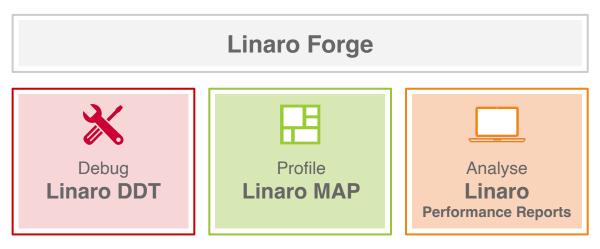


linaro**forge**

Linaro Forge


Performance Engineering with Linaro PR and Linaro MAP

Rudy Shand - Principal Field Application Engineer Linaro <u>rudy.shand@linaro.org</u>

HPC Development Solutions from Linaro

Best in class commercially supported tools for Linux and high-performance computing (HPC)

Performance Engineering for any architecture, at any scale

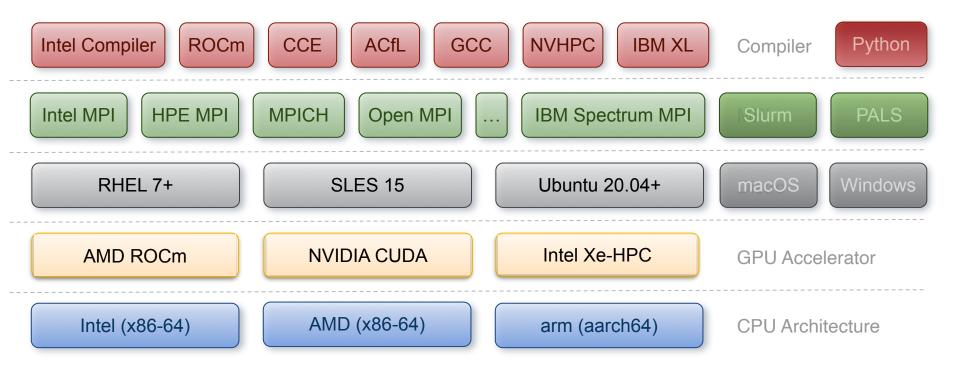
Linaro Forge

An interoperable toolkit for debugging and profiling

-HPS

- The de-facto standard for HPC development
 - Most widely-used debugging and profiling suite in HPC
 - Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities


- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to exascale applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

Supported Platforms

Linaro Performance tools

Characterize and understand the performance of HPC application runs

Commercially supported

by Linaro

- Gather a rich set of data
 - Analyses metric around CPU, memory, IO, hardware counters, etc.
 - Possibility for users to add their own metrics

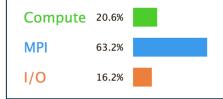
Build a culture of application performance & efficiency awareness

- Analyses data and reports the information that matters to users
- Provides simple guidance to help improve workloads' efficiency

Relevant advice to avoid pitfalls

Adds value to typical users' workflows

- Define application behaviour and performance expectations
- Integrate outputs to various systems for validation (eg. continuous integration)
 - Can be automated completely (no user intervention)


Linaro Performance Reports

A high-level view of application performance with "plain English" insights

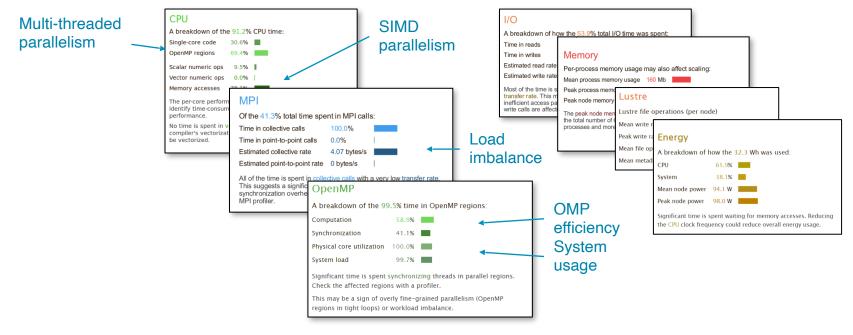
Command	mpiexec.hydra -host node-1,node-2 -map-by socket -n 16 -ppn 8 ./Bin/low_freq///Src//hydro	I/O		
	-I ./Bin/low_freq////Input/input_250x125_corner.nml	A breakdown of the 16.2	% I/O time:	
Resources Memory:	2 nodes (8 physical, 8 logical cores per node) 15 GiB per node	Time in reads	0.0%	
Tasks:	16 processes, OMP_NUM_THREADS was 1	Time in writes	100.0%	
Machine: Start time	node–1 Thu Jul 9 2015 10:32:13	Effective process read rate	0.00 bytes/s	
Total time Full path:	165 seconds (about 3 minutes) Bin//Src	Effective process write rate	1.38 MB/s	
		Most of the time is spent in	write operations wi	th a very low

Most of the time is spent in write operations with a very low effective transfer rate. This may be caused by contention for the filesystem or inefficient access patterns. Use an I/O profiler to investigate which write calls are affected.

Summary: hydro is MPI-bound in this configuration

Time spent running application code. High values are usually good. This is **very low**; focus on improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad. This is **high**; check the MPI breakdown for advice on reducing it


his is **high**; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad.

This is average; check the I/O breakdown section for optimization advice

Linaro Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report

VI-HPS

The Performance Roadmap

Optimizing high performance applications

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.

This pragmatic, 9 Step best practice guide, will help you identify and focus on application readiness, bottlenecks and optimizations one step at a time.

Cores

 Discover synchronization overhead and core utilization

 Synchronization-heavy code and implicit barriers are revealed

Vectorization

- Understand numerical intensity and vectorization level.
- Hot loops, unvectorized code and GPU performance reveleaed

Verification

Validate corrections and optimal performance

Memory

- Reveal lines of code bottlenecked by memory access times.
- Trace allocation and use of hot data structure

Communication

- Track communication performance.
- Discover which communication calls are slow and why.

Bugs

Correct application

Analyze before you optimize

Measure all performance aspects.
 You can't fix what you can't see.
 Prefer real workloads over artificial tests.

I/O

 Discover lines of code spending a long time in I/O.

 Trace and debug slow access patterns.

Workloads

- Detect issues with balance.
- Slow communication calls and processes.
 Dive into partitioning code.

Key : 🔵

Linaro Forge Linaro Performance Reports

MAP Capabilities

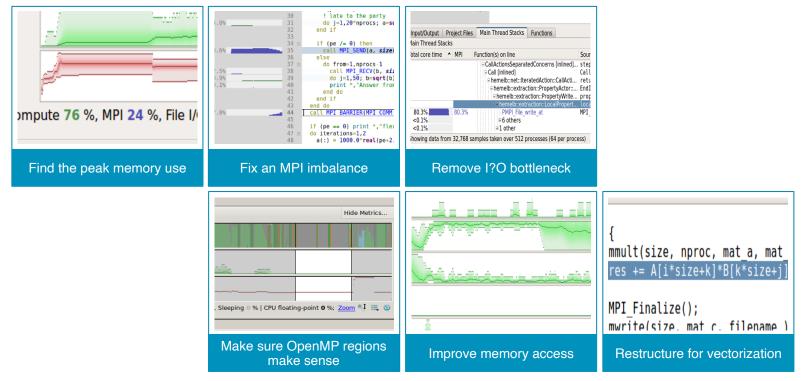
MAP is a sampling based scalable profiler

- Built on same framework as DDT
- Parallel support for MPI, OpenMP, CUDA
- Designed for C/C++/Fortran

Designed for 'hot-spot' analysis

- Stack traces
- Augmented with performance metrics

Adaptive sampling rate


- Throws data away 1,000 samples per process
- Low overhead, scalable and small file size

Application activity	tul state
	🔽 👷 👘 http://provide.com/action/acti
CPU floating-point	
31.9 %	
Memory usage	160
149 MB	
	o .

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation 0.0 %, OpenMP overhea

🗉 hydro.f90 🗶					
18.1%	51 52	CALL time	estep()		_
7.0%	53 54	CALL PdV	(.TRUE.)		_
3.18	55 56 57	CALL acce	elerate()		
5.0%	58	CALL PdV	(.FALSE.)		_
2.6%	60	CALL flux	(_calc()		
Input/Output Project Files C	penMP Stacks	OpenMP Regio	ns Functions		
OpenMP Stacks					
Total core time 🔹	MPI Overh	ead Function(s) on line	Source	
			r_leaf [program]		
		🗄 🥖 clov		CALL clover_init_comms(
		🖻 hydro		CALL hydro	
39.7% attainimitatio aledisbuteniste	6.8% <0.19		ection_module::advection	CALL advection()	
18.1%	8.3% <0.19		estep_module::timestep	CALL timestep()	
7.0%	0.7%		_module::pdv	CALL PdV(.TRUE.)	
7.0%	<0.1%	🕀 visit		IF(visit_frequency.NE.0)) CALL visit()
5.0%	1.2% <0.19		module::pdv	CALL PdV (.FALSE.)	
3.1%	-0.10		Cycles per instruction		
2.6%	<0.19				
2.3%	<0.19			0	
Showing data from 32,000 samples	s taken over 32 p	rocesses (1000	CPU Cycles	55.3	~
			51.5 G /s		
				97.7	
			Instructions		
			61.5 G /s		
				0	
			L2 Cache Accesses	680	
			379 M /s	Same and the second	والمراجعة والمراجع المرجع المرجع
			3/9 M /S	0	1 - C C
			L2 Cache Misses	276	
			125 M /s	100 C	and the share of the second

Linaro MAP Source Code Profiler Highlights

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)

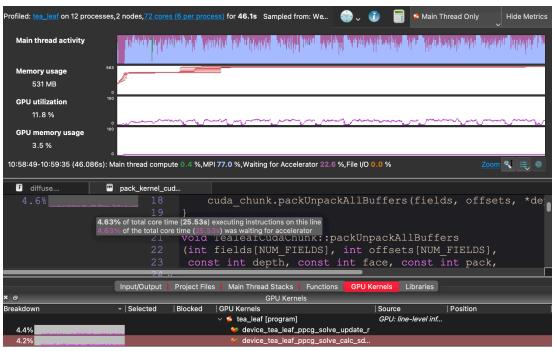
VI-HPS

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

GPU Profiling

Profile Information

I-HPS


- Mixed CPU [green] / GPU [purple] application
- CPU time waiting for GPU Kernels [purple]
- GPU Kernels graph indicating Kernel activity

GUI information

- Can see a breakdown of time spent in each GPU Kernel
- Ranked by highest contributors to app time

GPU Metrics

- **GPU Utilization**: Percent of time that the GPU card was in use
- *GPU memory usage*: The memory allocated from the GPU Frame buffer memory

Python Profiling

19.0 adds support for Python

• Call stacks

-HPS

• Time in interpreter

Works with MPI4PY

• Usual MAP metrics

Source code view

• Mixed language support

Note: Green as operation is on numpy array, so backed by C routine, not _____ Python (which would be pink)

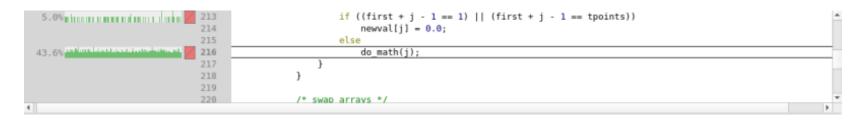
map --profile mpirun -n 2 python3 ./diffusion-fv-2d.py

Compiler Remarks

Annotates source code with compiler remarks

- Remarks are extracted from the compiler optimisation report
- Compiler remarks are displayed as annotations next to your source code

Colour coded

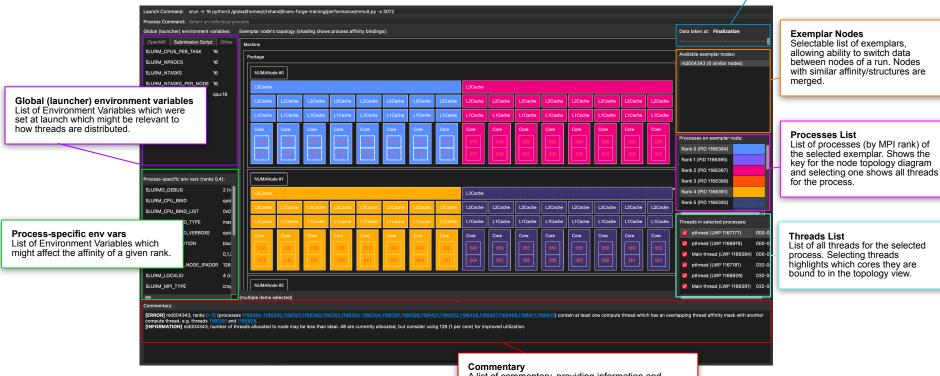

- Their colour indicates the type of remark present in the following priority order:
 - 1. Red: failed or missed optimisations
 - 2. Green: successful or passed optimisations
 - 3. White: information or analysis notes

Compiler Remarks menu.

- Specify build directories for non-trivial build systems
- Filter out remarks

207 #pragma omp parallel shared (newval, values) wave_openmp.c:207 _kmpc_fork_call will not be inlined into update wave_openmp.c:167 because its definition is unavailable [inline] wave_openmp.c:207 _kmpc_fork_call will not be inlined into update wave_openmp.c:167 because its definition is unavailable [inline] wave_openmp.c:207 _ kmpc_fork_call will not be inlined into update wave_openmp.c:167 because its definition is unavailable [inline] wave_openmp.c:207 6 virtual registers copies 1.756000e+01 total copies cost generated in function [regalloc] MP wave_openmp.c:207 'update.omp_outlined_debug__' inlined into 'update.omp_outlined wave_openmp.c:207': always inline attribute at callsite update.omp_outlined:0:1; [inline] wave_openmp.c:207 96 stack bytes in function [prologepilog]

wave_openmp.c:207 80 instructions in function [asm-printer]


VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

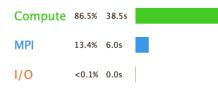
MAP Thread Affinity Advisor

VI-HPS

Snapshot Selector

Change at which point of a run the Affinity data is shown (*Library Load*, *Initialisation*, *Finalization*).

47TH VI-HPS TUNING WORKSHOP (UNIVERSITY OF DUISBURG-ESSEN, GERMANY)


A list of commentary, providing information and advice on Memory Imbalance, Core Utilization etc.

VI-HPS

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Initial

Summary: mmult_c is Compute-bound in this configuration

Time spent running compiled application code. High values are usually good. This is **high**; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.

This is **very low**; this code may benefit from a higher process count

Time spent in filesystem I/O. High values are usually bad. This is **very low**; however single-process I/O may cause MPI wait times

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU section below.

1/0

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU

A breakdown of the 86.5% (38.5s) CPU time: Scalar numeric ops 51.9% 20.0s Vector numeric ops 0.0% 0.0s Memory accesses 48.1% 18.5s

The per-core performance is arithmetic-bound. Try to increase the amount of time spent in vectorized instructions by analyzing the compiler's vectorization reports.

Significant time is spent on memory accesses. Use a profiler to identify time-consuming loops and check their cache performance.

MPI

A breakdown of the	13.4%	(6.0s)	MPI time:
--------------------	-------	--------	-----------

Time in collective calls	95.2% 5.7s	
Time in point-to-point calls	4.8% 0.3s	1
Effective process collective rate	0.00 bytes/s	1
Effective process point-to-point rate	673 MB/s	

Configured Linux perf event metrics

cache-misses 68.3 M/s

CPU Metrics

Threads

A breakdown o	of how	multiple	threads	were	used:
Computation		0.0%	0.0s		

Synchronization	0.0% 0.0s	1
Physical core utilization	28.6%	
System load	28.3%	1.1

No measurable time is spent in multithreaded code.

Physical core utilization is low. Try increasing the number of processes to improve performance.

Memory

Per-process memory usage may also affect scaling:

Mean process memory usage	245 MiB	
Peak process memory usage	444 MiB	
Peak node memory usage	9.0%	1

There is significant variation between peak and mean memory usage. This may be a sign of workload imbalance or a memory leak.

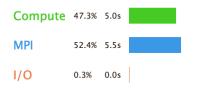
The peak node memory usage is very low. Running with fewer MPI processes and more data on each process may be more efficient.

A breakdown of the <0.1% (0.0s) I/O time: Time in reads 0.0% 0.0s | Time in writes 100.0% 0.0s | Effective process read rate 0.00 bytes/s | Effective process write rate 420 MB/s

Most of the time is spent in write operations with an average effective transfer rate. It may be possible to achieve faster effective transfer rates using asynchronous file operations.

Energy

A breakdown of how the 1.07 Wh was used:


CPU	100.0%	
System	not supported %	1
Mean node power	not supported W	1
Peak node power	0.00 W	

The whole system energy has been calculated using the CPU energy usage.

System power metrics: Cray power not supported

Reordered for loops

Summary: mmult_c is MPI-bound in this configuration

Time spent running compiled application code. High values are usually good.

This is low; consider improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad. This is high; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad. This is very low; however single-process I/O may cause MPI wait times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MPI section below.

CPU Metrics

cache-misses 4.03 M/s

Configured Linux perf event metrics:

CPU

A breakdown of the 47.3% (5.0s) CPU time:

Scalar numeric ops 40.7% 2.0s Vector numeric ops 0.0% 0.0s Memory accesses 59.3% 3.0s

The per-core performance is memory-bound. Use a profiler to identify time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's vectorization advice to see why key loops could not be vectorized.

MPI

A breakdown of the 52.4% (5.5s) MPI time:

Time in collective calls	95.0% 5.	2s
Time in point-to-point calls	5.0% 0.	3s
Effective process collective rate	0.00 bytes	s/s
Effective process point-to-point rate	636 MI	s/s

I/O

A breakdown of the 0.3% (0.0s) I/O time:				
Time in reads	0.0%	0.0s	I	
Time in writes	100.0%	0.0s		
Effective process read rate	0.00 bytes/s			
Effective process write rate	445	MB/s		

Most of the time is spent in write operations with an average effective transfer rate. It may be possible to achieve faster effective transfer rates using asynchronous file operations.

Threads

A breakdown of how multiple threads were used:

Computation	0.0%	0.0s	1	
Synchronization	0.0%	0.0s		
Physical core utilization	2	28.5%		
System load	2	28.6%	١.	

No measurable time is spent in multithreaded code.

Physical core utilization is low. Try increasing the number of processes to improve performance.

Energy

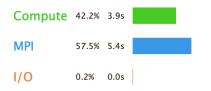
A breakdown of how the 0.267 Wh was used:

CPU	100.0%	
System	not supported %	1
Mean node power	not supported W	1
Peak node power	0.00 W	

The whole system energy has been calculated using the CPU energy usage. System power metrics: Cray power not supported

Memory

Per-process memory usage	may also	affect scaling:
Mean process memory usage	213 MiB	
Peak process memory usage	428 MiB	
Peak node memory usage	9.0%	I


There is significant variation between peak and mean memory usage. This may be a sign of workload imbalance or a memory leak.

The peak node memory usage is very low. Running with fewer MPI processes and more data on each process may be more efficient.

VI-HPS

Vectorised loops

Summary: mmult_c is MPI-bound in this configuration

Time spent running compiled application code. High values are usually good.

This is low; consider improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad. This is **high**; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad. This is **very low**; however single-process I/O may cause MPI wait times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MPI section below.

CPU Metrics

cache-misses 8.89 M/s

Configured Linux perf event metrics:

CPU

A breakdown of the 42.2% (3.9s) CPU time:

 Scalar numeric ops
 16.0%
 0.6s

 Vector numeric ops
 21.1%
 0.8s

 Memory accesses
 63.0%
 2.5s

The per-core performance is memory-bound. Use a profiler to identify time-consuming loops and check their cache performance.

Little time is spent in vectorized instructions. Check the compiler's vectorization advice to see why key loops could not be vectorized.

MPI

А	breakdown	of the	57	.5%	(5	. <mark>4</mark> s)	MPI	time
---	-----------	--------	----	-----	----	---------------------	-----	------

Time in collective calls	96.2% 5.2s			
Time in point-to-point calls	3.8% 0.2s	T.		
Effective process collective rate	0.00 bytes/s			
Effective process point-to-point rate	841 MB/s			

I/O

A breakdown of the 0.2% (0.0s) I/O time:					
Time in reads	0.0% 0.0s				
Time in writes	100.0% 0.0s				
Effective process read rate	0.00 bytes/s				
Effective process write rate	619 MB/s				

Most of the time is spent in write operations with an average effective transfer rate. It may be possible to achieve faster effective transfer rates using asynchronous file operations.

Eneray

Threads

Computation

System load

Synchronization

Physical core utilization

processes to improve performance.

A breakdown of how the 0.227 Wh was used:

CPU	100.0%	
System	not supported %	1
Mean node power	not supported W	1
Peak node power	0.00 W	

A breakdown of how multiple threads were used:

No measurable time is spent in multithreaded code.

Physical core utilization is low. Try increasing the number of

0.0% 0.0s

0.0% 0.0s

28.5%

27.7%

The whole system energy has been calculated using the CPU energy usage.

System power metrics: Cray power not supported

Memory

Per-process memory usage may also affect scaling:

Mean process memory usage	209 MiB	
Peak process memory usage	441 MiB	
Peak node memory usage	9.0%	1

There is significant variation between peak and mean memory usage. This may be a sign of workload imbalance or a memory leak.

The peak node memory usage is very low. Running with fewer MPI processes and more data on each process may be more efficient.

Cheat sheet

Training material

*cp /cluster/vi-hps_tuning_workshop/examples/linaro/l*inaro-forge-training.tar.gz . tar -xf linaro-forge-training.tar.gz

Training slides

/cluster/vi-hps_tuning_workshop/slides/FORGE.pdf

Forge Client (On local machine)

Install Forge client https://www.linaroforge.com/downloadForge

Running with a batch script

./<FORGE_TRAINING>/scripts/submit-slurm.sh

Linux Perf metrics

map —list-target-hosts <forge-installdirectory>/bin/forge-probe --install=user map —perf-metrics=list

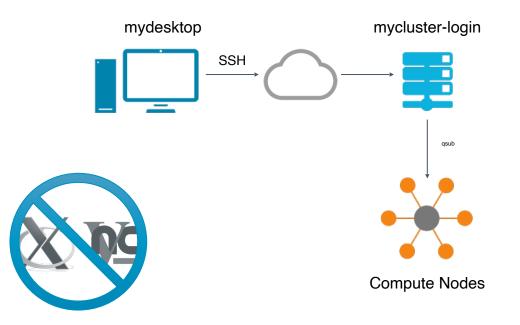
Forge commands

map --profile# offline profileperf-report# performance report

Guides

Forge userguide

Running


salloc --reservation=VI-HPS_Tuning_Workshop_Duisburg-Essen
--time=00:20:00 --ntasks-per-node=72 --nodes=2

export PATH=\$PATH:/cluster/vi-hps_tuning_workshop/examples/ linaro/forge/25.0/bin

~/linaro/forge/25.0/bin/map --profile --np=4 --mpi=generic ./ mmult_c 3072

The Forge GUI and where to run it

Forge provides a powerful GUIs that can be run in a variety of configurations.

Remote connection to amplitude

• • •	Linaro DDT - Linaro	Forge 23.1		
Linaro				
Forge			Remote Launch Settings	
		Connection Name:	amplitude	
	RUN Run and debug a program.	Host Name:	amplitude	
	ATTACH Attach to an already running program.		How do I connect via a gateway (multi-hop)?	
Linaro	OPEN CORE	Remote Installation Directory:	/cluster/vi-hps_tuning_workshop/examples/linaro/forge/25.0	
Ø DDT	Open a core file from a previous run.	Remote Script:	Optional	
	MANUAL LAUNCH (ADVANCED) Manually launch the backend yourself.	Private Key:	Optional	
Linaro MAP	OPTIONS	KeepAlive Packets:	Always look for source files locally	
	Remote Launch: Configure	Interval:	30 seconds	0
			✓ Proxy through login node	
	QUIT			Test Remote Launch
Get trial licence				
Support linaroforge.com		Help		OK Cancel
Remote Client ?				

Matrix Multiplication example

Build and run matrix multiplication example

https://docs.linaroforge.com/latest/html/forge/worked_examples_appendix/mmult/analyze.html

module load openmpi/5.0.3-intel24 export FORGE_TRAINING=<linaro-forge-training>

Build C and Fortran Examples cd \$FORGE_TRAINING/performance make -f mmult.makefile

Offline profile sbatch submit-slurm.sh

map --profile --np=4 --mpi=generic ./mmult_c 3072

Thank You

rudy.shand@linaro.org

