67

Analyse matrix multiply with ONE View

> magao OV -R1 xp=ov_orig -- matmul_orig/matmul 200 10000
OR using configuration script:

> magao OV -R1 xp=ov_orig c=ov_orig.json

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 17

AL ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

> tar czf $HOME/ov_orig.tgz ov_orig/RESULTS/matmul_orig_one_html

[LOCAL] scp nctoXXXX@glogin[12].bsc.es:ov_orig.tgz
[LOCAL] tar xf ov_orig.tgz
[LOCAL] firefox ov_orig/RESULTS/matmul_orig_one_html/index.html &

Global Metrics (7] Potential Speedups (7]

Perfect Flow Complexity 1.00
Total Time (s) 45.01 perfect OpenMP/MPI/Pthread/TBB 1.00
Max (Thread Active Time) (s) 43.61 perfect OpenMP/MPI/Pthread/TBB + Perfect 1.00
Average Active Time (s) 43.61 Load Distribution ;
Activity Ratio (%) 96.9 Potential Speedu 1.00
Average number of active threads 0.969 A R e gas Nb Loops tg get Bpﬂ% 1
Affinity Stability (%) 100.0 EP Vectorised Potential Speedup 1.69
Time in analyzed loops (%) 100.0 Nb Loopstoget80% 1
Time in analyzed innermost loops (%) 08.1 . Potential Speedup 3.98
Time in user code (%) 100 AR e omeen Nb Loopstoget80% 1
Compilation Options Score (%) 50.0 Potential Speedup 1.00

FP Arithmetic Only

Array Access Efficiency (%) 82.9 Nb Loopstoget80% 1

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 18

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Viewing results (text)

> magao OV -R1 -xp=ov_orig \
--output-format=text --text-global | less

F e mmeeeeeeeeeeeMeeemEmmeEemeEmsemEEEeEEemsmEesmEmEmEmEmEmEmEEEeEEmemEmEmmmEmmme——————- +
+ Global Metrics +
N NN +
Potential Speedups
Total Time: 59.45 s --------------------T -------------------------------
. . Perfect Flow Complexity: 1.00
Max (Thread Active Time): 59.44 s
A Acti Time: 5944 Perfect OpenMP/MPI/Pthread/TBB: 1.00
Ve'_.ag_’e N 1‘_'e me:) S Perfect OpenMP/MPI/Pthread/TBB + L.. : 1.00
Activity Ratio: 100.0 %)
. If No Scalar Integer:
Average number of active threads: 1.000 Potential Speedup: 1.00
Affinity Stability: 100.0 % Nb Loops to get 80%: 1
Time spent in analyzed loops: 100.0 % If FP Vectorized:
Time spent in analyzed innermost loops: 99.0 % Potential Speedup: 2.76
Time spent in user code: 100 % Nb Loops to get 80%: 1
Compilation Options Score: 50 If Fully Vectorized:
Array Access Efficiency: 83.3 % Potential Speedup: 16.0
Nb Loops to get 80%: 1
If Only FP Arithmetic:
Potential Speedup: 1.00
Nb Loops to get 80%: 1

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 19

ENSTITUTE < 'HIGH PROBDUCTIVITY SUPERCOMPUTING

Viewing results (text)

> magao OV -R1 -xp=ov_orig \
--output-format=text --text-loops | less

e T T T L L T T e +
+ 1.1 - Top 10 Loops +
e +
Loop Id | Module | Source Location | Coverage (%) |
--------- R Ly
1 | matm | kernel_orig.c:9-10 | 99.64 |
2 | matm... | kernel_orig.c:7-10 | 0.35 |
3 | matm | kernel_orig.c:6-10 | 0.02 |
Loop ID

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 20

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing CQA output (text)

> magao OV -R1 -xp=ov_orig \
--output-format=text --text-cqaf:)

Vectorization T
-------------------- Loop ID
Your loop is not vectorized.
16 data elements could be processed at once in vector registers.
By vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.19 cycles (16.00x
speedup) .

Details

All VPU instructions are used in scalar version (process only one data element in vector
registers).

Since your execution units are vector units, only a vectorized loop can use their full power.

Workaround

- Try another compiler or update/tune your current one:

* recompile with fassociative-math (included in Ofast or ffast-math) to extend loop vectorization
to FP reductions.

- Remove inter-iterations dependences from your loop and make it unit-stride:

* If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,
otherwise, try to permute loops accordingly..

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 21

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for the baseline kernel

Vectorization

Your loop is not vectorized. 16 data elements could be processed at once in vector registers.

W]

« 512 bits -
By vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.19 cycles (16.00x speedup).

All SSE/AVX instructions are used in scalar version (process only one data element in vector registers). Since your execution units are vector
units, only a vectorized loop can use their full power.

Workaround

» Try another compiler or update/tune your current one:

o recompile with fassociative-math (included in Ofast or ffast-math) to extend loop vectorization to FP reductions.
» Remove inter-iterations dependences from your loop and make it unit-stride:
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops
accordingly: C storage order is row-major: for(i) for(j) a[j)[i] = b[j][il; (slow, non stride 1) == for(i) for(j) a[i][j] = b[i][j]; (fast, stride 1)
Logical mapping
j=1,2,3

Physical mapping

(C/C++ storage order: row-major)

o |f your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): for(i) afi].x = b[i].x; (slow, non stride 1)

slow: slow:
for(j=e...) for(i=e...)
Ttz o7 “Tertioe:)
flafi][31); fafjlil);
fast: fast: Efficient vectorization +
for(i=e...) or for(j=e...) prefetching
for(j=e...) for(i=e...)
f(a[il[31); f(a[j1lil); n“n

== for(i) a.x[i] = b.x[i]; (fast, stride 1)

XXX X X ViRTUAL ENSTITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Impact of loop permutation on data access

Logical mapping

Efficient vectorization +
prefetching

Physical mapping

(C stor. order: row-major)

for (j=0; j<n; j++)
for (i1=0; i<n; i++)

f(al1][31);

for (i=0; i<n; i++)
for (j=0; j<n; j++)
f(a[1][3]);

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

TITUTE < 'HIGH PROBDUYCTIVITY SUPERCOMPUTING

Removing inter-iteration dependences and getting stride 1

by permuting loops on j and k

void kernell (int n,
float a[n][n],
float b[n][n],
float c[n][n]) {
int 1, j, k;

for (1=0; i<n; i++) {
for (j=0; j<n; Jj++)
c[i][]j] = 0.0f;

for (k=0; k<n; k++)
for (j=0; j<n; j++)

c[i][3] += a[i][k] * b[k][]1];

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

24

T-U-TE <HIGH PRODUYCTIVITY SUPERCOMPUTING

Analyse matrix multiply with permuted loops

Compile permuted loops version of matrix multiply
> cd $WORK/MAQAO_HANDSON/matmul

> make matmul_perm

Run without MAQAO

> matmul_perm/matmul 200 10000
ns per inner loop iter.: 0.13

Analyse matrix multiply with ONE View

> magao OV -R1 xp=ov_perm -- matmul_perm/matmul 200 10000
OR using configuration script:

> magao OV -R1 xp=ov_perm c=o0ov_perm.json

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 25

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Loop permutation results

Global Metri Compilation Options <

Max (Thread Active Time) (s) Object , .
Average Active Time (s) : v matmul Let's try this
Activity Ratio (%) ; P mﬂ//

Avgrage number of active threads 0.967 -march=x86-64 is used but it sh be replaced by a more architecture sp
Affinity Stability (%) 96.6 ° ecific option or -march=native.

Time in analyzed loops (%4) 99.5 o -funroll-loops is missing.

Time in analyzed innermost loops (%) 94.4

Time in user code (%) 99.5

Compilation Options Score (%) 50.0

Array Access Efficiency (%) 100

Potential Speedups
Perfect Flow Complexity
Perfect OpenMP/MPI/Pthread/TEB

Perfect OpenMP/MPI/Pthread/TBBE + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%
. Potential Speedup
FP Vectorised Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%

No Scalar Integer

Fully Vectorised

FP Arithmetic Only

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Loops/CQA output after loop permutation

Loop id| Source Location |Sourca Function| Level |Exclusive Coverage run_0 (%) Vectorization Ratio (%) Vector Length Use (%)
1 matmul - kernel.c:24-25 kernel Innermost
2 matmul - kernel.c:7-25 [...] kernel InBetween

Your loop is vectorized, but using only 128 out of 512 bits (SSE/AVX-128 instructions on AVX-512 processors).

« ' 512 bits ' ' >
By fully vectorizing your loop, you can lower the cost of an iteration from 1.17 to 0.29 cycles (4.00x speedup).

All SSE/AVX instructions are used in vector version (process two or more data elements in vector registers).
Since your execution units are vector units, only a fully vectorized loop can use their full power.

« Recompile with march=sapphirerapids. CQA target is Sapphire_Rapids_8f (Intel(R) Xeon(R) Sapphire
Rapids) but specialization flags are -march=x86-64
« Use vector aligned instructions:
1. align your arrays on 64 bytes boundaries: replace { void *p = malloc (size); } with { void *p;
posix_memalign (&p, 64, size); }.
2. inform your compiler that your arrays are vector aligned: if array 'foo’ is 64 bytes-aligned, define
a pointer 'p_foo'as __ builtin_assume_aligned (foo, 64) and use it instead of 'foo’ in the loop.

ENSTITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Impacts of architecture specialization: AVX512 and FMA

" Vectorization " FMA : AxB+C for the cost of AxB
" Default compilation ensures
compatibility for any x86-64
processor (SSE2: 128 bits)
" Extension to 256 or 512 bits with
AVX512

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 28

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Analyse matrix multiply with unrolling and architecture
specialisation

Compile architecture specialisation version of matrix multiply
> cd $WORK/MAQAO_HANDSON/matmul
> make matmul_perm_opt

Run without MAQAO

> matmul_perm_opt/matmul 200 10000
ns per inner loop iter.: 0.11

Analyse matrix multiply with ONE View
> magao OV -R1 c=ov_perm_opt.json xp=ov_perm_opt

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 29

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Loop permutation + (-march=sapphirerapids -funroll-loops)

Global Metrics (7]

Ig.!g.luu]r.i.m.g."(gl g. BT -
Max (Thread Active Time) (s) 001

Average Active Time (s) 9.01
Activity Ratio (%) 93.1
Average number of active threads 0.931
Affinity Stability (%) 63.0
Time in analyzed loops (%) 99.4
Time in analyzed innermost loops (%) 84.3
Time in user code (%) 99.5

Compilation Options Score (%)
Array Access Efficiency (%)

Potential Speedups
Perfect Flow Complexity
Perfect OpenMP/MPI/Pthread/TBB

Perfect OpenMP/MPI/Pthread/TEB + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80% 1

MNo Scalar Integer

. Potential Speedup 1.16
FP Vectorised Nb Loops to get 80% 2
; Potential Speedup 228
Sully Mecihriad MNb Loops to get 80% 2
Potential Speedup 1.50

FP Arithmetic Only

Nb Loops to get 80% 2

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Loops/CQA output after microarch specialization and loop unrolling

Loo Source Source Max Thread Time Exclusive Max Exclusive Time Nb Vectorization Vector
id p Location Function Level | /Walltime run_0 Coverage run_0|Over Threads run_0| Threads Ratio (%) Length Use
(%) (%) (s) run_0 (%)
matmul - kern
5 g1 c24-25 kernel Innermost 78.52 7.59 1
4 mamul-kermn o el InBetween 14.01 1.36 1

el.]

Your loop is vectorized, but using only 256 out of 512 bits (AVX/AVXZ instructions on AVX-512 processors).

HEEN

- 512 hits »

All SSE/AVX instructions are used in vector version (process two or more data elements in vector
registers).

Read the "512-bits vectorization” report N P8 TR ETH (] FL11(0])]

On some %86 processors supporting 512-hits vectorization, compilers are often too conservative and limit
vectorization to 256 bits. Performance can then be improved by enforcing 512-hits vectorization, especially
with many vectorized and high trip count loops. 512-hits vectorization performance overhead (compared to
256-hits) is generally lower on newer processors.

Workaround

Recompile with -mprefer-vector-width=512

STITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Analyse matrix multiply with enforcing 512b vectorization

Compile architecture specialisation version of matrix multiply

> cd $WORK/MAQAO_HANDSON/matmul
> make matmul_perm_opt512

Run without MAQAO

> matmul_perm_opt512/matmul 200 10000
ns per inner loop iter.: 0.11

Analyse matrix multiply with ONE View

> magao OV -R1 c=ov_perm_opt512.json xp=ov_perm_opt512

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

32

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

After enforcing 512b vectorization

Global Metrics (7]
Max (Thread Active Time) (s) 882

Average Active Time (s) 8.82
Activity Ratio (%) 96.1
Average number of active threads 0.961
Adfinity Stability (%) 96.1
Time in analyzed loops (%) 99.9
Time in analyzed innermost loops (%) 44.4
Time in user code (%) 99.9

Compilation Options Score (%)
Array Access Efficiency (%)

Potential Speedups
Perfect Flow Complexity
Perfect OpenMP/MPI/Pthread/TBB

Perfect OpenMP/MPI/Pthread/TBB + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%
. Potential Speedup
FP Vectorised Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%

No Scalar Integer

Fully Vectorised

FP Arithmetic Only

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output after enforcing 512b vectorization

Loo Source Source Max Thread Time Exclusive Max Exclusive Time Nb Vectorization Vector
id p Location Function Level | /Walltime run_0 Coverage run_0| Over Threads run_0| Threads Ratio (%) Length Use
(%) (%) (s) run_0 (%)
4 - kernel InBetween 53.29 4.89 1
matmul - kern
5 alc24-75 kernel Innermost 42.72 3.92 1

512b vec. is too wide for input size and unroll factor

Vectorization

Your loop is fully vectorized, using full register length.

All SSE/AVX instructions are used in vector version (process two or more data
elements in vector registers).

VIRTUAE ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Reports comparison

magao OV -CR inputs=ov_orig,ov_perm,ov_perm_opt,ov_perm_opt512
xp=ov_cmp [-include-detailed]

¥ Compared Reports

« 10 ov_orig

« 1l ov perm

* [2: ov_perm_opt

« 13: ov_perm_opt512

Global Metrics Application Categorization

Metric Time
Total Time (s) 59.45 11.44 9.67 9.18
Max (Thread Active Time) (s) 2000
Average Active Time (s) 59.44 11.06 9.01 8.82
Activity Ratio (%) 100.0 96.7 93.1 96.1 10 - 59.44
Average number of active threads 1.000 0.967 0.931 0.961
Affinity Stability (%) 100.0 96.6 63.0 96.1
Time in analyzed loops (%) 100.0 995 99.4 99.9
Time in analyzed innermost loops (%) 99.0 94.4 84.3 444

Time in user code (%)
Compilation Options Score (%)
Array Access Efficiency (%)

Time (s)

Paotential Speedups
Perfect Flow Complexity

Perfect OpenMP/MPI/Pthread/TBB

Perfect OpenMP/MPI/Pthread/TBB + Perfect Load
Distribution

No Scalar Integer RoteqURlSpeadU

FP Vectorised

Reports
Fully Vectorised

| Binary | Others Memory

Only FP Arithmetic

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Summary of optimizations and gains

Baseline: 59.44 seconds

Action: loop permutation

5.37x speedup Result: 128b vectorization

\ 4
Loop permutation: 11.06 seconds

Action: arch. specialization, loop unroll
6.74x speedup Result: 256b vectorization, FMA and 8x unroll

Loop perm. + march + unroll: 9.01 seconds

Action: enforcing 512b vectorization
Result: 512b vectorization

\ 4
Loop perm. + march + unroll + 512b: 8.82 seconds

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 36

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Hydro example

Switch to the hydro handson folder
> cd $WORK/MAQAO_HANDSON/hydro

Load MAQAO and the latest vendor compiler (oneAPI 2025.2)
> module load magao/2026.0.0
> module load oneapi/2025.2

Compile
> make

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 37

Hydro code

NSTITUTE < >*HIGH PRODUCTIVITY SUPERCOMPUTING

int build_index (int i, int j, int grid_size)

{
}

return (i + (grid_size + 2) * j);

void linearSolver0 (...) {
int i, j, k;

for (k=0; k<20; k++)
for (i=1; i<=grid_size; i++)
for (j=1; j<=grid_size; j++)
x[build_index(i, j, grid_size)] =
(a * (x[build_index(i-1, j, grid_size)]
x[build_index(i+1, j, grid_size)]
x[build_index(i, j-1, grid_size)]
x[build_index(i, j+1, grid_size)]
) + xO[build_index(i, j, grid_size)]
) / ¢

+
+
+

}

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

Iterative linear system solver

using the Gauss-Siedel

relaxation technique. « Stencil »

code

i-1,]

i+1,]

38

v

IRTUAL ENSTITUTE < 'HIGH PRODUYCTIVITY SUPERCOMPUTING

Hydro example : original version

> magao OV -R1 xp=ov_orig c=ov_orig.json

Clobal Metrics o Potential Speedups x_
Perfect Flow Complexity 1.00

Total Time (s) 9.60 Perfect OpenMP/MPI/Pthread/TBB 1.00
Max (Thread Active Time) (s) 930 Perfect OpenMP/MPI/Pthread/TBB + Perfect foo
Average Active Time (s) 9.30 Load Distribution
Activity Ratio (%) 96.9 No Scalar Integer Potential Speedup il
Average number of active threads 0.969 Nb Loops to get 80% 3
Affinity Stability (%) 96.4 EP Vectorised Potential Speedup 1.64
Time in analyzed loops (%) 99.9 Nb Loops to get 80% 2
Time in analyzed innermost loops (%) 99.8 Fully Vectorised Potential Speedup 13.7
Time in user code (%) 100.0 Nb Loops to get 80% =
Compilation Options Score (%) 16.7 FP Arithmetic Only Potential Speedup 1.06
Array Access Efficiency (%) 496 Nb Loops to get 80% 3

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 39

< NIRTUAK ENSTITUTE < 'HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for original kernel

Workaround

» Try another compiler or update/tune your current one:
= recompile with O2 or higher to enable loop vectorization and with ffast-math (included in
izafi Uctions,
« Remove inter-iterations dependences from your loop and make it unit-stride:
> If your arrays have 2 or more dimensions, check whether elements are accessed
contiguously and, otherwise, try to permute loops accordingly: C storage order is row-
major: for(i) for(j) aljl[i] = b[]lil; (slow, non stride 1) ==> for(i) for(j) afil[j] = bil[j]; (fast. stride 1)
— — _—

Logical mapping

jF1.2.3

Physical mapping

(C/C++ starage order: row-major)

glh|i
slow: slow:
for(j=e...) for{i=o...)
roegina 1y [0 Crertime.)
f(alil[il1); flalillil);
fast: fast: Efficient vectorization +
for(i=e...) or for(j=e...) prefetching
for(j=e...) for(i=e...)
f(alil[il1); flalillil); g|h

Loop is potentially data access bound.
Workaround

Unroll your loop if trip count is significantly higher than target unroll factor and if some data references

are common to consecutive iterations. This can be done manually. Or with the unroll (resp.
unroll_and_jam) directive on top of the inner (resp. surrounding) loop. You can enforce an unroll factor:
#pragma unroll_and_jam N, unroll_and_jam(N), unroll N or unroll(N)

As for matmul, loops
should be permuted.
CF build_index

Unroll opportunity

/Consider loop unrolling

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH)

IRTUAL ENSTITUTE < 'HIGH PRODUYCTIVITY SUPERCOMPUTING

Hydro example : loop permutation

> magao OV -R1 xp=ov_perm c=ov_perm.json

Global Metrics (7] Potential Speedups _

. Perfect Flow Complexity 1.00
Total Time (s) 12.13 Perfect OpenMP/MP|/Pthread/TBB 1.00
Max (Thread Active Time) (s) 11.89 Perfect OpenMP/MPI/Pthread/TBB + Perfect 1.00
Average Active Time (s) 11.89 Load Distribution Jpra
Activity Ratio (%) 98.0 Potential Speedup 101
Average number of active threads 0.980 90 Scamnr intenes Nb Loops to get 80% 3
Affinity Stability (%) 98.0 . Potential Speedup 1.49
Time in analyzed loops (%0) 99.9 FF. Yectorised Nb Loops to get 80% 2
Time in analyzed innermost loops (%o) 99.8 Potential Speedup 14.1

Fully Vectorised

Time in user code (%) 100.0 Nb Loops to get 80% 5
Compilation Options Score (%) 16.7 : _ Potential Speedup 1.04
Array Access Efficiency (%0) 72.9 S Nb Loops to get 80% 3

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 41

{ INSTITUTE < 'HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

v

LINEAR_SOLVER(i+0,j+0)

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 42

X VI UAL ENSTITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 43

K ENSTITUTE < '*HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)

1 reuse

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 44

K ENSTITUTE < '*HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

M

2 reuses

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 45

ENSTITUTE < 'HIGH PROBDUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)
— 1 1 1
1 LINEAR_SOLVER(i+0,j+1)

4 reuses

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 46

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)
— 1 2 1
. N LINEAR_SOLVER(i+0,j+1)

LINEAR_SOLVER(i+1,j+1)

[reuses

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 47

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)
— 1 2 2
B B LINEAR_SOLVER(i+0,j+1)

LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)

10 reuses

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 48

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)
— 1 2 2 1
1 2 2 1 LINEAR_SOLVER(i+0,j+1

)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)
LINEAR_SOLVER(i+3,j+1)

12 reuses

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 49

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

»
»

LINEAR_SOLVER(i+0-3,j+0)

LINEAR_SOLVER(i+0-3,j+1)

. 1 2 2 1 LINEAR_SOLVER(i+0-3,j+2)
2 3 3 2 LINEAR_SOLVER(i+0-3,j+3)
2 3 3 2
| 32 reuses
1 2 2 1

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 50

ENSTITUTE < 'HIGH PROBDUCTIVITY SUPERCOMPUTING

4x4 unroll

#define LINEARSOLVER(...) x[build_index(i, j, grid_size)] = ..

v T grid_size must now be multiple
R 06: k+t) of 4. Or loop control must be
for (i=1; i<=grid_size-3; i+=4) adapted (much less readable)
ot e N : _
O[IISI%ARSOﬂVEg”(-...,S;ZrS, j+3)) : & to handle leftover iterations

LINEARSOLVER (.., i+0, j+1);
LINEARSOLVER (.., i+0, j+2);
LINEARSOLVER (.., i+0, j+3);

LINEARSOLVER (.., i+1, j+0);
LINEARSOLVER (.., i+1, j+1);
LINEARSOLVER (.., i+1, j+2);
LINEARSOLVER (.., i+1, j+3);
LINEARSOLVER (.., i+2, j+0);
LINEARSOLVER (.., i+2, j+1);
LINEARSOLVER (.., i+2, j+2);
LINEARSOLVER (.., i+2, j+3);
LINEARSOLVER (.., i+3, j+0);
LINEARSOLVER (.., i+3, j+1);
LINEARSOLVER (.., i+3, j+2);
LINEARSOLVER (.., i+3, j+3);

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 51

TUAK ENSTITUTE < HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro example : manual 4x4 unroll and jam

> magao OV -R1 xp=ov_unroll c=ov_unroll. json

Global Metrics (7] Potential Speedups .
1.00

Perfect Flow Complexity

Total Time (s) 3.66 Perfect OpenMP/MPI/Pthread/TBB 1.00
Max (Thread Active Time) (s) 3.31 Perfect OpenMP/MPI/Pthread/TBB + Perfect 1.00
Average Active Time (s) 3.31 Load Distribution %
Activity Ratio (%) 90.6 e Potential Speedup 103
Average number of active threads 0.906 g Nb Loops to get 80% 3
Affinity Stability (%) 90.5 . Potential Speedup 1.69
Time in analyzed loops (%) 99.7 $= recinen Nb Loops to get 80% 2
Time in analyzed innermost loops (%) 99.2 : Potential Speedup 10.9
Time in user code (%) 99.7 ol i e Nb Loops to get 80% 5
Compilation Options Score (%) 16.7 : : Potential Speedup 1.18
Array Access Efficiency (%) 48.9 2 Jmane ChY Nb Loops to get 80% 3

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 52

< NIRTUAK ENSTITUTE < 'HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for unrolled kernel

Matching between your loop (in the source code) and the binary

loop

The binary loop is composed of 96 FP arithmetical operations:

» 64: addition or subtraction (16 inside FMA instructions)
e 32/ multiply (16 inside FMA instructions)

The bihary loop is loading 260 bytes (65 single precision FP elements). The binary
loop/is storing 64 bytes (16 single precision FP elemenis).

/

4x4 Unrolling were applied

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) ' I _

VIRTUALE EINSTETUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro example : comparison

¥ Compared Reports

-

0: ov_orig
1: m

2 nroll

2
[

LI)
==
2
=

Global Metrics

ciive Time) (s)
Average Active Time (s) 9.30 11.89 3.31
Activity Ratio (%) 96.9 98.0 20.6
Average number of active threads 0.969 0.980 0.906
Affinity Stability (%) 96.4 98.0 %05
Time in analyzed loops (%) 99.9 99.9 99.7
Time in analyzed innermost loops (%) 00.8 99.8 99.2

Time in user code (%)
Compilation Options Score (%)
Array Access Efficiency (%)

Potential Speedups
Perfect Flow Complexity
Perfect OpenMP/MPI/Pthread/TBB
Perfect OpenMP/MPI/Pthread/TBB +
Perfect Load Distribution
Potential Speedup
Nb Loops to get 80% 3

No Scalar Integer

. P 1.64 1.49 1.69
FP Vectorised - % 2) 2

i P Tos T AT Ls
Onby FP ARNMENS o'\ oops to get 80% 3 3 3

Application Categorization
Time

14.00

Time (s)

0 1 12
Reports

W Binary [l Others (B Memory

¢ INSTITUTE < *HIGH PRODUCTIVITY SUPERCOMPUTING

Summary of optimizations and gains

Kernel orig: 9.30s

Actions: loop perm, 4x4 unroll

2.81x speedup Result: big loop body with mem reuse

A

Kernel perm+unroll: 3.31s

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 55

NSTITUTE < *HIGH PRODUYCTIVITY SUPERCOMPUTING

More sample codes

More codes to study with MAQAO in

SWORK/MAQAO_HANDSON/ loop_optim_tutorial.tgz

VIHPS TW48 BARCELONA (BSC MARENOSTRUMS5, 2026 FEB 10TH) 56

	Diapo 1
	Setup
	Setup (bt-mz compilation with debug symbols)
	Diapo 4
	Diapo 5
	Setup ONE View for batch mode
	Review jobscript for use with ONE View
	Launch MAQAO ONE View on bt-mz (batch mode)
	Diapo 9
	(OPTIONAL) Review ONE View for interactive mode
	(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive mode)
	Display MAQAO ONE View results
	Diapo 13
	Diapo 14
	Matrix Multiply code
	Preparing interactive session
	Analysing matrix multiply with MAQAO
	Viewing results (HTML)
	Viewing results (text)_clipboard0
	Diapo 20
	Viewing CQA output (text)
	CQA output for the baseline kernel
	Impact of loop permutation on data access
	Diapo 24
	Analyse matrix multiply with permuted loops
	Loop permutation results
	CQA output after loop permutation
	Impacts of architecture specialization: vectorization and FMA
	Analyse matrix multiply with architecture specialisation
	Loop permutation + (-march=skylake-avx512 -funroll-loops)
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Summary of optimizations and gains
	Hydro example
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56

