
OTF-CPT
On-the-fly Critical Path Tool

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20262

Hybrid Model Factors

• Highlight issues in the parallel structure of

an application

• Parallel Efficiency breaks down into
− Load balance

− Serialization

− Transfer

• Hybrid Setups (MPI+OpenMP) → Split up

efficiencies

• Child metrics multiply to

parent metric

Parallel

Efficiency

OpenMP

Parallel

Efficiency

MPI

Parallel

Efficiency

OpenMP

Communicatio

n Efficiency

MPI

Comunication

Efficiency

MPI

Load

Balance

MPI

Transfer

Efficiency

MPI

Serialisation

Efficiency

OpenMP

Serialisation

Efficiency

OpenMP

Transfer

Efficiency

OpenMP

Load

Balance

5445

53 82 6684

53 87 94100

24

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20263

What to measure?

• Useful time: execution time outside parallel runtimes
− Track execution time on each thread excluding time inside MPI / OpenMP runtimes

• Real runtime: observed execution time
− Track wall clock time from start to end.

• Ideal runtime: execution time on an ideal machine with 0 communication cost (inf. BW / 0 lat)
− Track useful time on critical path → assumes 0 communication cost

Parallel

Efficiency

OpenMP

Parallel

Efficiency

MPI

Parallel

Efficiency

OpenMP

Communication

Efficiency

MPI

Comunication

Efficiency

MPI

Load

Balance

MPI

Transfer

Efficiency

MPI

Serialisation

Efficiency

OpenMP

Serialisation

Efficiency

OpenMP

Transfer

Efficiency

OpenMP

Load

Balance

5445

53 82 6684

53 87 94100

24

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20264

The Critical Path

• We measure the length of the Critical Path of an application
− Longest chain of dependent useful computations

− Defines the total runtime → optimizations outside of the critical path do not directly decrease total runtime

− Useful computation on the Critical Path vs total runtime shows the cost of synchronization

Application
MPI Comm
OpenMP

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20265

On The Fly Critical Path Tool (OTF-CPT)

• Forward-only analysis
− we only need the metrics of the critical path, but not the concrete path

• Times are measured on thread level and propagated on the critical path

• Relevant metrics: useful computation, time outside the OpenMP runtime

• Relevant critical paths: global, process-local, thread-local

• Calculate hybrid model factors at the end of execution
− High level overview over parallel application performance

Parallel

Efficiency

OpenMP

Parallel

Efficiency

MPI

Parallel

Efficiency

OpenMP

Communication

Efficiency

MPI

Comunication

Efficiency

MPI

Load

Balance

MPI

Transfer

Efficiency

MPI

Serialisation

Efficiency

OpenMP

Serialisation

Efficiency

OpenMP

Transfer

Efficiency

OpenMP

Load

Balance

5445

53 82 6684

53 87 94100

24

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20266

OTF-CPT: Usage

• Run your parallel application normally
− No recompilation necessary

• Tool provided as library: libOTFCPT.so

• Use LD_PRELOAD to run application with the tool

• Set OMP_TOOL_LIBRARIES for OpenMP-Support

• Outputs statistics and the hybrid model factors

$ export OMP_NUM_THREADS=8
$ mpirun –np 32 \
env LD_PRELOAD=./libOTFCPT.so \
OMP_TOOL_LIBRARIES=./libOTFCPT.so \
./hybrid-application

... APP OUTPUT
--------CritPath Analysis Tool results:--------
=> Number of processes: 32
=> Number of threads: 256
=> Average Computation (in s): 34.797
=> Total runtime (in s): 37.146

----------------POP metrics----------------
Parallel Efficiency: 0.937
Load Balance: 0.976
Communication Efficiency: 0.960
Serialisation Efficiency: 0.989
Transfer Efficiency: 0.971

MPI Parallel Efficiency: 0.956
MPI Load Balance: 0.981
MPI Communication Efficiency: 0.974
MPI Serialisation Efficiency: 0.997
MPI Transfer Efficiency: 0.977

OMP Parallel Efficiency: 0.980
OMP Load Balance: 0.995
OMP Communication Efficiency: 0.986

OMP Serialisation Efficiency: 0.992
OMP Transfer Efficiency: 0.994

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20267

Visualization

• Outputs can be visualized using a provided python script
− Expects run outputs with the name <PREFIX>-<RANKS>x<THREADS>.* in a single folder.

− Will search for the OTF-CPT output and parse it

− Usage: python CPT-plot.py -o <OUT_DIR> -p <PREFIX> experiment_directory

Live Demo: NPB

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.20269

Options and Region of Interest

• Environment variable OTFCPT_OPTIONS controls

options

• Start and Stop of tool
− MPI_Pcontrol or omp_control_tool (for OpenMP-only

applications)

− Currently only a single pair of start/stop markers

possible

MPI_Pcontrol(1); // start
// region of interest
MPI_Pcontrol(0); // stop

omp_control_tool(omp_control_tool_start, 0, NULL); // start
// region of interest
omp_control_tool(omp_control_tool_stop, 0, NULL); // stop

OTFCPT_OPTIONS

Flag

Name

Default

Value

Description

stopped 0 Delay the start of measurement until a

start marker is encountered

data_path stdout Write metric data to "<data_path>-

<#procs>x<#threads>.txt". Special

values are "stdout" and "stderr".

Overwrites the file without checking.

log_path stdout Write logging output to

"<log_path>.<pid>". Special values

are "stdout" and "stderr". Only relevant

with verbose=1

verbose 0 Print additional statistics.

enable 1 Use OTF-CPT during execution.

export OTFCPT_OPTIONS="verbose=1 stopped=1"

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.202610

Future Developments

• GPU support
− target regions using OMPT

− CUDA events using CUPTI

• Dependent metrics
− E.g. Hardware counters propagated along the critical path

• Additional OpenMP focused metrics
− Focus on tasking

• More profiling information
− Region markers

• Multiple starts and stops

On-the-fly Critical Path Tool | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 10.02.202611

Available on Github and MN5

• The OTF-CPT is available on github

• Also available on MN5 for this workshop
− Available in /gpfs/scratch/nct_362/RWTH/OTF-CPT

− Modules in /gpfs/scratch/nct_362/RWTH/modules
▪ module use /gpfs/scratch/nct_362/RWTH/modules
▪ sets paths so you can use libOTFCPT.so

− Prebuilt for:

▪ intel/2023.2.0, impi/2021.10.0

▪ intel/2025.2, impi/2021.10.0

▪ Intel/2023.2.0, openmpi/4.1.5

− Please ask for other compiler/MPI combinations (or build yourself)
https://github.com/RWTH-HPC/OTF-CPT

	Folie 1: OTF-CPT
	Folie 2: Hybrid Model Factors
	Folie 3: What to measure?
	Folie 4: The Critical Path
	Folie 5: On The Fly Critical Path Tool (OTF-CPT)
	Folie 6: OTF-CPT: Usage
	Folie 7: Visualization
	Folie 8: Live Demo: NPB
	Folie 9: Options and Region of Interest
	Folie 10: Future Developments
	Folie 11: Available on Github and MN5

