
TALP
Tracking
Application Live
Performance
Marta Garcia-Gasulla

10 February 2026

DLB library structure

➢Dynamic Library

➢Three modules:
• LeWI: For fine grain load balancing
• DROM: For coarse grain resource management
• TALP: For performance measurement

➢Common infrastructure
• Integration with different layers

of software stack
• API
• Shared memory

2

App.

Job Sched.

MPI

OpenMP

OS

HW

A
P

I

LeWI

P
M

P
I

DROM

CPU
status

O
M

P
T

TALP
Process
status

Shared
Mem.OmpSs

Three modules,
integrated but
independent

TALP: Tracking Application Live Performance
➢ Profiling tool with:

• Low overhead
• Report POP metrics
• API to obtain metrics at runtime
• API to instrument code and profile regions of code

➢ Version 3.6.0-beta1
• MPI efficiency metrics
• Hardware counters (cycles, instructions, IPC, and frequency)
• OpenMP metrics
• TALP-pages (CI/CD integration)
• GPU efficiency metrics (NVIDIA devices)

➢ Work in progress
• GPU efficiency metrics (AMD devices)
• GPU computational metrics
• TALP-pages support for GPU metrics

3

3

TALP a lightweight tool to Unveil Parallel Efficiency of Large
Scale Executions. In Proceedings of Performance Engineering,
Modelling, Analysis, and Visualization Strategy (Permavost 2021).

Why is more than “yet another profiling tool”?

➢ A profiler will report same
“issue” while both cases
have very different
problems.

➢ TALP will report a low Load
Balance for App A and a low
Communication efficiency
for App B

4

App. A

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

MPI call

MPI call

App. B

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

MPI call MPI call
MPI call MPI call
MPI call MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

MPI call

TALP MPI Metrics

5

MPI POP metrics

Global Eff.

Comp.
Scal.

Load
Balance

Comm.
Eff.

Instr.
Scal.

IPC
Scal.

Freq.
Scal.

Serialization Transfer
Scalability metrics
computed based

on a reference run

Efficiency metrics

MPI
Parallel Eff.

All parent metrics
are the product of
their child metrics

6

TALP MPI metrics

Global Eff.

Comp.
Scal.

Load
Balance

Comm.
Eff.

Instr.
Scal.

IPC
Scal.

Freq.
Scal.

Serialization Transfer

MPI
Parallel Eff.

LB
in

LB
out Scalability metrics

computed with
several TALP runs

Efficiency metricsAdditional metrics

Metrics not
computed by TALP

All parent metrics
are the product of
their child metrics

7

Summary of metrics explanation

➢MPI parallel efficiency: Inefficiency due to the use of
parallelization. Fraction of time the resources are not being used to
do useful work due to be in MPI calls.

• MPI Load Balance: Inefficiency due to an uneven load distribution. Time lost
due to waiting for the most loaded process.
▪ MPI Load Balance in: Inefficiency due to an uneven load distribution inside the

nodes.

▪ MPI Load Balance out: Inefficiency due to an uneven load distribution between
nodes.

• MPI Communication Efficiency: Inefficiency due to the communications
between processes. Time lost due to transferring data or waiting for a
processes that is not the most loaded one.

14

TALP GPU metrics

15

TALP GPU metrics

Host
Global Eff.

Device
Global Eff.

Efficiency metricsAdditional metrics

Metrics not
computed by TALP

Scalability metrics
computed with

several TALP runs

All parent metrics
are the product of
their child metrics

16

TALP GPU metrics

Host
Global Eff.

Host
Parallel Eff.

Comp.
Scal.

Load
Balance

Comm.
Eff.

Instr.
Scal.

IPC
Scal.

Freq.
Scal.

Serialization Transfer

Device
Global Eff.

MPI
Parallel Eff.

Device
offload Eff.

LB
in

LB
out

Efficiency metricsAdditional metrics

Metrics not
computed by TALP

GPU metrics
Scalability metrics

computed with
several TALP runs

All parent metrics
are the product of
their child metrics

17

TALP GPU metrics

Device
Global Eff.

Device
Parallel Eff.

Comp.
...

Orchestration
Eff.

Comm.
Eff.

Load Balance

Efficiency metricsAdditional metrics

Metrics not
computed by TALP

GPU metrics

Host
Global Eff.

Host
Parallel Eff.

Comp.
Scal.

Load
Balance

Comm.
Eff.

Instr.
Scal.

IPC
Scal.

Freq.
Scal.

Serialization Transfer

MPI
Parallel Eff.

Device
offload Eff.

LB
in

LB
out Scalability metrics

computed with
several TALP runs

All parent metrics
are the product of
their child metrics

18

TALP GPU metrics
➢ Host and Device Efficiencies are “unrelated”

• We can measure them separately

➢ Device Global Efficiency divided in
• Device Parallel Efficiency
• Computation (Sc./Eff.) → WiP

➢ We consider one GPU as a single resource

➢ All arrows are multiplicative

Efficiency metricsAdditional metrics

Metrics not
computed by TALP

GPU metrics
Scalability metrics

computed with
several TALP runs

19

Computing
TALP GPU metrics

20

States

21

Useful

MPI

Waiting 4 GPU

Data transfer

Idle

T

Useful

3 states for the
host (CPU):

3 states for the
device (GPU):

Whenever the CPU is not doing useful
work because it is managing the GPU.
Inside CUDA API: launching kernels,
sending data to GPU, waiting for data…

Whenever the GPU is waiting for data
communication: GPU-GPU, or GPU-CPU.
If communication is overlapped with
computation, it is considered computation.

P = num procs
N = num GPUs
T = Total elapsed time
Ci = Useful time of CPU i
Wi = Wait time of CPU i
Gi = Useful time of GPU i

P1

P2

P3

G1

G2

G3

Host Metrics

22

Useful

MPI

Waiting 4 GPU

𝑃𝑎𝑟. 𝐸𝑓𝑓. =
σ𝑖=1

𝑃 𝑐𝑖
𝑇∗𝑃

 =
 𝑇 ∗ 𝑃

𝑀𝑃𝐼 𝑃𝑎𝑟. 𝐸𝑓𝑓. =
σ𝑖=1

𝑃 𝑐𝑖 + σ𝑖=1
𝑃 𝑤𝑖

𝑇∗𝑃
 =

 +

𝑇 ∗ 𝑃

𝐷𝑒𝑣𝑖𝑐𝑒 𝑜𝑓𝑓𝑙𝑜𝑎𝑑 𝐸𝑓𝑓. =
σ𝑖=1

𝑃 𝑐𝑖

σ𝑖=1
𝑃 𝑐𝑖 + σ𝑖=1

𝑃 𝑤𝑖
 =

 +

• To compute MPI metrics we consider
 as useful

• First, we blame MPI, then, Device offload
Waiting 4 GPU

P = num procs
T = Total elapsed time
Ci = Useful time of CPU i
Wi = Wait time of CPU i

Quantifies how much time
the resources are idle due

the use of devices

P1

P2

P3

T

𝐿𝐵 =
σ𝑖=1

𝑃 𝑐𝑖 + 𝑤𝑖

max(𝑐𝑖 + 𝑤𝑖) ∗ 𝑃
 =

 + +

max(𝑖 + 𝑖) ∗ 𝑃

Host Metrics (MPI branch)

23

Useful

MPI

Waiting 4 GPU

• Added for completeness
• Metrics under MPI branch are computed

the same way as the MPI only metrics
considering as usefulWaiting 4 GPU

P = num procs
T = Total elapsed time
Ci = Useful time of CPU i
Wi = Wait time of CPU i

P1

P2

P3

T

𝐶𝑜𝑚𝑚 =
max(𝑐𝑖 + 𝑤𝑖)

𝑇
 =

max(𝑖 + 𝑖) ∗ 𝑃

 + +

Device Parallel Efficiency

24

Useful

Data move

Idle

𝑃𝑎𝑟. 𝐸𝑓𝑓. =
σ𝑖=1

𝑁 𝐺𝑖

𝑇∗𝑁
 =

𝑇 ∗𝑁

N = num GPUs
T = Total elapsed time
Gi = Useful time of GPU i
Di = Time waiting for data in GPU i

Quantifies how much
time the devices are

used to do useful work

T

G1

G2

G3

Device Load Balance

25

Useful

Data move

Idle

N = num GPUs
T = Total elapsed time
Gi = Useful time of GPU i
Di = Time waiting for data in GPU i

T

G1

G2

G3

G1

G2

Aggregate useful time per device

G3

𝐿𝐵 =
σ𝑖=1

𝑁 𝐺𝑖

max 𝐺𝑖 ∗𝑁
=

 +

G1

G2

G3

Quantifies how much time the devices
are idle due to one device spending

more time in useful work than others

Device Communication Efficiency

26

Useful

Data move

Idle

N = num GPUs
T = Total elapsed time
Gi = Useful time of GPU i
Di = Time waiting for data in GPU i

T

G1

G2

G3

G1

G2

Aggregate useful time per device

G3

Quantifies how much time the devices
are busy due to data movements with

respect to useful computation

G1

G2

Aggregate useful data waiting time per device

G3

Comm. 𝐸𝑓𝑓. =
max 𝐺𝑖

max 𝐺𝑗+𝐷𝑗)
 =

Device Orchestration Efficiency

27

Useful

Data move

Idle

N = num GPUs
T = Total elapsed time
Gi = Useful time of GPU i
Di = Time waiting for data in GPU i

T

G1

G2

G3

G1

G2

Aggregate useful time per device

G3

Quantifies how much time the devices
are idle because there is no pending

work to do

G1

G2

Aggregate useful data waiting time per device

G3

𝑂𝑟𝑐ℎ. 𝐸𝑓𝑓. =
max 𝐺𝑖+𝐷𝑖

𝑇
 =

𝑇

T

Summary of metrics explanation
➢ Host:

• Device offload Eff.: Inefficiency due to use of accelerator.
▪ Includes: offloading work, waiting for kernels, waiting for data or sending data to accelerator.
▪ Will be very low for applications that “only” use the device.

➢ Device:
• Orchestration Eff.: Inefficiency due to lack of available work to do.

▪ Includes: waiting for work from host, dependencies between kernels…
▪ Low value indicates the GPU is not efficiently used because lack of work to do

• Communication Eff.: Inefficiency due to data movement not instantaneous.
▪ Includes: waiting for data from host, sending data to host, sending data to other accelerator, NCCL comm,

MPI CUDA aware communication.

• Load Balance: Inefficiency due to not all the GPUs computing the same amount of time
▪ Does not differentiate between GPUs from the same process or different processes
▪ Maybe in the future we can add child metrics similar to LB_in and LB_out

• Computation: How well the resources inside the accelerator are being used.
▪ TBD: streams, warps, occupancy, instructions, tensor core use….

28

TALP GPU metrics
examples

29

Most work offloaded to GPU.
CPUs well balanced, GPUs well balanced

➢Low Offload efficiency
indicates CPUs are only used
to offload work to GPUs

➢Good device efficiency, GPUs
are used efficiently

30

Computing

Waiting 4 GPU

Idle

Few work offloaded to GPU.
CPUs well balanced, GPUs well balanced

➢Good host efficiency
• CPUs are used efficiently

➢ Low orchestration efficiency
indicates GPUs are not used
efficiently because not enough
work is offloaded to them

31

Computing

Waiting 4 GPU

Idle

Load imbalance between GPUs.
CPUs well balanced

➢ Low MPI Load Balance
• Indicates one process has more work to

do than the other

➢ Low Offload efficiency
• Indicates CPUs are not being used while

waiting for GPUs

➢ Low device Load Balance
• Indicates GPUs are not well balanced

32

Computing

Waiting 4 GPU

Idle

MPI Comm.

GPUs well balanced
CPUs unbalanced

➢ Low MPI Load Balance
• Indicates there is load imbalance

between processes

➢ Low offload efficiency
• Indicates CPUs are not working while

waiting for GPUs

➢ Low orchestration efficiency
• Indicates not enough work is being

offloaded to GPUs

33

Computing

Waiting 4 GPU

Idle

MPI Comm.

GPUs unbalanced.
CPUs unbalanced

➢ Low MPI Load Balance
• Indicates there is load imbalance between processes

➢ Low offload efficiency
• Indicates CPUs are not working while waiting for GPUs

➢ Low device Load Balance
• Indicates GPUs are not well balanced

➢ Low orchestration efficiency
• Indicates not enough work is being offloaded to GPUs

34

Computing

Waiting 4 GPU

Idle

MPI Comm.

CPUs well balanced. GPUs well balanced.
Data movement in one of the processes

➢ Low MPI load balance
• Indicates imbalance between processes

➢ Low offload efficiency
• Indicates CPUs are not being used while

waiting for GPUs

➢ Low device communication efficiency
• Indicates data movement is limiting the

use of the GPUs

35

Computing

Waiting 4 GPU

Idle

MPI Comm.

GPU data mov.

TALP Use cases

36

TALP use cases

➢Use cases examples:
• Transparent use for the user

• With user defined regions

• Getting metrics at runtime

• TALP pages: Continuous Performance Monitoring

37

DLB[...]: ############### Monitoring Region POP Metrics ###############

DLB[...]: ### Name: Global

DLB[...]: ### Elapsed Time: 31.76 s

DLB[...]: ### Parallel efficiency: 0.70

DLB[...]: ### - MPI Parallel efficiency: 0.70

DLB[...]: ### - Communication efficiency: 1.00

DLB[...]: ### - Load Balance: 0.70

DLB[...]: ### - In: 0.70

DLB[...]: ### - Out: 1.00

DLB[...]: ### - OpenMP Parallel efficiency: 0.84

DLB[...]: ### - Load Balance: 1.00

DLB[...]: ### - Scheduling efficiency: 1.00

DLB[...]: ### - Serialization efficiency: 0.84

DLB[...]: ### Computational metrics:

DLB[...]: ### - Average useful IPC: 0.59

DLB[...]: ### - Average useful frequency: 2.95 GHz

DLB[...]: ### - Number of instructions: 1.55E+11

TALP: Transparent use for the user
DLB_ARGS=" --talp"

env LD_PRELOAD="$DLB_LIBS/libdlb_mpi.so" ./app

38

App.

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

TALP

P
M

P
I

TALP

Process
status

Compute
time

MPI time

P
M

P
I Process

status
Compute

time

MPI time

MPI FinalizeMPI Finalize

MPI call

MPI call

No knowledge from the user needed
Metrics reported transparently at finalization

TALP: With user defined regions

39

include < dlb_talp.h >

...

// Register a new region or obtain an existing handler

dlb_monitor_t * monitor = DLB_MonitoringRegionRegister (“Name”);

// Start TALP monitoring region

DLB_MonitoringRegionStart(monitor);

...

// Stop TALP monitoring region

DLB_MonitoringRegionStop(monitor);

...
Code modification needed

Metrics reported by region
Any kind of nesting is allowed

TALP: With user defined regions

40

include < dlb_talp .h >

...

// Register a new region or obtain an existing handler

dlb_monitor_t * monitor = DLB_MonitoringRegionRegister (“Name”);

// Start TALP monitoring region

DLB_MonitoringRegionStart(monitor);

...

// Stop TALP monitoring region

DLB_MonitoringRegionStop(monitor);

...

DLB[...]: ############### Monitoring Region POP Metrics ###############

DLB[...]: ### Name: Global

DLB[...]: ### Elapsed Time: 25 s

DLB[...]: ### Parallel efficiency: 0.70

DLB[...]: ### - MPI Parallel efficiency: 0.70

DLB[...]: ### - Communication efficiency: 1.00

DLB[...]: ### - Load Balance: 0.70

DLB[...]: ### - In: 0.70

DLB[...]: ### - Out: 1.00

DLB[...]: ### Computational metrics:

DLB[...]: ### - Average useful IPC: 1.15

DLB[...]: ### - Average useful frequency: 2.99 GHz

DLB[...]: ### - Number of instructions: 1.20E+11

DLB[...]: ############### Monitoring Region POP Metrics ###############

DLB[...]: ### Name: Kernel computation

DLB[...]: ### Elapsed Time: 25 s

DLB[...]: ### Parallel efficiency: 1.00

DLB[...]: ### Computational metrics:

DLB[...]: ### - Average useful IPC: 1.15

DLB[...]: ### - Average useful frequency: 2.99 GHz

DLB[...]: ### - Number of instructions: 1.20E+11

DLB[...]: ############### Monitoring Region POP Metrics ###############

DLB[...]: ### Name: Main loop

DLB[...]: ### Elapsed Time: 25 s

DLB[...]: ### Parallel efficiency: 0.70

DLB[...]: ### - MPI Parallel efficiency: 0.70

DLB[...]: ### - Communication efficiency: 1.00

DLB[...]: ### - Load Balance: 0.70

DLB[...]: ### - In: 0.70

DLB[...]: ### - Out: 1.00

DLB[...]: ### Computational metrics:

DLB[...]: ### - Average useful IPC: 1.15

DLB[...]: ### - Average useful frequency: 2.99 GHz

DLB[...]: ### - Number of instructions: 1.20E+11

Main region

Region without MPI code

Region with MPI code

At this point, informed
decisions to improve

efficiency can be taken
by application or

runtime

TALP: getting metrics at runtime

41

App.

MPI1 MPI2

cpu1 cpu2 cpu3 cpu4

MPI call

MPI call

TALP

P
M

P
I

TALP

Process
status

Compute
time

MPI time
get_metricsA

P
I

P
M

P
I

A
P

I
get_metrics

Process
status

Compute
time

MPI time

MPI FinalizeMPI Finalize

include < dlb_talp.h >

...

// Register a new region or obtain an existing handler

dlb_monitor_t * monitor = DLB_MonitoringRegionRegister (“Name”);

...

// Manually obtain some metrics from the monitor

int64_t elapsed = monitor->elapsed_time;

int64_t mpi_time = monitor->mpi_time

Enable dynamic resource
management, load

balancing or malleability

Success story 3: Malleable simulation

➢ Application obtain efficiency metrics through TALP

➢ Adjust resources accordingly using COMPSs

➢ Target efficiency reached after some iterations

42

TALP pages: Continuous Performance Monitoring

➢ Two visualization modes
available:

• Scaling efficiency tables with POP-
like metrics (to gain insight)

• Metrics evolution plots of POP-like
metrics (to track regression)

43

Development

Commit

Correctness
Tests

Performance
Tests

Plan dev.
based on perf.

tests

metrics

Integrate in CI/CD platform to
detect performance issues added

TALP pages: Scaling efficiency

45

TALP Pages: Metrics evolution

46

selectable regions
runtime improvement for last execution

increase in parallel efficiency

Summary

Summary

➢ TALP is a lightweight tool to gather efficiency metrics
• At finalization

▪ Allows continuous performance monitoring

▪ Integration with CI/CD systems (TALP-pages)

• At runtime

▪ Allows dynamic adjustment of execution

o Enable load balancing

o Dynamic resource management

• Its low overhead allows its use in production runs

• Does not store TB of data

• Provides API to annotate regions and maximize the information gathered

• Will indicate when detailed analysis using traces is needed

48

Summary

➢ Version 3.6.0-beta1 (2025-9)
• MPI metrics – Fully supported
• Hardware counters (Instructions, cycles, IPC) – Fully supported
• GPU metrics

▪ NVIDIA (CUDA and OpenACC) – available
▪ AMD (HIP) – Under development
▪ Computational metrics – Under development

• OpenMP metrics – Under testing

➢ Download DLB (Free Download under LGPL-v3 license):
• https://pm.bsc.es/dlb-downloads
• https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1

• User Guide: https://pm.bsc.es/ftp/dlb/doc/user-guide/
• Hands-on: https://gitlab.pm.bsc.es/dlb/dlb-training

49

https://pm.bsc.es/dlb-downloads
https://pm.bsc.es/dlb-downloads
https://pm.bsc.es/dlb-downloads
https://pm.bsc.es/dlb-downloads
https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1
https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1
https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1
https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1
https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1
https://github.com/bsc-pm/dlb/releases/tag/v3.6.0-beta1
https://pm.bsc.es/ftp/dlb/doc/user-guide/
https://pm.bsc.es/ftp/dlb/doc/user-guide/
https://pm.bsc.es/ftp/dlb/doc/user-guide/
https://gitlab.pm.bsc.es/dlb/dlb-training
https://gitlab.pm.bsc.es/dlb/dlb-training
https://gitlab.pm.bsc.es/dlb/dlb-training

Thank you
marta.garcia@bsc.es

valentin.seitz@bsc.es

https://pm.bsc.es/dlb

mailto:marta.garcia@bsc.es
mailto:victor.lopez@bsc.es
mailto:victor.lopez@bsc.es
mailto:victor.lopez@bsc.es
mailto:victor.lopez@bsc.es
https://pm.bsc.es/dlb

	Slide 1: TALP Tracking Application Live Performance
	Slide 2: DLB library structure
	Slide 3: TALP: Tracking Application Live Performance
	Slide 4: Why is more than “yet another profiling tool”?
	Slide 5: TALP MPI Metrics
	Slide 6: MPI POP metrics
	Slide 7: TALP MPI metrics
	Slide 14: Summary of metrics explanation
	Slide 15: TALP GPU metrics
	Slide 16: TALP GPU metrics
	Slide 17: TALP GPU metrics
	Slide 18: TALP GPU metrics
	Slide 19: TALP GPU metrics
	Slide 20: Computing TALP GPU metrics
	Slide 21: States
	Slide 22: Host Metrics
	Slide 23: Host Metrics (MPI branch)
	Slide 24: Device Parallel Efficiency
	Slide 25: Device Load Balance
	Slide 26: Device Communication Efficiency
	Slide 27: Device Orchestration Efficiency
	Slide 28: Summary of metrics explanation
	Slide 29: TALP GPU metrics examples
	Slide 30: Most work offloaded to GPU. CPUs well balanced, GPUs well balanced
	Slide 31: Few work offloaded to GPU. CPUs well balanced, GPUs well balanced
	Slide 32: Load imbalance between GPUs. CPUs well balanced
	Slide 33: GPUs well balanced CPUs unbalanced
	Slide 34: GPUs unbalanced. CPUs unbalanced
	Slide 35: CPUs well balanced. GPUs well balanced. Data movement in one of the processes
	Slide 36: TALP Use cases
	Slide 37: TALP use cases
	Slide 38: TALP: Transparent use for the user
	Slide 39: TALP: With user defined regions
	Slide 40: TALP: With user defined regions
	Slide 41: TALP: getting metrics at runtime
	Slide 42: Success story 3: Malleable simulation
	Slide 43: TALP pages: Continuous Performance Monitoring
	Slide 45: TALP pages: Scaling efficiency
	Slide 46: TALP Pages: Metrics evolution
	Slide 47: Summary
	Slide 48: Summary
	Slide 49: Summary
	Slide 50: Thank you

