Archer: Debugging with compiler-based feedback

L) PN | RwWiH

Examples of Undefined Behavior as Defined in C/C++

Read of uninitialized variable

Out-of-bounds access to heap, stack and globals
- Use after free / return / scope

Bit shifts beyond type bounds
Dereferencing a NULL pointer
- Signed integer overflow
- Conversion to floating point overflowing the destination
Accessing a different union member than most recently written
- Datarace

- More: see C/C++ standard

2 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

Undefined Behavior: What could go wrong?

- UB allows compilers any

behavior
. L clang 17:

> Possible optimization: assume ook . .

absence of UB check_for_32(int):
> Unexpected results mov eax, edi # return a
> Avoid UB in any case! ret
. : gcc 13:
int check_for_32(int a) {

. check for 32(int):

int res;

. mov eax, 32 # return 32

if (a == 32)

ret
res = a;

return res; - Program is only well-defined, if a=32!

} > Both compilers generate valid code!

3 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0
IT Center

Sanitizers

* LLVM offers multiple sanitizers
— MemorySanitizer
— AddressSanitizer
— UBSanitizer
— ThreadSanitizer

 Activate sanitizers with clang/icx -fsanitize=<name>

4 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

‘- Typical slowdown: 3x
Memory Sanitizer

- Detects read of uninitialized memory
$ icx -fsanitize=memory -fno-omit-frame-pointer -g -02 2 _msan/msan.c

int check for_32(int *a) { ==145056==WARNING: MemorySanitizer: use-of-uninitialized-value
int res; #0 0x55dbd1ab8571 in check for 32 msan.c:14:7
if (*a == 32) #1 0x55dbd1ab8656 in main msan.c:23:40
#2 Ox7fa9ccacbd8f in _ libc _start call main
res = *a;

csu/../sysdeps/nptl/libc_start call main.h:58:16

return res; #3 Ox7fa9ccacbe3f in _ libc start main csu/../csu/libc-

} start.c:392:3
#4 0x55dbdla322a4 in _start (a.out+0xle2ad4) (BuildId:
int main(){ 763eb80b676294202a65890f5181a8a697e4b2a5)
int a;

printf("check for 32(%i) = %i\n", a, SUMMARY: MemorySanitizer: use-of-uninitialized-value msan.c:14:7

check_for _32(&a));
}

in check for_ 32

Exiting

5 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 7
13.02.2026 @ 0 0

IT Center

.y Typical slowdown: 2x
AddressSanitizer

$ icpx -fsanitize=address -fno-omit-frame-pointer -g -02 3_asan/asan.cc

int main(int argc, char **argv) ==176065==ERROR: AddressSanitizer: heap-use-after-free on address

{ 0x614000000044 at pc Ox563c6909f597 bp Ox7ffe9aa80610 sp Ox7ffe9aa80608
int *array = new int[100]; SUMMARY: AddressSanitizer: heap-use-after-free asan.cc:4:10 in main
Shadow address:

Ox0c287fff7ff0: 00 00 00 00 00 0O 0O 0O 0O 0O 00 00 0O 00 00 00
=>0x0c287fff8000: fa fa fa fa fa fa fa fa[fd]fd fd fd fd fd fd fd
} Ox0c287fff8010: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

Ox0c287fff8020: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
Ox0c287fff8030: fd fd fd fd fd fd fd fd fd fd fa fa fa fa fa fa

Shadow byte legend (one shadow byte represents 8 application bytes):

delete [] array;
return array[argc]; // BOOM

Addressable: 00
Heap left redzone: fa
Freed heap region: fd

6 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

. Typical slowdown: 2x
UB Sanitizer

$ icx -fsanitize=undefined 4 ubsan/ubsan.c

$./a.out

int main(int argc, char **argv) { $./a.out 5

int k = ex7ffffffe;

ubsan.c:3:5: runtime error: signed integer
k += argc; «~»--””’”’ﬂ~/’ﬂﬂﬂﬂﬂﬂ”

overflow: 2147483646 + 2 cannot be

return 0; . P
’ represented in type 'int
} SUMMARY: UndefinedBehaviorSanitizer:
undefined-behavior ubsan.c:3:5 in
7 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026 @ 0 0 RWTH

IT Center

Thread Sanitizer

C++

> The execution of a program contains a data race if it contains two potentially concurrent
conflicting actions, at least one of which is not atomic, and neither happens before the other,
[...]. Any such data race results in undefined behavior.

OpenMP

> Multiple threads access the same memory unordered, at least one thread writes. If a data race
occurs then the result of the program is unspecified.

> There is no benign data race in C/C++. It is always UB!

8 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

https://eel.is/c++draft/intro.races#21.sentence-3

Data Race

program hello
#ifdef OPENMP
use omp_ 1lib
#endif
implicit none
integer:: nthreads, threadid
I$omp parallel
#ifdef OPENMP
nthreads = OMP_GET_NUM_THREADS()
threadid = OMP_GET_THREAD NUM()
if(threadid.eq.@) then

write(*,*) "Open-MP version with threads = ", nthreads
endif
#else
write(*,*) "Serial version "
#endif

I$omp end parallel
end program

9 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

Typical slowdown: 5-15x
Thread Sanitizer

Detects data race
Detects lock order inversion (potential deadlocks, but no actual deadlock)
Many supported OS/architectures:

- Android aarch64, x86 64

- Darwin arm64, x86_64

- FreeBSD

- Linux aarch64, x86 64, powerpc64, powerpct4le

- NetBSD

New and vectorized runtime library introduced with LLVM 15 (halved space and time overhead)

10 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

Thread Sanitizer Example

$ icx -fsanitize=thread -g -02 5 tsan/tsan.c

include <pthread.h> WARNING: ThreadSanitizer: data race (pid=134056)
int Global; Write of size 4 at 0x564d0188c258 by main thread:
. . #0 main tsan.c:10:9 (a.out+0xe78e2)

void *Threadl(void *x) {

Global = 42;

Previous write of size 4 at 0x564d0188c258 by thread T1:

return X; #0 Threadl tsan.c:4:9 (a.out+0xe7899)

}

int main() {
pthread t t;
pthread create(&
Global = 43;
pthread join(t, NULL);

Location is global 'Global' of size 4 at 9x564d0188c258 (a.out+0x1493258)

Thread T1 (tid=134058, finished) created by main thread at:
‘///_#0 pthread create tsan_interceptors posix.cpp:1022:234 (a.out+0x60a8d)
NULL, Threadl, NULL); #1 main tsan.c:9:2 (a.out+0xe78d3)

SUMMARY: ThreadSanitizer: data race tsan.c:10:9 in main

return Global; ThreadSanitizer: reported 1 warnings

11 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

ThreadSanitizer + Archer = OpenMP Data Race Detection .l -l'
my
ms
* Developed in cooperation with UoUtah, LLNL since 2014 '-._ : r r p r
Wil WwmiiWmi

Injects OpenMP synchronization (and concurrency) into Tsan

Avoids false positive reports

Shipped with LLVM since 10.0
— oneAPI DPC++/C++ Compiler since version 2024.0.

Covers latest OpenMP semantics (when using latest llvm ;)

Verify that Archer is active: ARCHER_OPTIONS=verbose=1

— Known issue with Ubuntu: the packaging bricks Archer
= export OMP_TOOL LIBRARIES=/usr/lib/llvm-*/1ib/libarcher.so
— Known issue of TSan with certain HPC applications: increased overhead for 5+ threads

12 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

Archer: Runtime Options = -l-
m:
m:
. export as ARCHER_OPTIONS= =, : r r D r
Wi WwmiiWmi

- verbose={0|1} for information about archer status
- enable={0@|1} for disabling archer
- ignore serial={@]|1} to disable analysis for serial code

- all memory={@|1} to enable analysis of all_memory dependences

- Strongly encouraged: TSAN OPTIONS=ignore noninstrumented modules=1

13 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026 @ 0 0 m

IT Center

Using Sanitizers with Fortran code

Latest versions of the Intel Fortran compiler (ifx) support sanitizers
- $ ifx -fopenmp -fsanitize=thread test.f90

GCC supports most sanitizers (other than MSan)
- Compile Fortran codes with gfortran + sanitizer flags
For Archer support, make sure to link the LLVM OpenMP runtime, not GNU runtime:
- $ gfortran -lomp -fopenmp -fsanitize=thread test.f90
- $ gfortran -fopenmp -c -fsanitize=thread test.f90

$ clang -fopenmp -fsanitize=thread --gcc-install-dir=<path-to-gfortran> -
lgfortran test.o

- The latter links the LLVM TSan runtime which has significantly lower runtime overhead

14 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 7
13.02.2026 @ 0 0

IT Center

Hands-on: Archer

Get the Hands-on code: /gpfs/scratch/nct_362/exercises/ARCHER/prime_omp.c

Load intel compilers >= 2024 (or LLVM > 10)

$ module purge
$ module load intel/2025.2

Compile with LLVM based compiler (e.g. icx) and run
$ icx -g -qopenmp -02 -1m prime_omp.c
$ OMP_NUM_THREADS=2 ./a.out

Compile and run with Tsan
$ icx -g -fsanitize=thread -fopenmp -02 -1m prime_omp.c
$ OMP_NUM_THREADS=2 ARCHER _OPTIONS=enable=1 OMP_TOOL_ LIBRARIES=1libarcher.so ./a.out

15 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

MPI + OpenMP Correctness Checking with MUST

L) PN | RwWiH

How many issues can you spot in this tiny example?

int main (int argc, char** argv) thi
{ S Coge &Xam
ple!

int rank, size, buf[8];

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, &size);

MPI Datatype type;
MPI_Iype_contiguous (2, MPI INTEGER, &type) ;

MPI_Recv (buf, 2, MPI INT, size - rank, , MPI_COMM WORLD, MPI_STATUS IGNORE) ;
MPI Send (buf, 2, type, size - rank, , MPI COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);

return 0O;

17 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

Motivation

MPI| programming is error prone
Portability errors (just on some systems, just for some runs)

Bugs may manifest as:
— Crash

— Application hanging Error more

— Finishes obvious
* Questions:

— Why crashing/hanging?

— Is my result correct?
— Will my code also give correct results on another system?

Tools help to pin-point these bugs

18 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

MUST detects deadlocks

e applicatiortissued a set of MPI calls that can cause a deadloc! ical representabn

his situation is available in

Details:

|

The application issued a set of MPI calls that can cause a deadlock! A graphical representation of this situation is available in a detailed

deadlock view (M _Output-files/M Deadlock.html). References 1-2 list the involved calls (limited to the first 5 calls, further calls may
be involved). The application still runs, if deadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the
involved r ith a debugger or abort the application (if necessary).

Click for graphical representation of the
detected deadlock situation.

References of 4
representative process:

reference 1 rank 0:
MPI_Recv (1st occurrence)
called from:

#0 main@example.c:15

reference 2 rank 3:
MPI_Recv (1st occurrence)
called from:

#0 main@example.c:15

19 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026 @ 0 0 n

IT Center

20

Visualization of deadlock situation

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows active wait-for
dependencies between the processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend
details the wait-for graph components in addition , while a parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a

message queue graph shows active and unmatched point-to-point communications. This graph only includes operations that could have been intended to match a point-to-point

operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation in the parallel call stack. The leafs of this call stack graph
show the components of the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this MPI implementation) you
can attach to the involved ranks with a debugger or abort the application (if necessary).

MPI COMM WORLD:

Active MPI Call
0: MPI_Recy Rank 0 waits
comm=A, tag=123)comm=A, tag= for ran k 1
j and vv.
3: MPI_Recv

A A waits for B and C

J s

0 casmx \.

(¢
main@/rwthfs/rz/cluster/home/pj416018/must-example/VI-HPS/example.c: 15
RS . A |AwssfrBor Gl y
‘ Simple call
MPI_Recy stack for this ‘ e
example. c

Message queue

stack

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

00 RWTH

IT Center

MUST detects errors in transfer buffer sizes / types

2(28793) A receive operation uses a (datatype
Details:

|

Size of sent message la rger !y the send it matches! The first element of the send...

TP than receive buffer

References of a representative
process:

reference 1 rank 2: MPI_Send

A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first Rquigigt:'nve ggtlgacf:&exl;ﬁ;lc:gi? grtl’gl

element of the send that did not fit into the receive operation is at (contiguous)[0](MPI INTEGER) in the send type (consult MPI Send (1st
the MUST manual for a detailed description of datatype positions). The send operation was started at reference 1, the =
receive operation was started at reference 2. (Information on communicator: MPI COMM_WORLD) (Information on send of oot (15¢ ocenrronce) called From:
count 2 with type:Datatype created at reference 3 is for Fortran, based on the following type(s): { MPI INTEGER}) : 2 \ ; ; e
(Information on receive of count 2 with type:MPI _INT) =0 mzl}r(ll@:)lcgmple AnnlE s Sl

occurrence) called |reference 2 rank 1: MPI_Irecv

reference 3 rank 2:
MPI_Type_contiguous (1st

occurrence) called from:
"#0 main@example-fixl.c:13

1(28792) Error A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first element of the send...
0-3 Error Argument 3 (datatype) is not commited for transfer, call MPI Type commit before using the type for transfer!(Information on datatypeData...
2(28793) Error The memory reglons to be transfered by thls send operation overlap W1th reglons spanned by a pendmg non-blockmg receive operation!(In...
1(28792) Error The memory regions to be transfered b d operation overla - == receive operation!(In...
3(28795) Error The memory regions to be transfered by this s receive operation!(In...
3(28795) Error A receive operation uses a (datatype,count) pair that can A” d eteCted €rrors are L element of the send...
0(28794) Error The memory regions to be transfered by this send operation overla H _ receive operation!(In...
0(28794) Error A receive operation uses a (datatype,count) pair that can not hold { co l l d psed fO roverview L element of the send...

L click to expand

21 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0

IT Center

MUST detects errors in handling datatypes

The application issued a set of MPI calls that mismatch in type signatures! The graph below shows details on this situation. The first differing item of each involved
communication request is highlighted.

MPI_Send:send
MPI_Type_contiguous(count=2) MPI_Irecv:recv

N/
/ MPLINTEGER | MPLINT

Graphical representation of the
type mismatch

RWTHAACHEN
UNIVERSITY

22 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 O 0 0
l IT Center

Graphical representation of the race condition

The application issued a set of MPI calls that overlap in communication buffers! The graph below shows details on this situation. The first colliding item of each involved
communication request is highlighted.

Graphical representation of the

MPI_Send:send(buf= 0x7ffe 1308ebcc) data race |Ocati0n

'

MPI_Type_contiguous(count=2) | MPI_Irecv:recv(buf= +0x0)

o

MPI_INT

RWTHAACHEN
UNIVERSITY

23 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 O 0 0
l IT Center

MUST detects leaks of user defined objects

03 Error There are 1 datatypes that are not freed when MPI Finalize was isued, a quality application should free all MPI resources before calling ... '

Details:

There are 1 datatypes that are not freed when MPI Finalize was issued, a quality application
should free all MPI resources before calling MPI Finalize. Listing information for these Representative location:
datatypes: MPI_Type_contiguous (1st

occurrence) called from:
-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the #0 main@example-fix4.c:13
following type(s): { MPI INT}

References of a representative process:

reference 1 rank 1: MPI_Type_contiguous
(1st occurrence) called from:
#0 main@example-fix4.c:13

reference 2 rank 1: MPI_Type_commit (1st
occurrence) called from:

#0 main@example-fix4.c:14

0-3 Error ere are 1 requests that are not freed when MPI Finalize was issued, a {y application should free all MPI resources before calling M...

Details:

There are 1 requests that are not freed when MPI Finalize was issued, a quality application should free all| Representative

References of a representative

] process
MPI resources before calling MPI Finalize. Listing information for these requests: MPI _Irecv (1st occu
called from: nce 1 rank 1: MPI Irecv (1st
-Request 1: Point-to-point request activated at referdhge 1 #0 main@example-fix4.c:17 e) called from:
le-fix4.c:17
- User defined objects include))
— MPI_Comms (even by MPI_Comm_dup) Unfinished non-blocking :
- - - . Leak of user defined
— MPI_Datatypes receive is resource leak and .
- . . datatype object
— MPI1_Groups missing synchronization
24 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026 O 0 0

IT Center

Finally

| Information | MUST detected no MPI usage errors nor any suspicious behavior during this application run.
Details:

|MUST detected no MPI usage errors nor any suspicious behavior during this application run.“ | |

No further error detected

Hopefully this message applies to
many applications

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

M.

RWTHAACHEN
UNIVERSITY

MUST - Basic Usage

« Apply MUST as an mpiexec wrapper, that’s it:

% mpicc —-g source.c -0 exe
$ mustrun --must:mpiexec SMPIRUN -n 4 ./exe

o\°

mpilicc source.c -0 exe
% SMPIRUN -n 4 ./exe

or simply

o

$ mustrun —-n 4 ./exe

 After run: inspect “MUST _Output.html”

* “mustrun” (default config.) uses an extra process:
— lL.e.: “mustrun -np 4 ...” will use 5 processes
— Allocate the extra resource in batch jobs!

— Default configuration tolerates application crash; BUT is slower (details later)

26 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

Advanced Usage

eeeeeeee

MUST - At Scale (highly recommended for >10 processes)

* Provide a branching factor (fan-in) for the tree

» Get info about the number of processes:

* This will give you the number of processes

infrastructure:
% mustrun -n 40 ./exe \

--must:fanin 8

Q

o

mustrun -n 40

--must:fanin 8 --must:info

./exe \

needed with tool attached

__

O thread

[0 process
[application
0 MUST

MPI communication

shared-memory
communication

MUST

MUST

MUST

Local analysis

- opaque handle usage

- local type matching

- data race detection

- buffer overlap detection

Distributed analysis

- distributed deadlock analysis
- point-to-point matching

- p2p type matching

- collective matching

Centralized analysis
- deadlock graph analysis

- HTML output

28

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

000

IT Center

MUST - Execution Modes

Application might crash Application never crashes
Centralized analysis --must:nocrash
- 1 extra process - 1 extra process
- Blocking communication - Non-blocking communication
Distributed analysis --must:nodesize 8 --must:fanin 8
- 1 extra process per 7 - 1 extra process per 8 app
application processes + tree processes + tree

- Nodesize must be divisor of
ranks sharing memory

29 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026
IT Center

MUST - Multithreading Support

- By default, MUST supports MPI_THREAD_ FUNNELED
- For higher threading levels:

% mustrun -n 40 ./exe --must:hybrid

O process
@ application
@ MUST

MPT communication

shared-memory
communication

- This will raise the required level to MPI_THREAD MULTIPLE!
- Some MPI might need env like: MPICH_MAX_ THREAD SAFETY=multiple
- Get info about the resources needed:

% mustrun -n 40 ./exe --must:hybrid --must:info

— This will give you the number of processes needed with tool attached

Centralized analysis
- deadlock graph analysis
- HTML output

13.02.2026

30 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 | 7
90 O

IT Center

Getting stacktraces

- We use Backward-cpp as an external lib for stacktraces

- Collecting stack traces can be costly. Select with

--must:stacktrace [backward|addr2line|none]

- Supposed your application has no faults you won’t need stacktraces ©

MUST detected no MPI usage errors nor any
suspicious behavior during this application run.

Representative
location:

MPI _Init thread (1st
occurrence) called
from:

#0 MAIN @Dbt.f:90
#1 main@bt.f:319

Representative
location:

MPI Comm _split (1st
occurrence) called
from:

#0 MAIN @bt.f:90
#1 main@bt.f:319

31 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026

000

IT Center

MUST - Filter file

Use filter files to selectively exclude error/warning messages (avoid cluttered output)

- Format: messageType:MUST_MESSAGE_TYPE:source

- MUST_MESSAGE_TYPE: kind of message to ignore (e.g. MUST_WARNING_ COMM NULL)

- source: specific file (filename. c), specific function (function_name) or all sources (*)

- Example: Ignore NULL comm. warnings originating from main. c (needs stacktraces)

messageType :MUST_WARNING COMM NULL:src:main.c

- Example: Ignore all data type leak errors

messageType:MUST_ERROR_LEAK DATATYPE:*

- Define and use a filter file:
- --must:filter-file <path-to-filter-file>

32 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

MUST - more options

- Print help:
- --must:help
- Select output format:
- --must:output {html|json|stdout}
- Use with ddt:
- Record error message information:
= --must:capture
- Replay under control of ddt:
= --must:reproduce --must:ddt

33 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |

13.02.2026 @ 0 0 RWTH

IT Center

Using MUST + Archer

Compile the MPI(+OpenMP) application just like described for Archer

Using clang to compile with OpenMPI/IntelMPI/MPICH:
- export OMPI CC=clang; export I MPI CC=clang; export MPICH CC=clang;
- export OMPI_CXX/I MPI CXX/MPICH_CXX=clang++;

- Run MUST with TSan support:
- --must:tsan

- Feeds all MPI buffer accesses to TSan

For integration of TSan output into the MUST report, a helper-library must be linked into the
application:
- -W1,--whole-archive ${MUST_ROOT}/lib/libonReportLoader.a -W1l,--no-whole-
archive

34 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

TSan Output in MUST report

-7 UST_WARNING DATARACE ata race between a read of size 8 at .omp outlined. debug .53@]1 and a previous write of size 8 at .omp outlined. debu...

[Details:

References of a representative process:

reference 1 rank 1: .omp_outlined._debug__.53 (Oth occurrence)
called from:

#0 .omp_outlined._debug_ .53@lulesh.cc:2258

#1 .omp_outlined..54@]lulesh.cc:2240

Fz __kmp_invoke microtask@libomp.so:0xbad72

Representative location: 3 EvalEOSForElems(Domain&, double*, int, int*,

.omp_outlined._debug__ .53 (0th occurrence) called from: int)@lulesh.cc:2240
#0 .omp_outlined._debug__.53@lulesh.cc:2258 #4 ApplyMaterialPropertiesForElems(Domain&)@lulesh.cc:2401
#1 .omp_outlined..54@lulesh.cc:2240 #5 LagrangeElements(Domain&, int)@lulesh.cc:2439
: #2 _kmp_invoke microtask@libomp.so:0xbad72 6 LagrangeLeapFrog(Domain&)@lulesh.cc:2617
Data race !)etween a read of size 8 at . : #3 EvalEOSForElems(Domain&, double*, int, int*, #7 main@lulesh.cc:2748
.omp_outlined. debug .53@1 and a previous write of :
size 8 at .omp outlined. debug .53@2. mEN@lulceh co2 220
= = — #4 reference 2 rank 1: .omp_outlined._debug__.53 (0th occurrence)
ApplyMaterialPropertiesForElems(Domain&)@lulesh.cc:2401 [called from:
#5 LagrangeElements(Domain&, int)@lulesh.cc:2439 #0 .omp_outlined. debug .53@lulesh.cc:2246
#6 LagrangeLeapFrog(Domain&)@lulesh.cc:2617 #1 .omp_outlined..54@]lulesh.cc:2240
#7 main@lulesh.cc:2748 #2 _kmp_invoke microtask@libomp.so:0xbad72
3 EvalEOSForElems(Domain&, double*, int, int*,
int)@lulesh.cc:2240

#4 ApplyMaterialPropertiesForElems(Domain&)@lulesh.cc:2401
#5 LagrangeElements(Domain&, int)@lulesh.cc:2439
6 LagrangeLeapFrog(Domain&)@lulesh.cc:2617
#7 main(@lulesh.cc:2748
#8 main@lulesh.cc:2715

35 MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026 @ 0 0
|

IT Center

Hands-on: MUST

Get the Hands-on code from /gpfs/scratch/nct_362/exercises/MUST/example.c

Load MUST module from /gpfs/scratch/nct. 362/RWTH/modules
$ module use /gpfs/scratch/nct 362/RWTH/modules
$ module load MUST/1.11.3rc2-oneapi-2023.2

Compile the code with debug symbols with the loaded runtime
$ mpicc -g example.c

Run the code with MUST (remember that MUST requires an additional process)
$ mustrun -np 4 ./a.out

Download the generated html file(s) and inspect with your browser
— MUST_Output.html
— MUST_Output_files (for visualizations)

36

MPI + OpenMP Correctness Checking with MUST + ARCHER | Tobias Dollenbacher | VIHPS Tuning Workshop February 2026 |
13.02.2026

IT Center

	Folie 1: Archer: Debugging with compiler-based feedback
	Folie 2: Examples of Undefined Behavior as Defined in C/C++
	Folie 3: Undefined Behavior: What could go wrong?
	Folie 4: Sanitizers
	Folie 5: Memory Sanitizer
	Folie 6: AddressSanitizer
	Folie 7: UB Sanitizer
	Folie 8: Thread Sanitizer
	Folie 9: Data Race
	Folie 10: Thread Sanitizer
	Folie 11: Thread Sanitizer Example
	Folie 12: ThreadSanitizer + Archer = OpenMP Data Race Detection
	Folie 13: Archer: Runtime Options
	Folie 14: Using Sanitizers with Fortran code
	Folie 15: Hands-on: Archer
	Folie 16: MPI + OpenMP Correctness Checking with MUST
	Folie 17: How many issues can you spot in this tiny example?
	Folie 18: Motivation
	Folie 19: MUST detects deadlocks
	Folie 20: Visualization of deadlock situation
	Folie 21: MUST detects errors in transfer buffer sizes / types
	Folie 22: MUST detects errors in handling datatypes
	Folie 23: Graphical representation of the race condition
	Folie 24: MUST detects leaks of user defined objects
	Folie 25: Finally
	Folie 26: MUST – Basic Usage
	Folie 27: Advanced Usage
	Folie 28: MUST - At Scale (highly recommended for >10 processes)
	Folie 29: MUST – Execution Modes
	Folie 30: MUST - Multithreading Support
	Folie 31: Getting stacktraces
	Folie 32: MUST – Filter file
	Folie 33: MUST – more options
	Folie 34: Using MUST + Archer
	Folie 35: TSan Output in MUST report
	Folie 36: Hands-on: MUST

