
EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

POP assessments with BSC tools
Judit Gimenez (judit@bsc.es)



Insights on a MPI study 
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• Name of the code: PORTA

• Programming: C; MPI (+POSIX threads)

• Scale (#cores): 141, 281, 561, 1121, 2241 (weak scaling)

• Platform: BSC MareNostrum4 (node=2 Intel Xeon Platinum 8160 24C @2.1 GHz)
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MPI study: background & FoA

Duration of the computing regions

MPI calls

With the small input (W1) the 
granularity of the main computations 
are in the range of 70-90 milliseconds 
(large computation 8 sec.)

Communications using both 
synchronous and asynchronous calls 
and ranks are globally synchronized 
with  an MPI_Allreduce
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Code scaling

All the timelines (right) have the scale of W5 
• Up to W3 the scaling is good. 
• W4 and W5 show an increase of the unbalance and 

a bad scaling of the large computing phase.
• Large computation (orange regions) have severe 

scaling problems

W1

W2

W4

W1

W5

W3



• Efficiencies lower than 80%  indicate space for improvement. Lower than 60% there is a clear need for 
improvement. 

• The average IPC is 2.03 that is a good value for MN4 where frequently is limited to 1.2-1.5
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Efficiency model analysis

• The scaling of the code is 
limited by:
• An increase in the total 

number of instructions 
(code replication).

• Serialization and 
dependencies.

• The main degradation for 
W1 is due to global load 
balance despite the 
efficiency is still very good.



• Tracking the evolution of the 
clusters we can see that:
• Clusters 1 and 2 only increase 

the number of instructions (per 
instance) for the configurations 
that increase number of 
frequencies per rank. 

• The number of grid points 
increases the number of 
invocations of the clusters 

• The variability on instructions for 
cluster 1 increases drastically in 
W5.
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Computations scaling
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MPI waiting time

• Most of the MPI waiting time for MPI_Recv and MPI_Allreduce is 
concentrated in 3 regions

Part of it is reported as global 
unbalance, but also as 
serialization (compensated 
unbalances in MPI_Recv)

W1
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Improved version (few months later)
FOA first Audit

FOA Follow on Audit

The improved code reduces 7% the 
iteration (smallest scale).
• Refactoring large computation
• Reduce code replication

Comparing the scaling efficiency and elapsed time with 
respect to the previous version

• The scaling (left) has been improved in average an 
8% that goes up to 16% with W5

• The iteration time (right) has been reduced in 
average a 12% (close to 20% with W5) 



• Efficiencies lower than 80%  indicate space for improvement. Lower than 60% there is a clear need for 
improvement. 

• The average IPC is 1.96 (previously 2.03) 9

Efficiency model analysis
• The scaling of the code has 

been improved significantly  
by reducing the code 
replication (W5: instruction 
scaling from 71.76 to 86.39)

• The parallel efficiency reports 
very similar values (W5: 72.48 
vs. 73.38) 
• Comm. eff. improves  

(83.67 → 88.99)
• LB eff degrades (86.62 → 

82.45)



Insights on an OpenMP study 
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• Name of the code: Explorer

• Programming: C++; MPI, OpenMP

• Scale (#cores): 1 MPI rank scaling OpenMP (4 , 24, 48)

• Platform: BSC MareNostrum4 (node=2 Intel Xeon Platinum 8160 24C @2.1 GHz)
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OpenMP study: background and FoA

OpenMP parallel functions

User events

The OpenMP parallel function 
reflects the application structure 
with the phases defined by the 
user events 
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Code scaling

The OpenMP scaling is poor. With 24 processes the efficiency is 49% (2.95x with 6x more 
resources). Doubling to 48 there is a very small time reduction (efficiency is only 28% of an 
ideal scaling).



• Efficiencies lower than 80%  indicate space for improvement. Lower than 60% there is a clear 
need for improvement. 

• The average IPC is 1.14 with 4 threads and it significantly decreases.  That seems to indicate 
the problem can be related with the accesses to the shared memory and/or with the 
frequent calls to the OpenMP runtime.
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Efficiency model analysis

• The scaling of the code is limited 
mainly by:
• A drastic reduction of the IPC
• An increase of the load 

unbalance
• The main degradation with 4 

threads is due to time inside the 
OpenMP runtime (Comm. Eff.)
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IPC degradation analysis

(left) All timelines are in the same color scale. 
The timelines show that the IPC reduction is 
on the computation of almost all the phases.

(right) Only the pink and red parallel functions 
maintain an acceptable IPC.  The brown one 
has a very low IPC for all the runs but also 
suffers the biggest reduction with the scale.
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Parallel functions computations
The average row reflects the %time 
outside the OpenMP runtime

→Values lower than 0.7 indicate a high 
OpenMP overhead.

→With 24 and 48 threads all functions 
have a high OpenMP overhead (the 
brown one has a high value because 
computations do not scale).

The Avg/Max reflects the load balance

→ Values lower than 0.8 indicate the 
balance need to be improved.

→ The unbalance with 24 and 48 is 
concentrated the pink and red parallel 
functions.The average metric is pointing that the application 

has a very fine granularity. 



• The average IPC  is in the range 
0.69 - 0.72. Being still low, but 
an improvement w.r.t.  the 
default scheduling  (0.61)
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Efficiency model – OpenMP sched.

• All configurations (24 threads) 
are very similar and improve 
the default (parallel efficiency = 
66.9%)

• The application was using the default scheduling 
(dynamic with chunk size = 1)

staticdynamic, 1000



Insights on a MPI + CUDA study 
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• Name of the code: Tsunami-HySEA

• Programming: C++; MPI, CUDA

• Scale: from 1 MPI rank + 1 GPU to 64 MPI ranks + 64 GPUs

• Platform: BSC CTE Power (first 2 studies) and Leonardo (last study)

MPI + CUDA: background and FoA

300 iterations Zoom in few iterations

Computations

MPI calls

CUDA runtime
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• Time scalability of the FOA with respect to linear scaling
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Scalability

The execution with 1 MPI + 1 GPU was 
discarded for the analysis because a significant 
different behaviour of the MPI task.

With 16 MPI + 16 CUDA the speed-up is 64% 
of lineal scaling. 

With 64 MPI + 64 CUDA the speed-up goes 
down to 35%.



• Mainly communications  but also computations limit the code scalability

• The reference run with 4 MPI + 4 GPUs already reports poor efficiency

• Load balance is poor in all the configurations but there is limited degradation 
with the scale 

• No counters available at GPUs to compute IPC and Instructions scaling factors
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Efficiency model

4 8 16 24 32 48 64

Global efficiency 65.23 55.25 41.90 36.41 32.05 26.52 23.40

Parallel efficiency 65.23 64.32 48.9 44.79 41.7 36.53 33.94

Load Balance 72.57 77.79 67.41 67.86 68.15 64.92 64.67

Communication eff. 89.88 82.68 72.54 66.01 61.19 56.27 52.47

Computation scalability 100.00 85.89 85.69 81.30 76.87 72.60 68.94
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Efficiency model

CUDA component

Computations scaling

MPI component

• Big impact from MPI and CUDA components.  

• MPI flat behaviour  except with 8 ranks



• Scaling of one iteration (MPI processes only)
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Load balance and data transfer

With instantaneous communications most of the point to 
point calls disappear and the allreduce increases a bit → 
data transferred in point to point is limited by network 
resources

Parallel efficiency 65%, Load Balance 76% , Comm. 85% Serialization 99%, Transfer 84%
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Code scaling (v1 vs. v2)

• The scaling is improved an average of 30% (40% 
for the runs of at least 4 nodes).

• Main improvements (previous audit suggestions):

• Overlap MPI point to point calls with the 
kernels execution.

• Improve balance between MPI ranks
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Efficiency model (all resources vs gpus)



Programing model contribution
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• Bigger impact from CUDA component with a similar contribution in all the scales

• MPI contribution increases with the scale, but still lower than CUDA
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Quick validation of a bottleneck

• Discussing the analysis with the code developers allowed to identify a 
performance problem with a CUDA reduction phase.
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FOA of 2023 version

Computations

MPI calls

CUDA runtime

Focusing on 30 
iterations and 4 GPUs 
we can already see:
 
• the weight of MPI is 

quite small (less than 
1%) 

• CPUs spend most of 
the time in the 
cudaMemcpy call 
(over 99%) 

• GPUs are executing 
kernels most of the 
time (94%)CUDA kernel



• Time scalability of the FOA with respect to linear scaling
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Scalability

The application reports a good scaling up to 64 
GPUs. In fact without instrumentation the user 
reports a little bit better scaling that is 
included in the plot and goes to 57.4 with 64 
GPUs.
With 16 GPUs the speed-up is 96% of lineal 
scaling. With 32GPUs is 91%. With the largest 
scale of 64 GPUs the efficiency is 83%.

As reference of the code improvement, in the previous POP assessment in Nov’20 (for a 
different input case and configuration) the scaling efficiency with 64 GPUs was just over 50%.



• Based on the low contribution of the CPUs, the efficiency analysis is focused on 
the GPUs including the global parallel efficiency and load balance as reference.

• Considering all the resources allocated, the efficiencies are around 40-50% 
because the work is concentrated in the GPUs (reported as unbalance). The small 
degradation in the parallel efficiency is also observed in the GPUs metrics.

• The GPUs global efficiency reports a degradation with the scale that is related 
mainly with the communication efficiency but also with the computation 
scalability. The load balance between GPUs is ok for all the scales.

• No counters available at GPUs to compute IPC and Instructions scaling factors.
29

Efficiency model
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GPU idling time vs. CPU activity

• Comparing 4 GPUs (up) and 64 GPUs (down)

When scaling the biggest increases are related with cudaMemcpy and MPI_Allreduce. 

The MPI_Allreduce has a better balance with 64 MPI ranks → increase due to date transfer 
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CUDA Kernels – scaling efficiency

• Top 11 kernels (>=4% execution time with 64 GPUs)

Eliminating the 4 kernels mentioned in the 
previous slide we can see that 10 kernels 
have a very good scaling efficiency 
between 0.94 and 0.98

Only the last kernel in the list that 
represents a 4.89% has a bigger 
degradation but still is 0.87 with 64 GPUs.
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CUDA Kernels – load balance

• 64 GPUs

A load balance  bigger than 0.8 can 
be considered good. There are 3 
kernels with a load balance lower 
than 0.8.

The lowest load balance is 0.7 for 
obtenerEstadoYDeltaTVolumenesNivelGPU

that represents 9% of the execution 
time. The other 2 kernels with low 
value represent less than 5% each.
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Contact:
     https://www.pop-coe.eu
     pop@bsc.es
     @POP_HPC
     youtube.com/POPHPC
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