VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

linaroforge

Linaro Forge
Performance Engineering with Linaro PR and Linaro MAP

Rudy Shand - Principal Field Application Engineer
Linaro
rudy.shand@linaro.org



mailto:rudy.shand@linaro.org

- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

HPC Development Solutions from Linaro

Best in class commercially supported tools for Linux and
high-performance computing (HPC)

Linaro Forge

%

Debug Profile Analyse
Linaro DDT Linaro MAP Linaro

Performance Reports

Performance Engineering for any architecture, at any scale

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)




- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Forge
An interoperable toolkit for debugging and profiling

K The de-facto standard for HPC development

e Most widely-used debugging and profiling suite in HPC
e Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities

e Powerful and in-depth error detection mechanisms (including memory debugging)
e Sampling-based profiler to identify and understand bottlenecks
e Available at any scale (from serial to exascale applications)

Easy to use by everyone
e Unique capabilities to simplify remote interactive sessions
e Innovative approach to present quintessential information to users

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Supported Platforms

[Intel Compiler] [ROCm [ CCE } [ACfLJ [ GCC J [NVHPCJ [ IBM XL J
[Intel MPI} [HPE MPI MPICH } [Open MPI} [] [ IBM Spectrum MPI } W w
[ RHEL 7+ [ SLES 15 } [ Ubuntu 20.04+ } macO

AMD ROCm NVIDIA CUDA Intel Xe-HPC

[ Intel (x86-64) } [ AMD (x86-64) } [ arm (aarch64) }

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Performance tools

Characterize and understand the performance of HPC application runs

lgl’\\ Gather a rich set of data

%, .

_' e Analyses metric around CPU, memory, 10, hardware counters, etc.
Comme,:;'i':ry,:,zpported e Possibility for users to add their own metrics

@ Build a culture of application performance & efficiency awareness

e Analyses data and reports the information that matters to users
Accurate and

Astute insight e Provides simple guidance to help improve workloads’ efficiency
: ? Adds value to typical users’ workflows
10X e Define application behaviour and performance expectations
Relevant advice e |Integrate outputs to various systems for validation (eg. continuous integration)

to avoid pitfalls ! .
e Can be automated completely (no user intervention)

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)




- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Performance Reports

A high-level view of application performance with “plain English” insights

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /

—j .
./Bin/low_freq/../../../../Input/input_250x125_corner.nml A breakdown of the 16.2% |/O time:
2 nodes (8 physical, 8 logical cores per node)

15 GiB per node Time in reads 0.0% |

16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% (NN

node-1

Thu Jul 9 2015 10:32:13 Effective process read rate  0.00 bytes/s |

;,65/ S/eswnds (about 3 minutes) Effective process write rate 1.38 MB/s I
In/../src

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

20.6% - Time spent running application code. High values are usually good.
Com DUte . This is very low; focus on improving MPI or 1/O performance first
2% _ Time spent in MPI calls. High values are usually bad.
MPI 63. This is high; check the MPI breakdown for advice on reducing it
. Time spent in filesystem 1/0. High values are usually bad.
I/O 16.2% This is average; check the 1/0 breakdown section for optimization advice

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)




VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report

Multi-threaded U SIMD 110

A breakdown of the % CPU time: A breakdown of how the % total /O time was spent:

| I | single-core code 306% MW - | | | I Ti
para eliIsm —_ ’ para elism ime in reads
OpenMP regions % Time in writes Memory
Scalar numeric ops ~ 9.5% |l Estimated read rate| Per-process memory usage may also affect scaling:
Vector numeric ops  0.0% A Estimated write ratd 1 orocess memory usage 160 Mb I
Memory accesses — Most of the time is §  Peak process mem:
transfer rate. This Lustre
The per-core perform) M P | inefficient access p4 Peak node memory
identify time-consumy write calls are affec Lustre file operations (per node)
performance. 3% total time spentin MPI calls: l.'“:.ﬁ.e;knﬁ'ﬁﬁ,iﬁ“ci” ! '
No time is spent in V| Time in collective calls 100.0% ] processes and mord Mean write I
compiler's vectorizat| Peak write 1] E
be vectorized Time in point-to-point calls 0.0% Load nergy
Esti d collective rate 4.07 bytes/s |1 < I~ - b | Mean file opf breakdown of how the 32.3 Wh was used
Estimated point-to-point rate 0 bytes/s | Im a ance Mean metad CPU 61.9% N
Al of the time is spent in_collective calls with low transfer rate. System % M
This suggests a signific| ,
e it M d ‘ w .
synchronization overhej O pen MPp ean node power
MPI profiler. L Peak node power  98.0 W |
P A breakdown of the 99.5% time in OpenMP regions: OM P
Significant time is spent waiting for memory accesses. Reducing
Computation % —1 . .
effICIenC the CPU clock frequency could reduce overall energy usage.
Synchronization 41.1% 1 y

Physical core utilization % [l

| System
System load 99.7% HH usa e
Significant time is spent synchronizing threads in parallel regions. g
Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



\A'HPS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Verification

. . ® validate corrections and
Vectorization optimal performance
Understand numerical intensity

and vectorization level.

The Performance Roadmap Cores

So - e Discover synchronization
Optimizing high performance applications overhead and core utilization

@ Hot loops, unvectorized code and
GPU performance reveleaed

@ Synchronization-heavy code and
implicit barriers are revealed

Improving the efficiency of your parallel
software holds the key to solving more —
complex research problems faster. ... S Memory

® Reveal lines of code bottlenecked by
memory access times.

This pragmatic, 9 Step best practice guide,
will help you identify and focus on £ ®Siuoturg e e orhetea
application readiness, bottlenecks and , s
optimizations one step at a time. = COmunication

Track communication performance.

Workloads ® Discover which communication calls
are slow and why.
Detect issues with balance.

L. Vo ® Slow communication calls and
Analyze before you optimize ® Discover lines of code processes.

Bugs Measure all performance aspects spending a long time in 1/0. Dive into partitioning code.
® Correct application You can't fix what you can't see. L g;?t%err?snd debug slow access

Prefer real workloads over artificial tests.

Key :O Linaro Forge T e
Linaro Performance Reporis b gl Vo Sy
l‘hf ]



-HPS

MAP Capabilities

MAP is a sampling based scalable profiler
e Built on same framework as DDT
e Parallel support for MPI, OpenMP, CUDA
e Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
e Stack traces
e Augmented with performance metrics

Adaptive sampling rate

e Throws data away - 1,000 samples per process
e Low overhead, scalable and small file size

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s

Application activity

CPU floating-point

31.9% SRR e pE e e PR P e ittt
0 = .:‘j Lot d——— i — - e mek ww e whe 77 - -—— ) W wa—" .
Memory usage HED
149 MB
[
07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP %, MPI 19.1 %, File /O 8.6 %, Synchronisation %, OpenMP overhez

f hydro.fo0 X

ttttos st

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks
Total core time A MPI Overhead Function(s) on line Source

= & clover_leaf [program]

clover_leaf CALL

= hydro

39.7% suman ™ e 11 advection_module::advection
E: 2 R 8.3% # timestep_module::timestep
70% . 0.7% # pdv_module::pdv
7.0% - <0.1% ) visit
5.0% 1.2% # pdv_module::pdv
3.1% #acce Cycles per instruction i
2.6% 1  flux_
2.3% wresel 83 .
Showing data from 32,000 samples taken over 32 processes (1000 | cpy Cycles 55.3 [ e e—
515G/s
0
Instructions a7 _ ]
61.5G/s
0
L2 Cache Accesses 680
379 M /s o
0
L2 Cache Misses 225 .
125 M /s e s AT



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

_inaro MAP Source Code Profiler Highlights
4 A 30 1 late to the party
3 = }.8% 31 do jzl,ZO‘npvocs; a=st
1 E end it Input/Output | Project Files | Main Thread Stacks | Functions
§ 34 = if (pe /= @) then fain Thread Stacks
g 32 dg;“ NEICEN (ATR) otal coretime ~ MPI  Function(s) on line Sour
L — 37 8 do from=1,nprocs-1 = CallActionsSeparatedConcerns [inlined]... stef
= L% 38 call MPLRECV(b, sii = Call [inlined] Call
- Jlj -22 do 121:5?}; ":5‘":“" =hemelb:net:IteratedAction:CallActi... rett
Iy e . Py mg'::‘ + Answer Tror =hemelb::extraction::PropertyActor:... Endl
- 2 end if =hemelb::extraction::PropertyWr
43 end do hemelb::extraction::LocalPropert... locg
0, 0, | 1.0% e 44 Call MPI BARRIER(MPI COMM 80.3% I  80.3% PMPI_file_write_at MPI_
ympute 76 %, MPI 24 %, File |/ i st i
a6 if (pe == 8) print *,*fles <01% #1 other
47 = do iterations=1,2 o
48 a(:) = 1000.0"real(pe+2, ihowing data from 32,768 samples taken over 512 processes (64 per process)

Remove 1?0 bottleneck

Find the peak memory use Fix an MPI imbalance

Hide Metrics...

{

mmult(size, nproc, mat a, mat

= = : ; SRR eallres += Ali*size+k]*B[k*size+]]

. Sleeping © % | CPU floating-point 0 %; Zoom *1 = © MPI_Finalize();
murite(cize. mat r. filename )

Make sure OpenMP regions

Improve memory access Restructure for vectorization

make sense

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



-HPS

GPU Profiling

Profile Information
e Mixed CPU [green] / GPU [purple] application
e CPU time waiting for GPU Kernels [purple]
e GPU Kernels graph indicating Kernel activity

GUI information
e Can see a breakdown of time spent in each
GPU Kernel
e Ranked by highest contributors to app time

GPU Metrics
e GPU Utilization: Percent of time that the GPU
card was in use

e GPU memory usage: The memory allocated
from the GPU Frame buffer memory

Profiled:

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

for 46.1s Sampled from: We... . . & a % Main Thread Only Hide Metrics
v

on 12 processes, 2 nodes,

Main thread activity

Memory usage
531 MB

GPU utilization
1.8%

GPU memory usage
3.5%

10:58:49-10:59:35 (46.086s): Main thread compute %,MP1 77.0 %, Waiting for Accelerator %,File I/O %

B diffuse... @ pack_kernel_cud...
1 \

cuda_chunk.packUnpackAllBuffers (fields, offsets,

4.63% of total core time (25.53s) executing instructions on this line
of the total core time ( ) was waiting for accelerator
vOold lealearCudacnunk: :packUnpackAllBuffers
(int fields[NUM FIELDS], int offsets[NUM FIELDS],

const int depth, const int face, const int pack,

| Source | Position

GPU: line-level inf..

| GPU Kernels

v % tea_leaf [program]
%» device_tea_leaf_ppcg_solve_update_r
%" device_tea_leaf_ppcg_solve_calc_sd...

v | Selected | Blocked

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



-HPS

Python Profiling

19.0 adds support for Python
e Call stacks
e Time in interpreter

Works with MPI4PY

e Usual MAP metrics

Source code view
e Mixed language support

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

: Profiled: python3.5 on 2 processes, 1 node, 2 cores (1 per process) Sampled from: Wed Jan 30 2019 18:49:21 (UTC) for 45.1s Hide Metrics...

—— _

CPU floating-point o
33% -

o
POSIX /O write rate  '*?

11.0 kB/s

0

Memory usage g8
78.1MB

17.6

MPI point-to-point

3.77 k calls/s
ol 1
| 18:49:21-18:50:06 (45.068s): Main thread compute 42.5 %, MPI 48.4 %, File 1/0 3.8 %, Python interpreter 5.4 % Zoom A I =]
# diffusion-fv-2d.py X Time spent on line 74 ®
4] Breakdown of the 38.3% time
, spent on this line:
Li Executing instructions
Calling other functions 91
oy ) 4 74 Executing Python code & |
TR TR
il tsamd ke s sty

ik P n\-n‘wmlu it m

[«

[l - - D

Input/Output | Project Files | Main Thread Stacks | Functions |

Main Thread Stacks ®
| Total core time A MPI Function(s) on line Source Position [4]
= & python3.5 [program]
@ # diffusion-fv-2d.py §1/uss diffusion-fv-2d.py:1
= main diffusi 2d.py:169
38.3% s bbbl il it i d | array subtract, array multiply, i py:
28.5% s e il ity 27.2% # halo .py:77 E
Showing data from 2,000 samples taken over 2 processes (1000 per process) Arm Forge 19.0.2 * Main Thread View

map —--profile mpirun -n 2 python3 ./diffusion-fv-2d.py

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

-HPS

Compiler Remarks

gma (newval, value

1]

¥ ¥pr

Annotates source code with compiler remarks
e Remarks are extracted from the compiler optimisation report
e Compiler remarks are displayed as annotations next to your source code a

© wave openmp.c:207 __kmpc_fork_call will not be inlined into update
wave_openmp.c:167 because its definition is unavailable [inline]

BN N

wave_openmp.c:207 _ kmpc_fork_call will not be inlined into update
wave_openmp.c:167 because its definition is unavailable [inline]
Colour coded
e Their colour indicates the type of remark present in the following priority order: 0
1. Red: failed or missed optimisations

2. Green: successful or passed optimisations MP{-/ wave_openmp.c:207 'update.omp_outlined_debug_ " inlined into
3. White: information or analysis notes 'update.omp_outlined wave_openmp.c:207": always inline attribute at
callsite update.omp_outlined:0:1; [inline]

wave_openmp.c:207 6 virtual registers copies 1.756000e+01 total
copies cost generated in function [regalloc]

Compiler Remarks menu. ® wave_openmp.c:207 96 stack bytes in function [prologepilog] )
e Specify build directories for non-trivial build systems .
o Filter out remarks - ® wave_openmp.c:207 80 instructions in function [asm-printer] E
T oUA Y
" ,. 1f ((first + j - 1 == 1) || (first + j - 1 == tpoints)) -
newvallj] = 0.0;
216 do math(j);

SWap _arravs */
»

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAP Thread Affinity Advisor

Launch Command:  srun -n 16 python3 /global/homes/r/rshand/linaro-forge-training/performance/mmult.py -s 3072

Process Command: t an indiv

Global (launcher) environment vari
OpenMP | Submission Script
SLURM_CPUS_PER_TASK
SLURM_NPROCS
SLURM_NTASKS

SLURM_NTASKS_PER_NODE

Global (launcher) environment variables
List of Environment Variables which were
set at launch which might be relevant to
how threads are distributed.

id

Other

Process-specific env vars (ranks 0,4):

SLURMD_DEBUG
SLURM_CPU_BIND

SLURM_CPU_BIND_LIST

D_TYPE

D_VERBOSE

Process-specific env vars
List of Environment Variables which bTIoN
might affect the affinity of a given rank.

| NODE_IPADDR

SLURM_LOCALID
SLURM_MPI_TYPE
-
Commentary:

[ERROR] nid004343, ranks
compute thread. e.g. threads

2(n
quie

0x0

0,1,%
128.
4

cray

Exemplar node's topology (shading shows process affinity bindings):

Package

‘ NUMANode #2

(multiple items selected)

(orocesses

Snapshot Selector
Change at which point of a run the Affinity data is
shown (Library Load, Initialisation, Finalization).

Data taken at: Finalization

Exemplar Nodes

Selectable list of exemplars,
allowing ability to switch data
between nodes of a run. Nodes
with similar affinity/structures are
merged.

Available exemplar nodes:
nid004343 (0 similar nodes)

L3Cache
L2Cache
LiCache || LiCache || LiCache || LiCache || LiCache || LiCache || LiCache
Rank 3 (PID 1166389)

Core Core Core Core Core
' Processes on exemplar node:
- Rank 0 (PID 1166384)
Rank 1 (PID 1166385)
Rank 4 (PID 1166391) -

Rank 2 (PID 1166387)
1 Rank 5 (PID 1166393)
LoCache || L2Cache L2Cache || L2Cache || L2Cache || L2Cache || L2Cache
L1cacne || L10ache || t1cacne || L1cacne || t1caene || Lcacne || t1caene || Licacne | | Threads inselected processes:

Core I I pthread (LWP 1167177) 000-0

) contain at least one compute thread which has an overlapping thread affinity mask with another

Processes List

List of processes (by MPI rank) of
the selected exemplar. Shows the
key for the node topology diagram
and selecting one shows all threads
for the process.

Threads List

List of all threads for the selected
process. Selecting threads
highlights which cores they are
bound to in the topology view.

pthread (LWP 1166919) 000-0
Main thread (LWP 1166384) 000-0]
pthread (LWP 1167181) 032-0.
pthread (LWP 1166929) 032-0;

Main thread (LWP 1166391) 032-0:

[INFORMATION] nid004343, number 0' threads allocated to node may be less than ideal. 48 are currently allocated, but consider using 128 (1 per core) for improved utilzation.

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)

Commentary
A list of commentary, providing information and
advice on Memory Imbalance, Core Utilization etc.




VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Initial

Summary: mmult_c is Compute-bound in this configuration

Time spent running compiled application code. High values are
This is high; check the CPU performance section for advice

13.4% 6.0 . Time spent in MPI calls. High values are usually bad.
. -0s This is very low; this code may benefit from a higher process count

MPI

Time spent in filesystem 1/O. High values are usually bad.

| /O <0.1% 0.0s ‘ This is very low; however single-process |/O may cause MPI wait
times

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU CPU Metrics Threads Memory
A breakdown of the 86.5% (38.5s) CPU time: Configured Linux perf event metrics: A breakdown of how multiple threads were used: Per-process memory usage may also affect scaling:
Scalar numericops  51.9% 20.0s [l cache-misses 68.3 M/s Computation % s Mean process memory usage 245 Mi3 [l
Vector numeric ops ~ 0.0% 0.0s Synchronization 0.0% 0.0s Peak process memory usage 444 Mi3 [N
Memory accesses  48.1% 18.5s [l Physical core utilization 28.6% 1 Peak node memory usage 9.0% 1
System load 28.3% 1 There is significant variation between peak and mean memory

The per-core performance is arithmetic-bound. Try to increase

the amount of time spent in vectorized instructions by analyzing No measurable time is spent in multithreaded code.
the compiler's vectorization reports.

usage. This may be a sign of workload imbalance or a memory
leak.
Physical core utilization is low. Try increasing the number of

. The peak node memory usage is very low. Running with fewer MPI
processes to improve performance.

Significant time is spent on memory accesses. Use a profiler to
processes and more data on each process may be more efficient.

identify time-consuming loops and check their cache

performance.
Ener
MPI 1/O gy
. . A breakdown of how the 1.07 Wh was used:

A breakdown of the 13.4% (6.0s) MPI time: A breakdown of the <0.1% (0.0s) I/O time: cPU 100.0%
Time in collective calls 95.2% 5.7s [ Time in reads ).0% s |

L . X L . System not supported %
Time in point-to-point calls 4.8% 0.3s | Time in writes 100.0% 0.0s [N

ts ted

Effective process collective rate 0.00 bytes/s | Effective process read rate 0.00 bytes/s | Mean node power  not supported W |
Effective process point-to-point rate 673 MB/s [N Effective process write rate 420 mB/s N Peak node power 0.00 W

The whole system energy has been calculated using the CPU

Most of the time is spent in write operations with an average
energy usage.

effective transfer rate. It may be possible to achieve faster
effective transfer rates using asynchronous file operations. System power metrics: Cray power not supported

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Reordered for loops

Summary: mmult_c is MPI-bound in this configuration

Time spent running compiled application code. High values are

Compute 47.3% s.os [N usually good.

This is low; consider improving MPI or 1/O performance first

| 2.4% - Time spent in MPI calls. High values are usually bad.
MP 52. 5.5s This is high; check the MPI breakdown for advice on reducing it
Time spent in filesystem 1/0. High values are usually bad.
. .0s is is very low; however single-process may cause wait
0.3% 0.0 This i I h ingl 1/0 MPI wai
times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MP| section

below.
. Threads Memor
CPU CPU Metrics ) y '
. . . . A breakdown of how multiple threads were used: Per-process memory usage may also affect scaling:

A breakdown of the 47.3% (5.0s) CPU time: Configured Linux perf event metrics: ) i

_ _ Computation % s Mean process memory usage 213 Mi3 [l
Scalar numericops  40.7% 2.0s [l cache-misses 4.03 M/s

. Synchronization 0.0% 0.0s | Peak process memory usage 428 Mi3 [
Vector numeric ops 0.0% 0.0s |

Physical core utilization 28.5% 1 Peak node memory usage 9.0% |
Memory accesses ~ 59.3% 3.0s [ )
N System load 28.6% 1l There is significant variation between peak and mean memory

The per-core performance is memory-bound. Use a profiler to o : ) usage. This may be a sign of workload imbalance or a memory
identify time-consuming loops and check their cache No measurable time is spent in multithreaded code. leak
performance. ’hysical core utilization is low. Try increasing the number of

The peak node memory usage is very low. Running with fewer MP|

No time is spent in vectorized instructions. Check the compiler's processes to improve performance. processes and more data on each process may be more efficient.

vectorization advice to see why key loops could not be vectorized.

MPI 1/0 Energy

A breakdown of the 52.4% (5.5s) MPI time: A breakdown of the 0.3% (0.0s) 1/O time: A breakdown of how the 0.267 Wh was used:

Time in collective calls 95.0% 5.2s [N Time in reads ).0% 0.0s | CPU 100.0% (NN

Time in point-to-point calls 5.0% 0.3s | Time in writes 100.0% 0.0s [N System not supported %

Effective process collective rate 0.00 bytes/s | Effective process read rate 0.00 bytes/s | Mean node power not supported W

Effective process point-to-point rate 636 M/s I Effective process write rate 445 MB/s Peak node power 0.00w
Most of the time is spent in write operations with an average The whole system energy has been calculated using the CPU
effective transfer rate. It may be possible to achieve faster energy usage.

effective transfer rates using asynchronous file operations. System power metrics: Cray power not supported

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Vectorised loops

Summary: mmult_c is MPI-bound in this configuration

Compute 42.2% 3.9s [N

0.2%

MPI

1/0 0.0s

Time spent running compiled application code. High values are
usually good.

This is low; consider improving MPI or 1/O performance first

Time spent in MPI calls. High values are usually bad.
This is high; check the MPI breakdown for advice on reducing it

Time spent in filesystem 1/0. High values are usually bad.
This is very low; however single-process /0 may cause MPI wait
times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MPI| section

below.

CPU

A breakdown of the 42.2% (3.9s) CPU time:
Scalar numeric ops  16.0% 0.6s

Vector numericops 21.1% 0.8s W

Memory accesses 63.0% 2.5s N

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache
performance.

Little time is spent in vectorized instructions. Check the
compiler's vectorization advice to see why key loops could not be

vectorized.

MPI

A breakdown of the 57.5% (5.4s) MPI time:

Time in collective calls 96.2% 5.2s [N
Time in point-to-point calls 3.8% 0.2s |
Effective process collective rate 0.00 bytes/s |
Effective process point-to-point rate 841 m8/s N

No measurable time is spent in multithreaded code.

CPU Metrics Threads
Configured Linux perf event metrics:
cache-misses 8.89 M/s Computation
Synchronization
Physical core utilization
System load
Physic
processes to improve performance.
/0 Energy
A breakdown of the 0.2% (0.0s) 1/0 time: cpU
Time in reads 0.0% 0.0s | System ot
Time in writes 100.0% 0.0s [N Mean node power
Effective process read rate 0.00 bytes/s | Peak node power
Effective process write rate 619 Me/s [N

A breakdown of how multiple threads were used:

cal core utilization is low. Try increasing the number of

Memory
Per-process memory usage may also affect scaling:

% s Mean process memory usage 209 MiB [l
0.0% 0.0s | Peak process memory usage 441 Mis [
28.5% 1 Peak node memory usage 9.0% |

27.7% 1

There is significant variation between peak and mean memory
usage. This may be a sign of workload imbalance or a memory
leak.

The peak node memory usage is very low. Running with fewer MPI
processes and more data on each process may be more efficient.

A breakdown of how the 0.227 Wh was used:

100.0%

supported % |

not supported W |

0.00wW

The whole system energy has been calculated using the CPU

Most of the time is spent in write operations with an average
effective transfer rate. It may be possible to achieve faster
effective transfer rates using asynchronous file operations.

energy usage.

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)

System power metrics: Cray power not supported



-HPS

Cheat sheet

Training material

cp /cluster/vi-hps_tuning_workshop/examples/linaro/finaro-forge-training.tar.gz .
tar -xf linaro-forge-training.tar.gz

Training slides
/cluster/vi-hps_tuning_workshop/slides/FORGE.pdf

Forge Client (On local machine)
Install Forge client htips.//www.linaroforge.com/downloadForge

Running with a batch script
./<FORGE_TRAINING>/scripts/submit-slurm.sh

Linux Perf metrics
map —list-target-hosts
<forge-installdirectory>/bin/forge-probe --install=user
map —perf-metrics=list

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Forge commands

map --profile  # offline profile
perf-report # performance report

Guides
Forge userguide

Running
salloc --reservation=VI-HPS_Tuning_Workshop_Duisburg-Essen
--time=00:20:00 --ntasks-per-node=72 --nodes=2

export PATH=$PATH./cluster/vi-hps_tuning_workshop/examples/
linaro/forge/25.0/bin

~/linaro/forge/25.0/bin/map --profile --np=4 --mpi=generic ./
mmult_c 3072


https://www.linaroforge.com/downloadForge
https://docs.linaroforge.com/23.1/html/forge/forge/index.html

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

The Forge GUI and where to run it

Forge provides a powerful GUIs that can be run in a variety of configurations.

mydesktop mycluster-login
i = (O— 88
e e
/\
® ©

Compute Nodes

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Remote connection to amplitude

Linaro
FO rge (] [ ] Remote Launch Settings

Connection Name: amplitude

Run and debug a program.

Host Name: amplitude (]

How do | connect via a gateway (multi-hop)?

Attach to an already running program.

% L[ naro Remote Installation Directory: [cluster/vi-hps_tuning_workshop/examples/linarofforge/25.0

D DT Open a core file from a previous run. Remote Script: |opt
Manually launch the backend yourself. Private Key: Opt
I_| naro Always look for source files locally
OPTIONS
MA P KeepAlive Packets: Enable
Remote Launch:
Interval:
Configure...
QuIT

Test Remote Launch

Get trial licence

Support
linaroforge.com

Help

@ Remote Client ?

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Matrix Multiplication example

Build and run matrix multiplication example

https://docs.linaroforge.com/latest/html/forge/worked_examples_appendix/mmult/analyze.html

module load openmpi/5.0.3-intel24
export FORGE_TRAINING=<linaro-forge-training>

# Build C and Fortran Examples
cd $FORGE_TRAINING/performance
make -f mmult.makefile

# Offline profile
sbatch submit-slurm.sh

map --profile --np=4 --mpi=generic ./mmult_c 3072

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)


https://docs.linaroforge.com/23.1.1/html/forge/worked_examples_appendix/mmult/analyze.html

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

rudy.shand@linaro.org



mailto:rudy.shand@linaro.org

