
HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

POP methodology: Identifying Performance 
Bottlenecks through Efficiency Metrics

Judit Giménez (BSC)



2

Should we be happy…

…with a perfect scaling?

0

5

10

15

20

0 100 200 300 400

speed up

• Unbalanced simulation

• Strong scaling

• What about the reference case?



3

Measuring the efficiency of a run

• Model the application run on a given platform (app + SW stack + HW)

• Run allocation: using a set of resources during a time interval

• Reasons to be inside MPI parallel runtime (potential bottlenecks)
• Data transfer

• But also

• Work unbalance

• Temporal unbalances and serializations 

time

CPUs

Parallel run efficiency = %useful 
   useful = time spent with the computations              
                   (outside parallel runtime)



4

Measuring the scaling efficiency

• Scaling of the parallel efficiency (and its components)
• Is increasing/reducing the % useful time?

• If it is reduced, which factor increases its weight?

• Scaling of the computations
• There is  code replication (increase of instructions)?

• Does the scale affect the IPC? 

• Strong scaling vs. weak scaling

All factors can be expressed as a percentage or a positive number 
• always the higher the better



5

Why is my code scaling?

0

5

10

15

20

0 50 100 150 200 250 300 350 400

speed up

CG-POP mpi2s1D - 180x120

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400

Parallel eff

LB

uLB

transfer

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400

Efficiency

Parallel eff

instr. eff

IPC eff



• The POP methodology defines hierarchies of metrics (pop-coe.eu/sites/

default/files/pop_files/metrics.pdf)

6

POP’s efficiency metrics

• Frequency Scaling

https://pop-coe.eu/sites/default/files/pop_files/metrics.pdf
https://pop-coe.eu/sites/default/files/pop_files/metrics.pdf


7

Efficiency model analysis – examples

Lower value for the 
smallest core count and 
main factor that limits 
scalability

Poor parallel efficiency 
for the lowest core count

Big drop – code owner hints to explain it 

• Looking at the reported efficiencies:
• Above 0.8 may be considered good

• Execution vs. Scaling

• These numbers will drive the analysis



8

Efficiency model analysis – examples

Lower value for 
the smallest core 
count

Main factor that 
limits scalability 
(biggest drop)

Other factors limiting scalability
• Data transfer
• Code replication



9

Efficiency model analysis – examples

Very good efficiency with 
the smallest core count

Improvement on IPC compensates 
increase of instructions

Main factor that 
will  limit 
scalability (IPC 
cannot grow 
forever)

Smooth 
degradation of 
parallel eff.  with 
similar contribution 
of LB, Ser, Transfer



10

Selecting FoA and understanding why

Parallel efficiency 77.93
Communication eff. 79.79 

Parallel efficiency 28.84
Communication eff. 30.42

Parallel efficiency 93.28 
Communication eff. 93.84 



Understanding why – LB efficiency 

Ex 1: OpenMP        Ex 2: MPI

instructionsduration

Regions not parallelized with OpenMP Structured instructions unbalance



12

Understanding why – transfer eff.

With instantaneous communications 
• Most of the point to point calls (red) almost disappear → data transferred in point to 

point is limited by network resources
• The allreduce (pink) increases a bit → absorbs previous load imbalance

Ex 1: Load Balance 76% Serialization 99%, Transfer 84%

Real run Ideal network



13

Understanding why – serialization eff.

MPI calls

Useful duration

Serialization detected as stepped computations → running these phases in parallel obtain a 
reduction of 22% in the region.

Ex 1: Audited version (left) vs. improved version (right)



14

Understanding why – IPC scaling

IPC reduction is on almost all the phases
Good one: light green region

3 regions suffer IPC degradation (arrows to the 
left)

[ 4 regions have code replication]

Ex 1: OpenMP        Ex 2: MPI



Efficiency model extensions

15



Applying the original model to hybrid codes

• Efficiency computed as percentage of time outside the two parallel runtimes

• Useful as a first step to distinguish between Load Balance and Communication. But how to 
dig down?
• Efficiencies are mixing inefficiencies from MPI and OpenMP →  Need to distribute the blame between 

the two programming models

Hybrid

Parallel Efficiency

Hybrid Communication

Efficiency
Hybrid Load

Balance Efficiency

16

max(comp) / runtime average(comp) / max(comp)

average(comp) / runtime



What do we want?

• Global load balance and communication concepts can be mapped to any parallel 
programming paradigm

• The efficiencies at hybrid level collapse the contributions from the two programming 
models

17



A very simple case

• From the MPI point of view, OpenMP runtime is as useful as computation

Hybrid efficiencies [%]
 Parallel efficiency 47.07
 Load Balance 52.09
 Communication 90.37

MPI efficiencies [%]
 Parallel efficiency 95.97
 Load Balance 98.87
 Communication 97.06

MPI calls

Duration of the computing regions

18

• Whatever cannot be blamed on MPI is caused by OpenMP
OpenMP parallel functions

OpenMP efficiencies [%]
 Parallel efficiency 49.05
 Load Balance 52.69
 Communication 93.11



Same approach applied to MPI+CUDA

19

• Bigger impact from CUDA component with a similar contribution in all the scales

• MPI contribution increases with the scale, but still lower than CUDA



A different approach for MPI+CUDA

20

• Considering all the resources allocated, the efficiencies are around 40-50% because the 
work is concentrated in the GPUs (reported as unbalance). The small degradation in the 
parallel efficiency is also observed in the GPUs metrics.

• The GPUs global efficiency reports a degradation with the scale that is related mainly 
with the communication efficiency but also with the computation scalability. The load 
balance between GPUs is ok for all the scales.

• Some codes use efficiently the GPUs but intentionally do not use the 
CPUs → lower metrics focusing on the GPUs only



• From Extrae/Paraver data

• BSC’s Basic Analysis module metrics (tools.bsc.es/downloads)

• From Score-P traces

• Since CUBE version 4.5 (www.scalasca.org/software/cube-4.x/download.html)

• This training will show you how to use them!

21

How to calculate the metrics?

https://tools.bsc.es/downloads
https://www.scalasca.org/software/cube-4.x/download.html


9/3/2024 22

Contact:
     https://www.pop-coe.eu
     pop@bsc.es
     @POP_HPC
     youtube.com/POPHPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080. 

Performance Optimisation and Productivity 
A Centre of Excellence in HPC


	Slide 1
	Slide 2: Should we be happy…
	Slide 3: Measuring the efficiency of a run
	Slide 4: Measuring the scaling efficiency
	Slide 5: Why is my code scaling?
	Slide 6: POP’s efficiency metrics
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Selecting FoA and understanding why
	Slide 11: Understanding why – LB efficiency 
	Slide 12: Understanding why – transfer eff.
	Slide 13: Understanding why – serialization eff.
	Slide 14: Understanding why – IPC scaling
	Slide 15: Efficiency model extensions
	Slide 16: Applying the original model to hybrid codes
	Slide 17: What do we want?
	Slide 18: A very simple case
	Slide 19: Same approach applied to MPI+CUDA
	Slide 20: A different approach for MPI+CUDA
	Slide 21: How to calculate the metrics?
	Slide 22: Contact:      https://www.pop-coe.eu      pop@bsc.es      @POP_HPC      youtube.com/POPHPC

