
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – Joint instrumentation & measurement infrastructure

for Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 2

•Calculation of metrics

•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data

•Aggregation of performance data

•Build model of predicted
performance

•Select data to measure

•Prepare application with symbols

•Insert extra code (probes/hooks)

Preparation Measurement

AnalysisOptimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P

 Infrastructure for instrumentation and performance measurements

 Instrumented application can be used to produce several results:
 Call-path profiling: CUBE4 data format used for data exchange

 Event-based tracing: OTF2 data format used for data exchange

 Supported parallel paradigms:
 Multi-process: MPI, SHMEM

 Thread-parallel: OpenMP, Pthreads

 Accelerator-based: CUDA, OpenCL, OpenACC, Kokkos

 Open Source; portable and scalable to all major HPC systems

 Initial project funded by BMBF

 Further developed in multiple 3rd-party funded projects

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P overview

446TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Application

Vampir Scalasca TAU

Accelerator-based

parallelism

(CUDA, HIP, OpenACC,

OpenCL, Kokkos)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles

(CUBE4, TAU)

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads)

Source code

instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording

(Posix I/O,

MPI-IO)

Instrumentation wrapper

Extra-P

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Partners

 Forschungszentrum Jülich, Germany

 Gesellschaft für numerische Simulation mbH Braunschweig, Germany

 RWTH Aachen, Germany

 Technische Universität Darmstadt, Germany

 Technische Universität Dresden, Germany

 Technische Universität München, Germany

 University of Oregon, Eugene, USA

546TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 6

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Local installation (Karolina)

 Set account and environment (e.g. NVHPC + OpenMPI) via modules:

 Load the corresponding modules for the tool environment:

 Copy example sources to your WORK directory (or your personal workspace)
 Only required if not done already (for opening exercise)

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 7

% module load nvompi

% cd $WORK

% cp -r /mnt/proj2/dd-24-88/jsc/examples/CloverLeaf_OpenACC .

% cd CloverLeaf_OpenACC

% module load Scalasca/2.6.1-NVHPC-24.3-CUDA-12.3.0

Scalasca module loads Score-P

& CUBE module dependencies

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P instrumenter

 scorep instrumenter is used as a preposition to compile & link commands

 Instrumenter uses heuristics to determine when MPI & OpenMP are employed to

perform source processing, direct compilers' function instrumentation and link

measurement libraries
 no heuristics yet for CUDA, Kokkos, OpenACC, …

 Instrumenter is highly configurable via flags: see scorep --help

 should be used when heuristics fail or for custom instrumentation options

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 8

% scorep ftn -fopenmp -c solve.f90

% scorep cc -c timer.c

% scorep mpif90 -o a.out solve.o timer.o -fopenmp -lfft -lcuda

% scorep --cuda --nomemory mpif90 -o a.out solve.o timer.o -fopenmp -lfft -lcuda

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CloverLeaf_OpenACC: Makefile

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 9

#Crown Copyright 2012 AWE
#
This file is part of CloverLeaf.
#
CloverLeaf is free software...
#
Agnostic, platform independent Makefile for the CloverLeaf benchmark code.
It is not meant to be clever in any way, just a simple build script.
#
this works as well:-
#
make COMPILER=PGI [OPENMP=1]
#

...

#PREP=scorep --openacc --cuda --user

MPI_COMPILER=$(PREP) mpif90

No preposition for C/CXX_MPI_COMPILER!
C_MPI_COMPILER=mpicc
CXX_MPI_COMPILER=mpic++

...

Specify the suite of compilers

(and optionally OpenMP)

No instrumentation by default

Set/uncomment PREP macro

for instrumenter preposition

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumenting clover_leaf

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 10

% make clean

% make PREP="scorep --openacc --cuda --user"

mpicc -c timer_c.c

scorep --openacc --cuda --user mpif90 -O3 -acc=gpu -ta=nvidia \

data.f90 definitions.f90 pack_kernel.f90 clover.F90 report.f90 timer.f90 \

parse.f90 read_input.f90 initialise_chunk_kernel.f90 initialise_chunk.f90 build_field.f90 \

update_tile_halo_kernel.f90 update_tile_halo.f90 update_halo_kernel.f90 update_halo.f90 \

ideal_gas_kernel.f90 ideal_gas.f90 start.f90 generate_chunk_kernel.f90 generate_chunk.f90 \

initialise.f90 field_summary_kernel.f90 field_summary.f90 viscosity_kernel.f90 viscosity.f90 \

calc_dt_kernel.f90 calc_dt.f90 timestep.f90 accelerate_kernel.f90 accelerate.f90 \

revert_kernel.f90 revert.f90 PdV_kernel.f90 PdV.f90 flux_calc_kernel.f90 flux_calc.f90 \

advec_cell_kernel.f90 advec_cell_driver.f90 advec_mom_kernel.f90 advec_mom_driver.f90 \

reset_field_kernel.f90 reset_field.f90 hydro.F90 clover_leaf.F90 visit.f90 \

timer_c.o \

-o bin.scorep/clover_leaf

Score-P instrumenter options:

--compiler: source code routines (default)

--mpp=mpi: MPI determined by heuristics

--openacc: enable OpenACC

--cuda: enable CUDA

--user: enable Score-P user API (optional)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like Autotools or CMake was

always challenging

 Score-P provides convenience wrapper scripts to simplify this

 Autotools and CMake need the used compiler already in the configure step, but instrumentation should not

happen in this step only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via environment variables

without modifying Makefiles (SCOREP_WRAPPER_INSTRUMENTER_FLAGS & SCOREP_WRAPPER_COMPILER_FLAGS)

 Run scorep-wrapper --help for a detailed description and the available wrapper scripts of each Score-P

installation (depends on configured compilers)

1146TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc \

> -DCMAKE_Fortran_COMPILER=scorep-ifort

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement configuration: scorep-info

 Score-P measurements

are configured via

environmental variables

12

% scorep-info config-vars --full

SCOREP_ENABLE_PROFILING

Description: Enable profiling

[...]

SCOREP_ENABLE_TRACING

Description: Enable tracing

[...]

SCOREP_TOTAL_MEMORY

Description: Total memory in bytes for the measurement system

[...]

SCOREP_EXPERIMENT_DIRECTORY

Description: Name of the experiment directory

[...]

SCOREP_FILTERING_FILE

Description: A file name which contain the filter rules

[...]

SCOREP_METRIC_PAPI

Description: PAPI metric names to measure

[...]

SCOREP_METRIC_RUSAGE

Description: Resource usage metric names to measure

[...]

SCOREP_OPENACC_ENABLE

Description: OpenACC measurement features

[... More configuration variables ...]

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Required for OpenACC measurements.

[yes|default] recommended to start.

Additional CUDA measurement optional.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

 Filtering by source file name

 All regions in files that are excluded by the filter are

ignored

 Filtering by region name

 All regions that are excluded by the filter are ignored

 Overruled by source file filter for excluded files

 Apply filter by

 exporting SCOREP_FILTERING_FILE environment

variable

 Apply filter at

 Run-time

 Compile-time (GCC-plugin and Intel only)

 Add cmd-line option --instrument-filter

 No overhead for filtered regions but recompilation

1346TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name
filter block

using wildcards

Apply filter

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

1446TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

This is a comment

SCOREP_FILE_NAMES_BEGIN

by default, everything is included

EXCLUDE */foo/bar*

INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

 Define the source file name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated source file names

 Names can contain bash-like wildcards *, ?, []

 Unlike bash, * may match a string that contains slashes

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions in source files that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

1546TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

This is a comment

SCOREP_REGION_NAMES_BEGIN

by default, everything is included

EXCLUDE *

INCLUDE bar foo

baz

main

SCOREP_REGION_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

 Define the region name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated region names

 Names can contain bash-like wildcards *, ?, []

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block, mangling

1646TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

void bar(int* a) {

*a++;

}

int main() {

int i = 42;

bar(&i);

return 0;

}

 Name mangling

 Filtering based on names seen by the measurement

system

 Dependent on compiler

 Actual name may be mangled

 scorep-score names as starting point

(e.g. matvec_sub_)

 Use * for Fortran trailing underscore(s) for

portability

 Use ? and * as needed for full signatures or

overloading

 Use \ to escape special characters

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

New: generate initial filter file

1746TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% score-scorep --help

[…]

-g [<list>] Generation of an initial filter file with the name

'initial_scorep.filter'. A valid parameter list has the form

KEY=VALUE[,KEY=VALUE]*. By default, uses the following control

parameters:

`bufferpercent=1,timepervisit=1`

A region is included in the filter file (i.e., excluded from

measurement) if it matches all of the given conditions, with the

following keys:

- `bufferpercent` : estimated memory requirements exceed the

given threshold in percent of the total

estimated trace buffer requirements

- `bufferabsolute` : estimated memory requirements exceed

the given absolute threshold in MB

- `visits` : number of visits exceeds the given

threshold

[…]

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

1946TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

20

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

! Declarations

SCOREP_USER_REGION_DEFINE(solve)

! Some code…

SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)

do i=1,100

[...]

end do

SCOREP_USER_REGION_END(solve)

! Some more code…

end subroutine

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

21

#include "scorep/SCOREP_User.h"

void foo()

{

/* Declarations */

SCOREP_USER_REGION_DEFINE(solve)

/* Some code… */

SCOREP_USER_REGION_BEGIN(solve, “<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

SCOREP_USER_REGION_END(solve)

/* Some more code… */

}

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

22

#include "scorep/SCOREP_User.h"

void foo()

{

// Declarations

// Some code…

{

SCOREP_USER_REGION(“<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

}

// Some more code…

}

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

23

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

! Some code…

SCOREP_RECORDING_OFF()

! Loop will not be measured

do i=1,100

[...]

end do

SCOREP_RECORDING_ON()

! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

/* Some code… */

SCOREP_RECORDING_OFF()

/* Loop will not be measured */

for (i = 0; i < 100; i++) {

[...]

}

SCOREP_RECORDING_ON()

/* Some more code… */

}

Fortran (requires C preprocessor) C / C++

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

24

% papi_avail

% papi_native_avail

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

 Check scorep-info config-vars –full for a wide range of further options and default values

25

% export SCOREP_CUDA_ENABLE=runtime,kernel,idle

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

Idle is an artificial region
defined as outside of

kernel time

Adding options will
increase overhead to a

varying degree

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

HIP/ROCm instrumentation

 Instrument with "scorep --hip" to ensure ROCm adapter is included
 alternatively SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--hip …"

 For measurement execution set SCOREP_HIP_ENABLE
 api: all HIP API calls

 kernel: HIP kernels
 kernel_callsite: additional tracking of kernel callsites between launch and execution

 malloc: HIP-managed host and device allocations

 memcpy: H2D, D2H, H2H copies through HIP memcpy functions (not yet for D2D)

 sync: device/stream synchronization calls

 user: ROCTx support

 default/yes/1/true: all of the above

 none/no: disable feature

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 26

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

2846TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

2946TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 30

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 31

Memory leaksMemory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

3246TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 33

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Enables users to install library wrappers for any C/C++ library

 Intercept calls to a library API
 no need to either build the library with Score-P or add manual instrumentation to the application

using the library

 no need to access the source code of the library, header and library files suffice

 Score-P needs to be executed with --libwrap=…

 Execute scorep-libwrap-init for directions:

3446TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Step 1: Initialize the working directory

Step 2: Add library headers

Step 3: Create a simple example application

Step 4: Further configure the build parameters

Step 5: Build the wrapper

Step 6: Verify the wrapper

Step 7: Install the wrapper

Step 8: Verify the installed wrapper Step 9: Use the wrapper

Only once Often

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Generate your own library wrappers by telling scorep-libwrap-init how you would

compile and link an application, e.g. using FFTW

 Generate and build wrapper

3546TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% scorep-libwrap-init \

> –-name=fftw \

> --prefix=$PREFIX \

> -x c \

> --cppflags=“-O3 -DNDEBUG -openmp -I$FFTW_INC“ \

> --ldflags=“-L$FFTW_LIB“ \

> --libs=“-lfftw3f -lfftw3“ \

> working_directory

% cd working_directory

% ls # (Check README.md for instructions)

% make # Generate and build wrapper

% make check # See if header analysis matches symbols

% make install #

% make installcheck # More checks: Linking etc.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 MPI + OpenMP

 Calls to FFTW library

3646TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods) and sampling

 Basic and advanced profile generation

 Event trace recording

 Available under 3-clause BSD open-source license

 Documentation & Sources:

 http://www.score-p.org

 User guide also part of installation:

 <prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

3746TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

