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ENERGY EFFICIENCY - GREEN500

LINPACK Rmax/W
FLOPs/W
LUPs/W

https://www.top500.org/files/green500/tutorial.pdf

EnergyFE f ficiency = =

Rmaa:

P(Rma:c)
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Greend00 Data
Energy
Efficiency
TOPS00 Rmax Power [GFlops/
Rank Rank System Cores [PFlop/s]l (kW] watts)
1 293 Henri - ThinkSystem SRAT0 V2, Intel Xeon 8,284 2.BB A 43.3%96
Platinum 8342 32C 2.8GHz, NVIDIA H10I
B0GE PCle, niband HOR, Lenovo
Flatiron Institute
United States
2 LA Frontier TDS - HPE Cray EX235a, AMD 120,832 19.20 309 62.684
Optimized 3rd Generation EPYC 64C 2GHz
AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/0ak Ridge National Laboratory
United States 11/2023
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https://www.top500.org/files/green500/tutorial.pdf

PERFORMANCE

o FLOPs, MLUPs, ...
| Evaluate FLOPs

Reported by the application (solver)

event name FLOPs/inst F#inst. FLOPs
SCALAR_DOUBLE 1 7240374183451 | 9164881641636
SCALAR_SINGLE 1 154346452896 154346452896
128B_.PACKED_DOUBLE 2 557726129284 1115452258568
128B_.PACKED SINGLE 4 254594513 1018378052
256 B_ PACKED_DOUBLE 4 2725451737 10901806948
256 B_PACKED_SINGLE 8 0 0
512B_PACKED_DOUBLE 8 0 0
512B_PACKED_SINGLE 16 0 0
Runtime [s] 105.38 Sum [FLOPs| | 8522093079915
GFLOPs/s 80.87
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INSTRUCTION SET vs FREQUENCY
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2.5 - @@
2.3_ ..................

1 2 3 4 5 66 7 8 9 10 11 12 13 14 15 16 17 18
Number of active cores

HSW - Xeon E5-2680v3
BDW - Xeon E5-2697v4
SKL - Xeon Gold 6126
CSL - Xeon Gold 6240
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ENERGY
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ENERGY

Energy = Power x 1'ivme

Power [W]
1W*1s=1]
1W*1h=1Wh=3600)J

PPPPP W)
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ENERGY

Energy = Power x 1'ivme

Power [W]
1W*1s=1]
1W*1h=1Wh=3600)J

PPPPP (W) Power (W)
3.5 3

vvvvvvvvvv

0000000000000

VSB TECHNICKA

Img source, Luis Cruz (TU Delft) | on e EResa

OSTRAVA



ENERGY
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Energy = Power x 1'ivme
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ENERGY

Energy = Power x 1'ivme

Power [W]
1W*1s=1]
1W*1h=1Wh=3600)J

Power (W)

Img source, Luis Cruz (TU Delft)
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POWER MONITORING A )

AMD ROCm

Top view showing water cooling of all components

L IPMI / Redfish (HPE iLO)

AMD RAPL

No power No power No power
monitoring monitoring monitoring
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INTEL CPU UNCORE FREQUENCY

| MSR MSR_UNCORE_RATIO_LIMIT (0x620)

| frequency of subsystems in the physical processor package that are shared by multiple processor cores
| last level cache, on-chip ring interconnect or the integrated memory controllers, etc.
| occupies approximately 30 % of a chip area

Uncore

Core
Level 3 Cache
powerl Uncore
Clock

Intel 111
QPI DRAM 51%Y)
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WORKLOAD BOUNDNESS ST
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(a) Arrow presenting a range of applications Arithmetic ntensity [F/B]
of various arithmetic intensities |54/. (b) Roofline model of the Intel Xeon Gold

6240 processor when executing a workload
of AVX-512 instructions.
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ARITHMETIC INTENSITY

GEMV & TAN

Ratio from 1:9
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ARITHMETIC INTENSITY I

GEMV & TAN 0.1~1.Uﬂcis per byte Typit:ally<2:cpﬁ per byte 0(10) fbp‘:; per byte
— Ratio from 2:8 ”
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ARITHMETIC INTENSITY I

GEMV & TAN 0.1~1.Uﬂcis per byte Typit:ally<2:cpﬁ per byte 0(10) fbp‘:; per byte
— Ratio from 3:7 ’ ) Y
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ARITHMETIC INTENSITY I

GEMV & TAN 0.1~1.Uﬂcis per byte Typit:ally<2:cpﬁ per byte 0(10) fbp‘:; per byte
— Ratio from 4:6 ’ ) Y
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ARITHMETIC INTENSITY I

GEMV & TAN 0.1~1.Uﬂcis per byte Typit:ally<2:cpﬁ per byte 0(10) fbp‘:; per byte
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ARITHMETIC INTENSITY

GEMV & TAN
Ratio from 6:4 ’ )
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ARITHMETIC INTENSITY I
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ARITHMETIC INTENSITY I
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ARITHMETIC INTENSITY i ST
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MAXIMUM CORE FREQUENCY

3.9 —&— HSW SSE —e— BDW SSE —@— SKL SSE =@~_(5L-55E
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/
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CSL processor default behavior

CASCADELAKE CPU BEHAVIOR
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Arithmetic Intensity

| Power capping system
downscales CPU core and
uncore frequencies to keep
power consumption at the
power limit

| Intel RAPL does not reflect the
arithmetic intensity of the
workload

Average Power [W]

Thermal Design Power

| Different e-e analysis results
for a different power limit
(default power limit = TDP)
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CASCADELAKE CPU BEHAVIOR

CSL processor default behavior
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Arithmetic Intensity

Average Power [W]

AVX-512
Arithmetic intensity 8

RAPL keeps core frequency at
its maximum while downscales
uncore frequency
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CPU FREQUENCIES SCALING

CPU energy

1.4
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AVX-512, arithmetic intensity 8

1.9 GHz core frequency, 2.2 GHz uncore frequency
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Time relative to default configuration

1.8

=
=]
i

=
=%
i

=
fud
i

1.0+

Time
e s LTl .
il SR > -——=- ®---—- > -0-0--9
=@ = LUCF default == LUCF 2000 MHz o= UCF 1400 MHz
-® - UCF 2400 MHz -®- UCF 1800 MHz -®- UCF 1200 MHz
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-G -—-9-—-—9

- --0--9
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=> 18% CPU energy savings, 3.5% runtime improvement

=> 15% node energy savings

1.7 1.9 2.1 2.3 2.4 2.5 def.

Core Freguency [GHz]
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STATIC TUNING T e L

Time Node energy (HDEEM)

L[Jg{—HIL 1.2 14 16 1.8 2 2.2 2.4 % 1.2 1.4 1.6 1.8 2 2.2 2.4
1.3 1.3
1.5 1.5
1.7 1.7
1.9 1.9
2.1 31.77 3024 30.2 285 2.1
2.3 31.78 25.89 23.82 22.03 21.07 20.1 2.3
2.5 2547 19.09 17.67 1542 1417 1373 2.5

L 2.6 329 225 1647 14.07 2.6
2.7 30.15  20.25 2.7
2.8 27.65 17.58 2.8
2.9 25.52  14.94 2.9
3 23.5 3
3.1 21.75 3.1
3.2 19.9 3.2
3.3 18.49 3.3
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STATIC TUNING

2% | 5% | -10%
default limit | limit | limit | unlimited

Runtime [s] 257.07 Performance penalty [%] | 2.18 4.34 8.84 25.9
Energy [kJ] Energy savings [%]

HDEEM 881.28 HDEEM 5.44 7.30 10.52 11.49

RAPL 668.07 RAPL 6.85 9.44 13.92 18.42
Eff. [MFLOPs/W] Eff. [MFLOPs/W]

HDEEM 10.40 HDEEM 11.00 | 11.22 11.62 11.75

RAPL 13.72 RAPL 14.73 | 15.15 15.94 16.81
configuration

Core freq. [GHz] 3.1 3.0 2.8 2.3

Uncore freq. [GHz]
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READEX METHODOLOGY READEXZ w010

Runtime Exploitation of Application Dynamism

for Energy-efficient eXascale computing TECHNISCHE
. H2020 READEX, 2015-2018 N e
DRESDEN

Complex parallel application has different requirements

during execution, so it gives a possibility to be dynamically B NTNU
tuned for energy savings without performance penalty.

H H HH N 1
—— Voltage regulator (CPUO)

120 —— Voltage regulator (CPU1) A | r .
Voltage regulator (DDR EF) H IT4I nnO\]{at i0ns
nationa

—— Voltage regulator (DDR GH)
A L[4 FHENENE . ‘. supercomputing

100
center
s NUI Galway
‘M OE Gaillimh

80

I \ \
& }Ij‘[‘““—**wf: h‘ F | HA ﬁ | " L 1\:
5 L L L L L L L O L L U L L L O L L L L L L L L

0 1000 2000 3000 4000 5000
Sample number

- Goal was to create a tools-aided methodology for automatic tuning of parallel
applications. Dynamically adjust system parameters to actual resource

VSB TECHNICAL
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DYNAMICITY EXPLOITATION

void lbm{void) {
[/ init application parameters
[/ init mass

update hallos(); // insignificant region

for (int iter = 0; iter < NITER; iter++) { // phase region

propagate(); [/ significant region =€

memory bound region
CPU core freq = 1.6 GHz

collide(); [/ significant region
} qu““*-h

[/ post-processing

[/ store output

compute bound region
CPU core freq = 2.5 GHz

[/ terminate application
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time

24 s

Collide

compute bound

Propagate

memory bound

Default
energy

5.7kl

Energy consumption [J]

Energy consumption [J]

LATTICE BOLTZMANN BENCHMARK
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time
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Runtime of function [s]
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o
o
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L
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—a— 22
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Dynamic savings

time

-1.5%
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19.8 %
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— 14
—— 1.6
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—— 20
—— 22
—— 24
—— 25

4 26
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(

MERIC RUNTIME SYSTEM

MERIC runtime system provides dynamic application tuning
Lightweight & easy to install & easy to use
C/C++ API, Fortran module
MPI, OpenMP, CUDA parallelization * Application energy consumption measurement

Performance and power aware e Application dynamism & energy efficiency behavior

Support for a wide range of architectures analysis
x86
IBM OpenPOWER * Dynamic HW power knobs tuning for energy savings
- ARM
Nvidia/AMD GPUs e HW & SW power management co-design

Power monitoring systems
Intel/AMD RAPL
OCC

CPU freq, GPU freq,

memory freq, power limit,
#active CPU cores

- ATOS HDEEM
NVML
ROCm
HWMON (Nvidia Grace, GraceHopper, AMD RAPL) R —
- AB4FX Iji! oF osTrava

https://code.itdi.cz/energy-efficiency/meric-suite/meric
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SIMPLE ENERGY MEASUREMENT

| mericStatic

$ mericStatic -e RAPL -- <application> [application parameters]
$ mericStatic -eval

OR
$ srun --overlap ./mericStatic -e RAPL,NVML -- ./application [application parameters] &
$ srun --overlap ./mericStatic -- stop

$ mericStatic -eval

[nct00018@gs23r3b72 meric]$ mericStatic -e RAPL -- sleep 5
measurement id : 36276003

[nct00018@gs23r3b72 meric]$ mericStatic -- eval
measurement id : 36276003

Max Runtime [s] = 5.004

RAPL Energy consumption [J] = 1445.562

Total Energy consumption [J] = 1445.562
Total Energy consumption [Wh] = 0.402
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ENERGY MEASUREMENT sl
WPTER | LM | oot | MNS | Veg | Maluina | Karoina | Dicowss | Doscston

AMD CPU

Intel CPU

A64FX

Nvidia GPU
AMD GPU

GraceHopper

intel_rapl
kernel module

amd_energy
kernel module

msr_safe
kernel module

perf

intel_rapl
kernel module

msr_safe
kernel module

perf

perf




SYSTEM INFO 1/2

| Detailed information about available hardware VTN RSB IAR Tan

$ systemInfo
# SYSTEM INFORMATION ]
CPU name: Intel (R) Xeon(R) Gold 6240 CPU @ 2.60GHz .

Sockets per node: 2 ?}
Cores per socket: 18 . e p
Threads per core: 1 251 "m‘ﬂ; T e
2.3 \;,V.,”.ﬂu.

# CPU FREQUENCIES P Nmeretadvecoes
Current scaling driver: acpi-cpufreq
Current scaling governor: performance
Available governors: conservative ondemand userspace powersave performance

Hardware controlled P-State: disabled

Turbo CPU core frequencies: 3900000(2) 3700000(4) 3600000(8) 3600000(12) 3400000(16) 3300000(18)
kHz (#cores)

Nominal CPU core frequency: 2600000 kHz

Min CPU core frequency: 1000000 kHz

Available CPU core frequencies: 2601000 2600000 2500000 2400000 2300000 2100000 2000000 1900000
1800000 1700000 1600000 1500000 1300000 1200000 1100000 1000000 kHz

Max CPU uncore frequency: 2400000 kH=z

Min CPU uncore frequency: 1200000 kHz

VSB TECHNICKA
|||| UNIVERZITA
OSTRAVA



SYSTEM INFO 2/2

# CPU POWER LIMITS

RAPL time window unit: 976.562 us

PKG max power limit:
PKG min power limit:

376 W
69 W

DRAM max power limit: 26.75 W
DRAM min power limit: 4.5 W

# DEFAULT CPU POWER
PKG power limit
PKG power limit
PKG time window
PKG power limit
PKG power limit
PKG time window

LIMITS

#1: enabled + clamping disabled
#1: 150 W

#1: 1 s

#2: enabled + clamping enabled
#2: 180 W

#2: 0.000976562 s

DRAM power limit:

DRAM power limit:
DRAM time window:

disabled + clamping disabled
Ow
0.000976562 s

# AVAILABLE POWER MONITORING SYSTEMS

RAPL
HDEEM
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ANALYSIS WITHOUT HW TUNING

Performance (FLOPs) evaluation

Energy consumption
| node energy consumption
| CPU+GPU energy performance counters

Energy efficiency

Carbon footprint
Vectorization ratio

CPU (core/uncore) frequency
Memory bandwidth
Computation intensity

Power consumption timeline

Various hardware platforms, various power monitoring systems

VSB TECHNICKA
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ADDITIONAL ANALYSIS STEPS

Application instrumentation

Default HW configuration execution

Multiple executions of the application in a variety of HW configurations
Evaluation of the trace files

| Various power limits




LIBRARY API

| Instrumentation

int main(int argc, char **argv)
{

MERIC Init();

MERIC MeasureStart("A");
do_work A(2) ;

MERIC MeasureStop("A");

MERIC MeasureStart("B");
do_work B(5) ;
MERIC MeasureStop("B");

MERIC Close();
return O;

}

VSB TECHNICKA | ITAINNOVATIONS
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APPLICATION ANALYSIS

| Manual exhaustive state-space-search (old-fashioned way)

|  MERICwrapper will identify the optimal configuration from the data
export MERIC_QUTPUT_DIR="MERICdir"

export MERIC MEASUREMENT=RAPL

for CF in 30 25 20

do
for UCF in 24 22 20
do
export MERIC_FREQUENCY=$CF"OOMHZ"
export MERIC_UNCORE_FREQUENCY=$UCF"OOMHZ"
LD PRELOAD=libmpi sbi.so mpirun ./a sbi.out --app param
done
done

$MERIC_PATH/bin/wrapper -a SMERIC OUTPUT DIR -m RAPL

VSB TECHNICKA
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APPLICATION TUNING

| Automatized state-space-search using MERICwrapper
$ SMERIC PATH/bin/wrapper -s config.json -- ./a meric.out

$ $SMERIC PATH/bin/wrapper -s config.json -- \
LD PRELOAD=libmpi meric.so mpirun ./a meric.out --app_ param

| Configuration file specifies what
HW configurations to test
State-space-search algorithm
Used energy measurement mode
MERIC output configuration
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RADAR VISUALIZER e R

- Visualisation of applicatin behavior in various configuration
- Tables

- Overall application evaluation
- Summary of nested regions' behavior
- Each region behavior description

- Heatmaps
I et —
. Plots o — i J T ‘
AR T
- Samples timeline . L | Il I; M | % | B .
R R 2 o “ 1 Vf ﬂF : FV lk gurm 3 pE g .
- Trace timeline . S| e L it
- Call-pathgraph =~ 7 7 s 7T T —

L3
CPU core freguency [GHZ]

Uncore freq [GHz)
% 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 13,200.02 12,7171 12,621.78 12,507.38 12,774.16 13,108.6  13,604.2
Default | Default Best static Static Dynamic 14 13.1619  12.507.7% 12.802.26 12.005.84 13.450.8
settings | values | configuration | savings savings 1.5 13 ;320 .66 12’640-76 12’579'22 13,126‘44 113 :370 '24
Runtime of function [s], | EXCTUEal| IR 306tz (k) oo 0.00%) 00155 of 1.8 13,022.66  12,700.02 12,5746 12,831.82 13,081.62 13,206.04
Job info - rapl 2.5GHz ’ 2.5GHz ’ ’ (0_';,-5%) 2 13,327.12 12,902.62 12,544.82 12,680.32 13,038.86 13,207.38 13,4748
26.52 of 2.2 13,240.14 12,851  12,760.08 12,802.24 12,993.44 13,260.38 13,497.6 13,767.62
Energy summary, 3.0GHzZ, || g0p 37 2.4GHz, 10.70 (2.26%) 780.67 2.4 13,568.68 13,447.18 12,973.38 13,238.6 13,332.7 13,388.7
COUNTERS - rapl: | 25GHz (5.96%) 925 13553.84 1330024 13,354.46 1347236
Run-time change
with the energy +0.14s (107.04 % of default time) VSB TECHNICAL ITAINNOVATIONS _
optimal settings || II UNIVERSITY | NATIONAL SUPERCOMPUTING
| OF OSTRAVA CENTER
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