
Archer: Debugging with compiler-based feedback

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

2

Examples of Undefined Behavior as Defined in C/C++

• Read of uninitialized variable

• Out-of-bounds access to heap, stack and globals

− Use after free / return / scope

• Bit shifts beyond type bounds

• Dereferencing a NULL pointer

• Signed integer overflow

• Conversion to floating point overflowing the destination

• Accessing a different union member than most recently written

• Data race

• More: see C/C++ standard

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

3

Undefined Behavior: What could go wrong?

• UB allows compilers any

behavior

➢ Possible optimization: assume

absence of UB

➢ Unexpected results

➢ Avoid UB in any case!

int check_for_32(int a) {

int res;

if (a == 32)

res = a;

return res;

}

clang 17:

check_for_32(int):

mov eax, edi # return a

ret

gcc 13:

check_for_32(int):

mov eax, 32 # return 32

ret

• Program is only well-defined, if a=32!

➢ Both compilers generate valid code!

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

4

Sanitizers

• LLVM offers multiple sanitizers

− MemorySanitizer

− AddressSanitizer

− UBSanitizer

− ThreadSanitizer

• Activate sanitizers with clang/icx -fsanitize=<name>

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

5

Memory Sanitizer

• Detects read of uninitialized memory
$ icx -fsanitize=memory -fno-omit-frame-pointer -g -O2 2_msan/msan.c

int check_for_32(int *a) {

int res;

if (*a == 32)

res = *a;

return res;

}

int main(){

int a;

printf("check_for_32(%i) = %i\n", a,

check_for_32(&a));

}

==145056==WARNING: MemorySanitizer: use-of-uninitialized-value

#0 0x55dbd1ab8571 in check_for_32 msan.c:14:7

#1 0x55dbd1ab8656 in main msan.c:23:40

#2 0x7fa9ccacbd8f in __libc_start_call_main

csu/../sysdeps/nptl/libc_start_call_main.h:58:16

#3 0x7fa9ccacbe3f in __libc_start_main csu/../csu/libc-

start.c:392:3

#4 0x55dbd1a322a4 in _start (a.out+0x1e2a4) (BuildId:

763eb80b676294a02a65890f5181a8a697e4b2a5)

SUMMARY: MemorySanitizer: use-of-uninitialized-value msan.c:14:7

in check_for_32

Exiting

Typical slowdown: 3x

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

6

AddressSanitizer

$ icpx -fsanitize=address -fno-omit-frame-pointer -g -O2 3_asan/asan.cc

int main(int argc, char **argv)

{

int *array = new int[100];

delete [] array;

return array[argc]; // BOOM

}

==176065==ERROR: AddressSanitizer: heap-use-after-free on address

0x614000000044 at pc 0x563c6909f597 bp 0x7ffe9aa80610 sp 0x7ffe9aa80608

SUMMARY: AddressSanitizer: heap-use-after-free asan.cc:4:10 in main

Shadow bytes around the buggy address:

0x0c287fff7ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x0c287fff8000: fa fa fa fa fa fa fa fa[fd]fd fd fd fd fd fd fd

0x0c287fff8010: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

0x0c287fff8020: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

0x0c287fff8030: fd fd fd fd fd fd fd fd fd fd fa fa fa fa fa fa

Shadow byte legend (one shadow byte represents 8 application bytes):

Addressable: 00

Heap left redzone: fa

Freed heap region: fd

Typical slowdown: 2x

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

7

UB Sanitizer

$ icx -fsanitize=undefined 4_ubsan/ubsan.c

int main(int argc, char **argv) {

int k = 0x7ffffffe;

k += argc;

return 0;

}

$./a.out

$./a.out 5

ubsan.c:3:5: runtime error: signed integer

overflow: 2147483646 + 2 cannot be

represented in type 'int'

SUMMARY: UndefinedBehaviorSanitizer:

undefined-behavior ubsan.c:3:5 in

Typical slowdown: 2x

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

8

Thread Sanitizer

C++

➢ The execution of a program contains a data race if it contains two potentially concurrent

conflicting actions, at least one of which is not atomic, and neither happens before the other,

[...]. Any such data race results in undefined behavior.

OpenMP

➢ Multiple threads access the same memory unordered, at least one thread writes. If a data race

occurs then the result of the program is unspecified.

➢ There is no benign data race in C/C++. It is always UB!

https://eel.is/c++draft/intro.races#21.sentence-3

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

9

Data Race

program hello
#ifdef _OPENMP

use omp_lib
#endif

implicit none
integer:: nthreads, threadid

!$omp parallel
#ifdef _OPENMP

nthreads = OMP_GET_NUM_THREADS()
threadid = OMP_GET_THREAD_NUM()
if(threadid.eq.0) then

write(*,*) "Open-MP version with threads = ", nthreads
endif

#else
write(*,*) "Serial version "

#endif
!$omp end parallel
end program

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

10

Thread Sanitizer

• Detects data race

• Detects lock order inversion (potential deadlocks, but no actual deadlock)

• Many supported OS/architectures:

− Android aarch64, x86_64

− Darwin arm64, x86_64

− FreeBSD

− Linux aarch64, x86_64, powerpc64, powerpc64le

− NetBSD

• New and vectorized runtime library introduced with LLVM 15 (halved space and time overhead)

Typical slowdown: 5-15x

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

11

Thread Sanitizer Example

$ icx -fsanitize=thread -g -O2 5_tsan/tsan.c

include <pthread.h>

int Global;

void *Thread1(void *x) {

Global = 42;

return x;

}

int main() {

pthread_t t;

pthread_create(&t, NULL, Thread1, NULL);

Global = 43;

pthread_join(t, NULL);

return Global;

}

==================
WARNING: ThreadSanitizer: data race (pid=134056)

Write of size 4 at 0x564d0188c258 by main thread:
#0 main tsan.c:10:9 (a.out+0xe78e2)

Previous write of size 4 at 0x564d0188c258 by thread T1:
#0 Thread1 tsan.c:4:9 (a.out+0xe7899)

Location is global 'Global' of size 4 at 0x564d0188c258 (a.out+0x1493258)

Thread T1 (tid=134058, finished) created by main thread at:
#0 pthread_create tsan_interceptors_posix.cpp:1022:234 (a.out+0x60a8d)
#1 main tsan.c:9:2 (a.out+0xe78d3)

SUMMARY: ThreadSanitizer: data race tsan.c:10:9 in main
==================
ThreadSanitizer: reported 1 warnings

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

12

ThreadSanitizer + Archer = OpenMP Data Race Detection

• Developed in cooperation with UoUtah, LLNL since 2014

• Injects OpenMP synchronization (and concurrency) into Tsan

• Avoids false positive reports

• Shipped with LLVM since 10.0
− oneAPI DPC++/C++ Compiler since version 2024.0.

• Covers latest OpenMP semantics (when using latest llvm ;)

• Verify that Archer is active: ARCHER_OPTIONS=verbose=1
− Known issue with Ubuntu: the packaging bricks Archer

▪ export OMP_TOOL_LIBRARIES=/usr/lib/llvm-*/lib/libarcher.so
− Known issue of TSan with certain HPC applications: increased overhead for 5+ threads

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

13

Archer: Runtime Options

• export as ARCHER_OPTIONS=

− verbose={0|1} for information about archer status

− enable={0|1} for disabling archer

− ignore_serial={0|1} to disable analysis for serial code

− all_memory={0|1} to enable analysis of all_memory dependences

• Strongly encouraged: TSAN_OPTIONS=ignore_noninstrumented_modules=1

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

14

Using Sanitizers with Fortran code

• Latest versions of the Intel Fortran compiler (ifx) support sanitizers

− $ ifx -fopenmp -fsanitize=thread test.f90

• GCC supports most sanitizers (other than MSan)

• Compile Fortran codes with gfortran + sanitizer flags

• For Archer support, make sure to link the LLVM OpenMP runtime, not GNU runtime:

− $ gfortran -lomp -fopenmp -fsanitize=thread test.f90

− $ gfortran -fopenmp -c -fsanitize=thread test.f90

$ clang -fopenmp -fsanitize=thread --gcc-install-dir=<path-to-gfortran> -
lgfortran test.o

− The latter links the LLVM TSan runtime which has significantly lower runtime overhead

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

15

Hands-on: Archer

• Get the Hands-on code: /gpfs/scratch/nct_362/exercises/ARCHER/prime_omp.c

• Load intel compilers >= 2024 (or LLVM > 10)
$ module purge
$ module load intel/2025.2

• Compile with LLVM based compiler (e.g. icx) and run
$ icx -g -qopenmp -O2 -lm prime_omp.c
$ OMP_NUM_THREADS=2 ./a.out

• Compile and run with Tsan

$ icx -g -fsanitize=thread -fopenmp -O2 -lm prime_omp.c
$ OMP_NUM_THREADS=2 ARCHER_OPTIONS=enable=1 OMP_TOOL_LIBRARIES=libarcher.so ./a.out

MPI + OpenMP Correctness Checking with MUST

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

17

How many issues can you spot in this tiny example?

#include <mpi.h>

#include <stdio.h>

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Datatype type;

MPI_Type_contiguous (2, MPI_INTEGER, &type);

MPI_Recv (buf, 2, MPI_INT, size - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send (buf, 2, type, size - rank, 123, MPI_COMM_WORLD);

printf ("Hello, I am rank %d of %d.\n", rank, size);

return 0;

}

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

18

Motivation

• MPI programming is error prone

• Portability errors (just on some systems, just for some runs)

• Bugs may manifest as:
− Crash

− Application hanging

− Finishes

• Questions:
− Why crashing/hanging?

− Is my result correct?

− Will my code also give correct results on another system?

• Tools help to pin-point these bugs

Error more
obvious

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

19

MUST detects deadlocks

Click for graphical representation of the
detected deadlock situation.

What? Where? DetailsWho?

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

20

Visualization of deadlock situation

Simple call

stack for this

example.

Rank 0 waits

for rank 1

and vv.

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

21

MUST detects errors in transfer buffer sizes / types

Size of sent message larger
than receive buffer

All detected errors are
collapsed for overview -

click to expand

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

22

MUST detects errors in handling datatypes

Graphical representation of the
type mismatch

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

23

Graphical representation of the race condition

Graphical representation of the
data race location

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

24

MUST detects leaks of user defined objects

• User defined objects include
− MPI_Comms (even by MPI_Comm_dup)

− MPI_Datatypes

− MPI_Groups

Unfinished non-blocking
receive is resource leak and

missing synchronization

Leak of user defined
datatype object

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

25

Finally

No further error detected

Hopefully this message applies to
many applications

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

26

MUST – Basic Usage

• Apply MUST as an mpiexec wrapper, that’s it:

• After run: inspect “MUST_Output.html”

• “mustrun” (default config.) uses an extra process:
− I.e.: “mustrun -np 4 …” will use 5 processes

− Allocate the extra resource in batch jobs!

− Default configuration tolerates application crash; BUT is slower (details later)

% mpicc source.c -o exe

% $MPIRUN -n 4 ./exe

% mpicc -g source.c -o exe

% mustrun --must:mpiexec $MPIRUN -n 4 ./exe

% mustrun -n 4 ./exe

or simply

Advanced Usage

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

28

MUST - At Scale (highly recommended for >10 processes)

• Provide a branching factor (fan-in) for the tree

infrastructure:

• Get info about the number of processes:

• This will give you the number of processes

needed with tool attached

% mustrun -n 40 ./exe \

 --must:fanin 8

% mustrun -n 40 ./exe \

 --must:fanin 8 --must:info

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

29

MUST – Execution Modes

Application might crash

--must:nocrash

--must:nodesize 8 --must:fanin 8

Application never crashes

Centralized analysis

Distributed analysis

▪ 1 extra process

▪ Blocking communication

▪ 1 extra process

▪ Non-blocking communication

▪ 1 extra process per 7

application processes + tree

▪ Nodesize must be divisor of

ranks sharing memory

▪ 1 extra process per 8 app

processes + tree

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

30

MUST - Multithreading Support

• By default, MUST supports MPI_THREAD_FUNNELED

• For higher threading levels:

• This will raise the required level to MPI_THREAD_MULTIPLE!

• Some MPI might need env like: MPICH_MAX_THREAD_SAFETY=multiple

• Get info about the resources needed:

− This will give you the number of processes needed with tool attached

% mustrun -n 40 ./exe --must:hybrid

% mustrun -n 40 ./exe --must:hybrid --must:info

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

31

Getting stacktraces

• We use Backward-cpp as an external lib for stacktraces

• Collecting stack traces can be costly. Select with

--must:stacktrace [backward|addr2line|none]

• Supposed your application has no faults you won’t need stacktraces

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

32

MUST – Filter file

• Use filter files to selectively exclude error/warning messages (avoid cluttered output)

• Format: messageType:MUST_MESSAGE_TYPE:source

− MUST_MESSAGE_TYPE: kind of message to ignore (e.g. MUST_WARNING_COMM_NULL)

− source: specific file (filename.c), specific function (function_name) or all sources (*)

• Example: Ignore NULL comm. warnings originating from main.c (needs stacktraces)

• Example: Ignore all data type leak errors

• Define and use a filter file:

− --must:filter-file <path-to-filter-file>

messageType:MUST_WARNING_COMM_NULL:src:main.c

messageType:MUST_ERROR_LEAK_DATATYPE:*

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

33

MUST – more options

• Print help:

− --must:help

• Select output format:

− --must:output {html|json|stdout}

• Use with ddt:

− Record error message information:

▪ --must:capture

− Replay under control of ddt:

▪ --must:reproduce --must:ddt

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

34

Using MUST + Archer

• Compile the MPI(+OpenMP) application just like described for Archer

• Using clang to compile with OpenMPI/IntelMPI/MPICH:

− export OMPI_CC=clang; export I_MPI_CC=clang; export MPICH_CC=clang;
− export OMPI_CXX/I_MPI_CXX/MPICH_CXX=clang++;

• Run MUST with TSan support:
− --must:tsan
− Feeds all MPI buffer accesses to TSan

• For integration of TSan output into the MUST report, a helper-library must be linked into the

application:
− -Wl,--whole-archive ${MUST_ROOT}/lib/libonReportLoader.a -Wl,--no-whole-

archive

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

35

TSan Output in MUST report

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

36

Hands-on: MUST

• Get the Hands-on code from /gpfs/scratch/nct_362/exercises/MUST/example.c

• Load MUST module from /gpfs/scratch/nct_362/RWTH/modules

$ module use /gpfs/scratch/nct_362/RWTH/modules
$ module load MUST/1.11.3rc2-oneapi-2023.2

• Compile the code with debug symbols with the loaded runtime
$ mpicc –g example.c

• Run the code with MUST (remember that MUST requires an additional process)
$ mustrun –np 4 ./a.out

• Download the generated html file(s) and inspect with your browser
− MUST_Output.html

− MUST_Output_files (for visualizations)

	Folie 1: Archer: Debugging with compiler-based feedback
	Folie 2: Examples of Undefined Behavior as Defined in C/C++
	Folie 3: Undefined Behavior: What could go wrong?
	Folie 4: Sanitizers
	Folie 5: Memory Sanitizer
	Folie 6: AddressSanitizer
	Folie 7: UB Sanitizer
	Folie 8: Thread Sanitizer
	Folie 9: Data Race
	Folie 10: Thread Sanitizer
	Folie 11: Thread Sanitizer Example
	Folie 12: ThreadSanitizer + Archer = OpenMP Data Race Detection
	Folie 13: Archer: Runtime Options
	Folie 14: Using Sanitizers with Fortran code
	Folie 15: Hands-on: Archer
	Folie 16: MPI + OpenMP Correctness Checking with MUST
	Folie 17: How many issues can you spot in this tiny example?
	Folie 18: Motivation
	Folie 19: MUST detects deadlocks
	Folie 20: Visualization of deadlock situation
	Folie 21: MUST detects errors in transfer buffer sizes / types
	Folie 22: MUST detects errors in handling datatypes
	Folie 23: Graphical representation of the race condition
	Folie 24: MUST detects leaks of user defined objects
	Folie 25: Finally
	Folie 26: MUST – Basic Usage
	Folie 27: Advanced Usage
	Folie 28: MUST - At Scale (highly recommended for >10 processes)
	Folie 29: MUST – Execution Modes
	Folie 30: MUST - Multithreading Support
	Folie 31: Getting stacktraces
	Folie 32: MUST – Filter file
	Folie 33: MUST – more options
	Folie 34: Using MUST + Archer
	Folie 35: TSan Output in MUST report
	Folie 36: Hands-on: MUST

