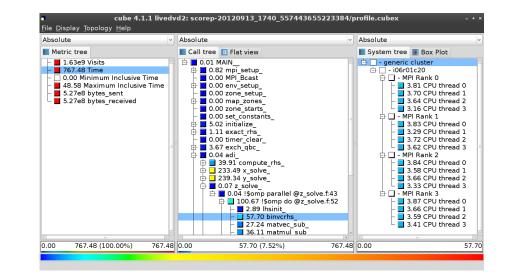


Analysis report examination with CUBE

The Scalasca Team Jülich Supercomputing Centre


WIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

CUBE

 CubeLib
 DOI
 10.5281/zenodo.7737408

 CubeGUI
 DOI
 10.5281/zenodo.7737411

- Parallel program analysis report exploration tools
 - Libraries for XML+binary report reading & writing
 - Algebra utilities for report processing
 - GUI for interactive analysis exploration
 - Requires $Qt \ge 5$
- Originally developed as part of the Scalasca toolset
- Now available as a separate component
 - Can be installed independently of Score-P, e.g., on laptop or desktop
 - Latest release: Cube v4.8.2 (Oct 2023)

Note: source distribution tarballs for Linux, as well as binary packages provided for Windows & MacOS, from **www.scalasca.org** website in software/Cube-4x

∕i-Hps

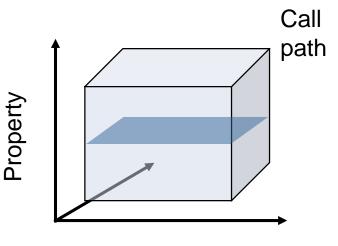
Cube GUI (karolina)

mailto: scalasca@fz-juelich.de

- Run remote (often convenient)
 - start X server (e.g., Xming) locally, or use alternative such as mobaXterm
 - connect to Karolina with X forwarding enabled
 - -Y may be faster but is insecure!
 - load module and start cube remotely

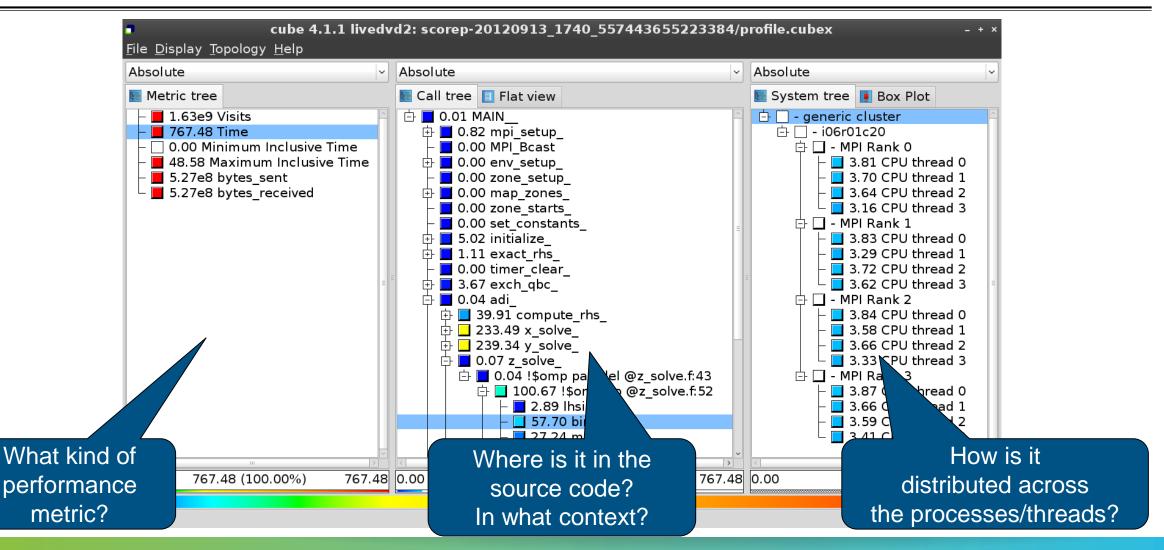
desk\$ ssh **-X** login.karolina.it4i.cz Welcome to Karolina... karolina\$ module load CubeGUI karolina\$ cube ./scorep_sum/profile.cubex

Sample measurements (CUBE files) on Karolina: /mnt/proj2/dd-24-88/jsc/samples

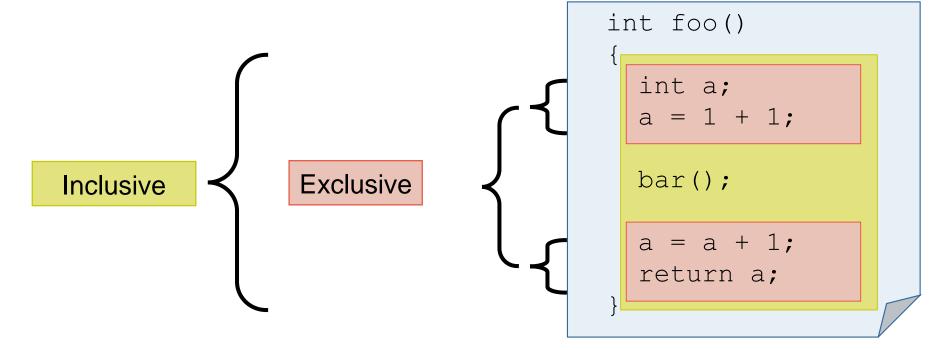

Install & run *local* (recommended)

- install Cube GUI locally on desktop
 - binary packages available for MacOS & Windows and externally provided by OpenHPC and various Linux distributions
 - source package available for Linux, requires Qt
 - configure/build/install manually or use your favourite framework (e.g. Spack or EasyBuild)
- copy .cubex file (or entire scorep directory) to desktop from remote system
 OR locally mount remote filesystem
- start cube locally

desk\$ mkdir \$HOME/mnt
desk\$ sshfs [user@]remote.sys:[dir] \$HOME/mnt
desk\$ cd \$HOME/mnt
desk\$ cube ./scorep_sum/profile.cubex


Analysis presentation and exploration

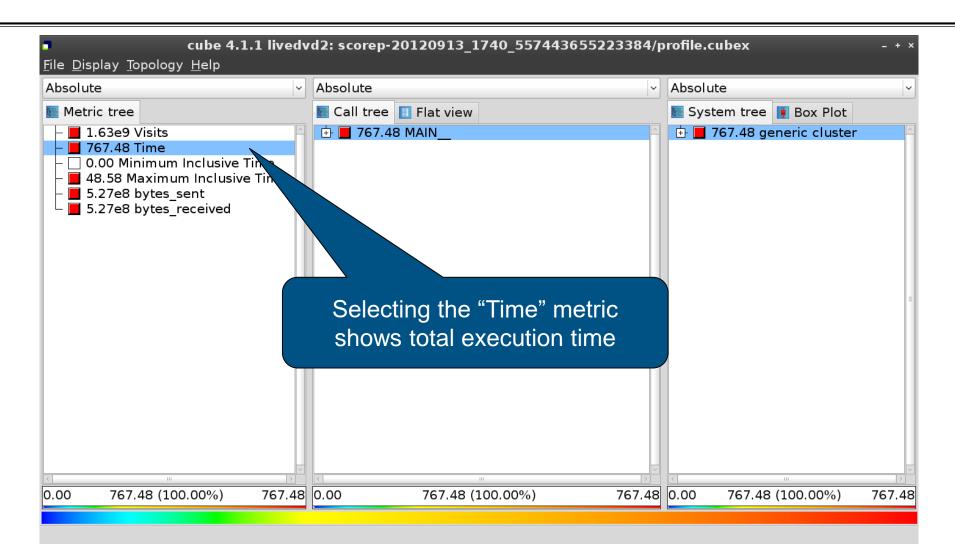
- Representation of values (severity matrix) on three hierarchical axes
 - Performance property (metric)
 - Call path (program location)
 - System location (process/thread/stream)
- Three coupled tree browsers
- Cube displays severities
 - As value: for precise comparison
 - As colour: for easy identification of hotspots
 - Inclusive value when closed & exclusive value when expanded
 - Customizable via display modes


Analysis presentation

Inclusive vs. exclusive values

- Inclusive
 - Information of all sub-elements aggregated into single value
- Exclusive
 - Information cannot be subdivided further

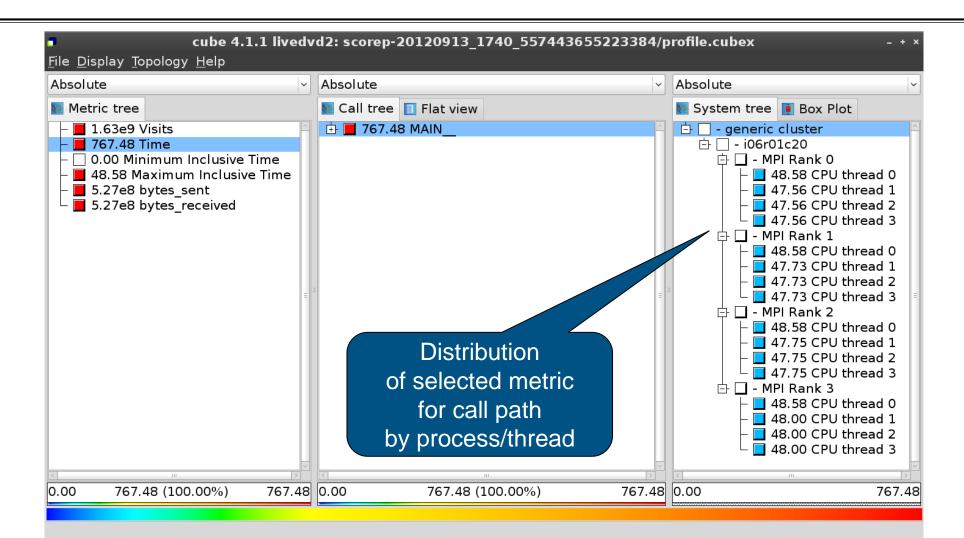
Score-P analysis report exploration (opening view)



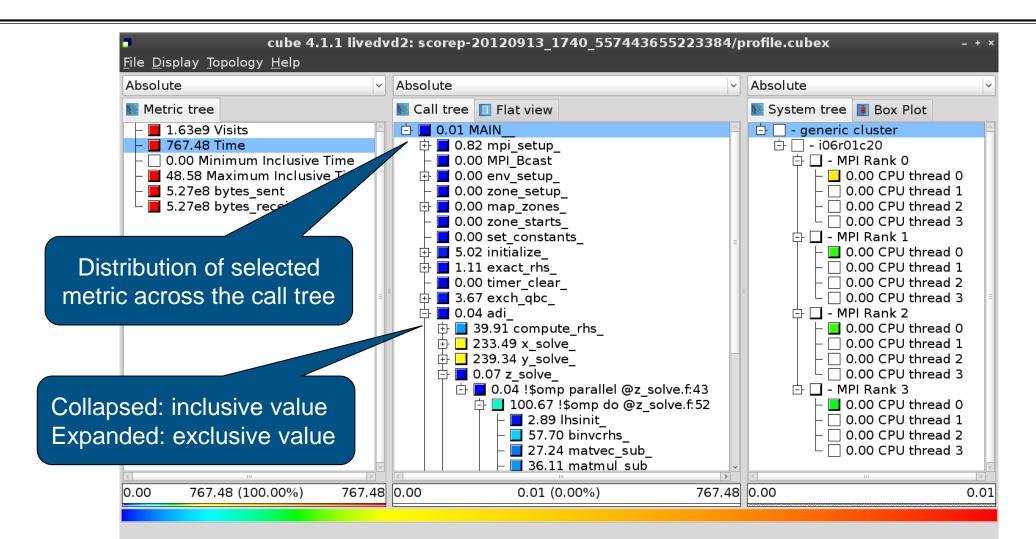
e <u>D</u> isplay <u>T</u> opology <u>H</u> elp	~	Absolute	~	Absolute		
Metric tree		Call tree 🔲 Flat view		System tree		Ir
 767.48 Time 0.00 Minimum Inclusive Time 48.58 Maximum Inclusive Tim 5.27e8 bytes_sent 5.27e8 bytes_received 			=			
Ш	>		>	<	111	>
1.63e9 (100.00%) 1.6	63e9	0 1.63e9 (100.00%)	1.63e9	0 1.63e9 (1	00.00%)	1.63e

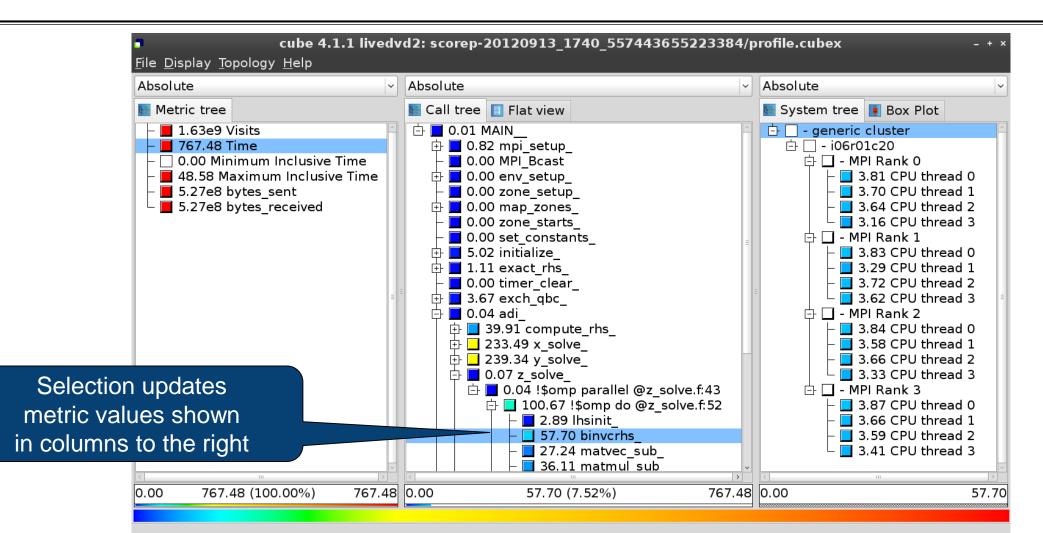
VI-HPS

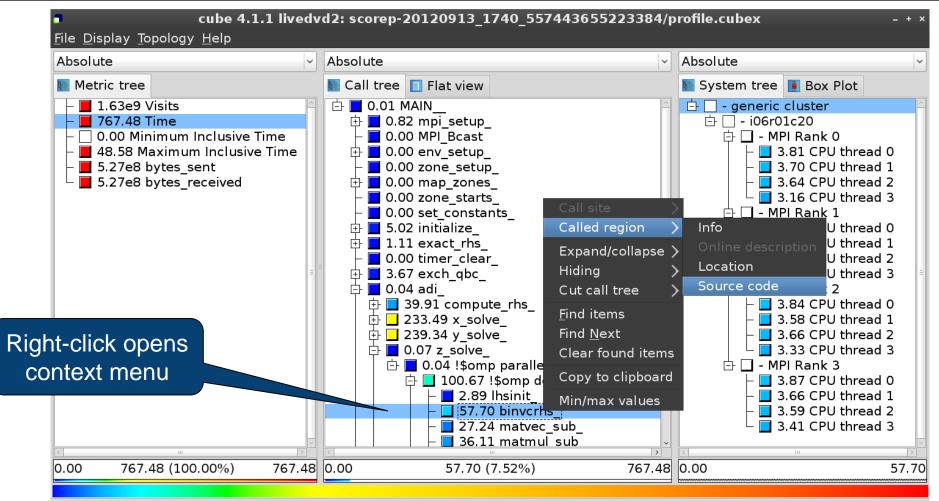
Metric selection



Window State State


Expanding the system tree


Expanding the call tree

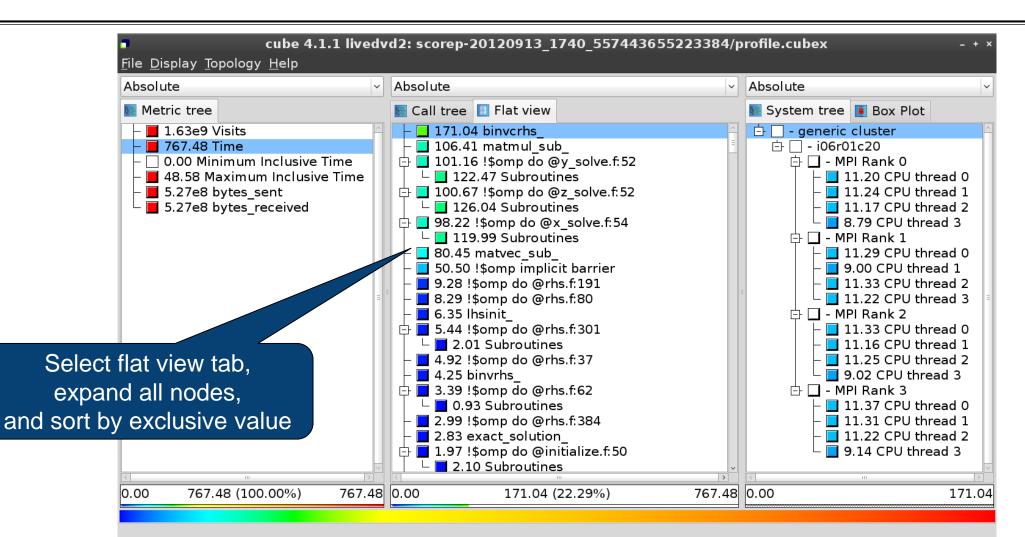

Selecting a call path

Source-code view via context menu

Shows the source code of the clicked item

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

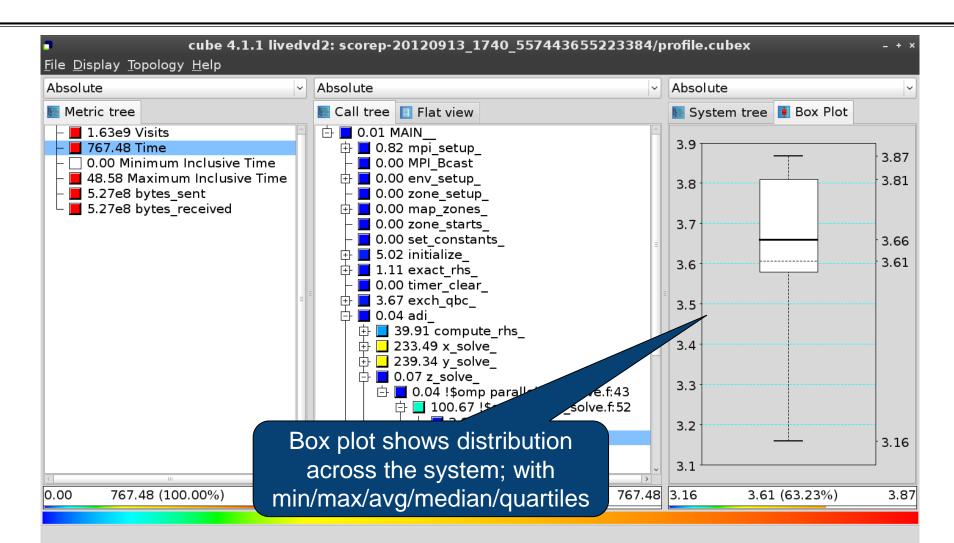
Source-code view



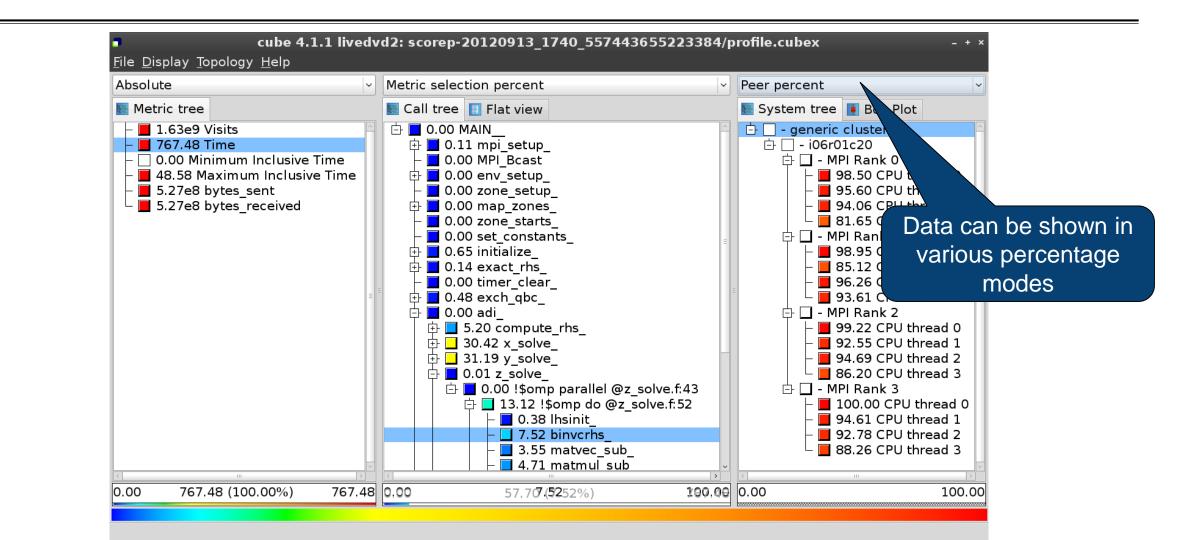
,	/home/geimer/Proj	ects/Tests/NPB3.3-MZ-MP	l/BT-MZ/solve_subs.f	×	
subroutine binvcrhs(lh 	coeff, lhs				
double precision c(5,5) c c c	, r(5)		This footure	Note : depends on file and	line
pivot = 1.00d0/lhs(1,1) lhs(1,2) = lhs(1,2)*pivo lhs(1,3) = lhs(1,3)*pivo lhs(1,4) = lhs(1,4)*pivo lhs(1,5) = lhs(1,5)*pivo	t t		number infoi instrumentatio	rmation provided by on, i.e., it may not al oe available	the
c(1,1) = c(1,1)*pivot c(1,2) = c(1,2)*pivot c(1,3) = c(1,3)*pivot c(1,4) = c(1,4)*pivot Read only	Save	Save as	Font	Close	

VI-HPS

Flat profile view

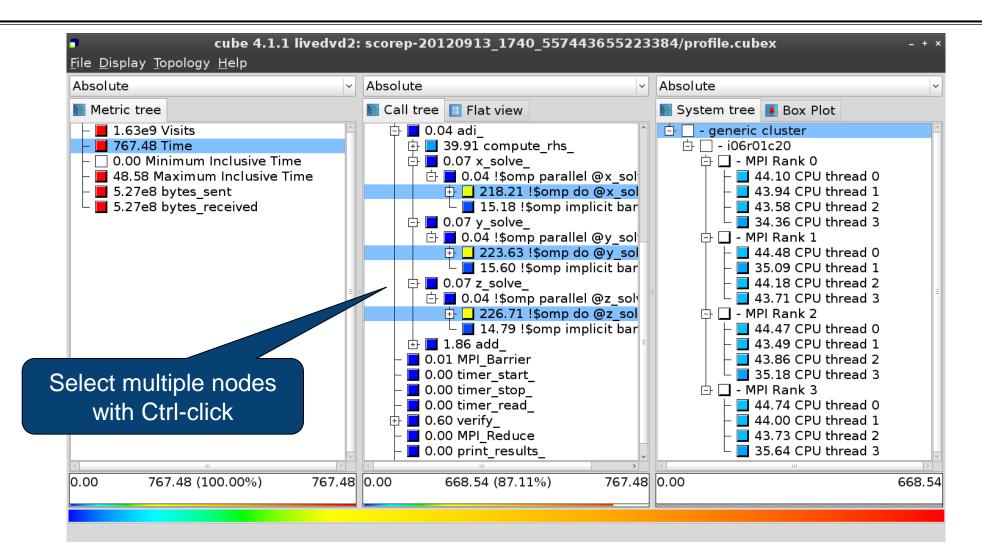


VI-HPS


Box plot view

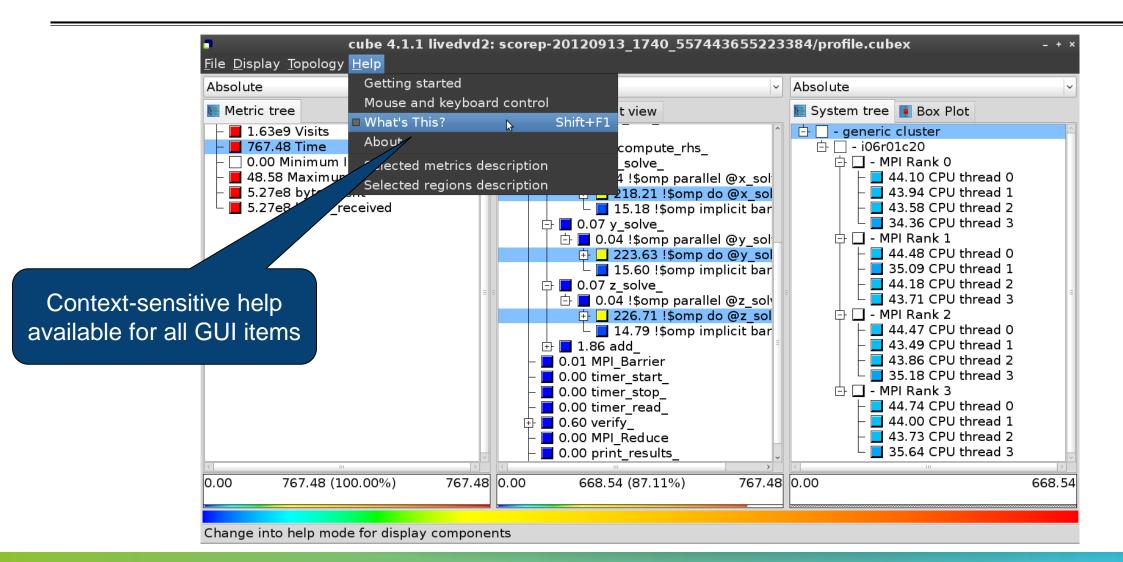
Alternative display modes

Important display modes



- Absolute
 - Absolute value shown in seconds/bytes/counts
- Selection percent
 - Value shown as percentage w.r.t. the selected node "on the left" (metric/call path)
- Peer percent (system tree only)
 - Value shown as percentage relative to the maximum peer value

VI-HPS

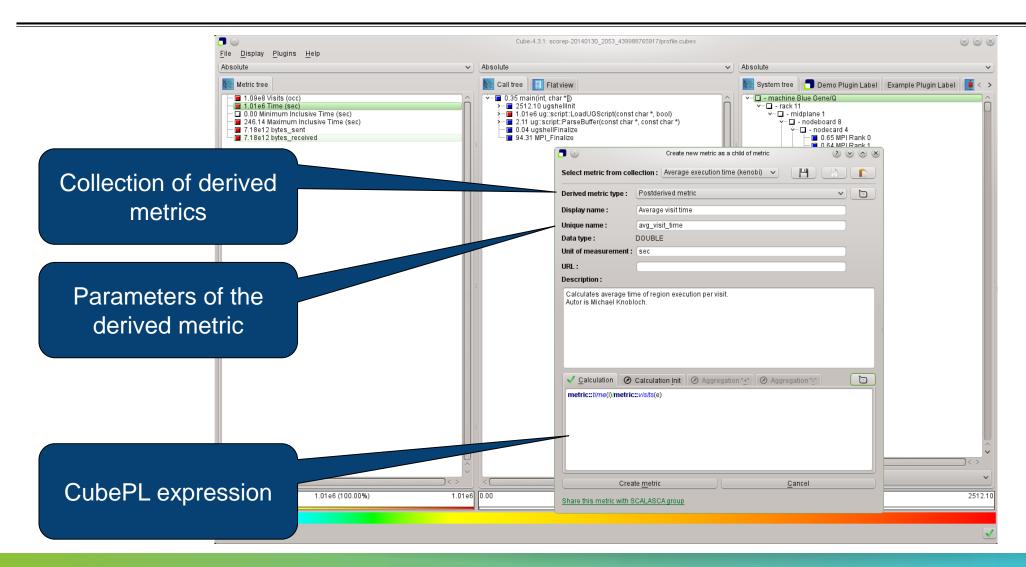

Multiple selection

Context-sensitive help

Derived metrics

Derived metrics are defined using CubePL expressions, e.g.:

metric::time(i)/metric::visits(e)


- Values of derived metrics are not stored, but calculated on-the-fly
- Types of derived metrics:
 - Prederived: evaluation of the CubePL expression is performed before aggregation
 - Postderived: evaluation of the CubePL expression is performed after aggregation
- Examples:
 - "Average execution time": Postderived metric with expression

metric::time(i)/metric::visits(e)

 "Number of FLOP per second": Postderived metric with expression metric::FLOP()/metric::time()

Derived metrics in Cube GUI

Example: FLOPS based on PAPI_FP_OPS and time

	Cub	e-4.3.1: scorep_8x4_sum/profile.cubex (on froggy1)	_ _ X
	<u>F</u> ile <u>D</u> isplay <u>P</u> lugins <u>H</u> elp		
	📗 Restore Setting 🔻 Save Settings		
Edit metric FLOPS (on froggy1)	Absolute	Absolute	Absolute
	🔚 Metric tree	🔚 Call tree 📗 Flat view	🔚 System tree 🛛 Barplot 🛛 Heatmap 🚺 Box 🖉 🕨
Select metric from collection : 💷 please select 🗵 📳 📋 💼	■ 1.17e7 Visits (occ)] 🕒 🖬 3.17e5 MAIN 🕒	🕒 🗉 - machine Linux 📃
Derived metric type : Postderived metric	□ 1148.49 Time (sec)	∎ ■ 7.04e5 mpi setup	🖶 🗆 - node frog6
	□ 0.00 Minimum Inclusive Time (sec)	■ 6.34e4 MPI Bcast	🖶 🗆 - MPI Rank 0
Display name : FLOPS	■ 41.57 Maximum Inclusive Time (■ ■ 2.05e5 env_setup	□ 1.17e9 Master thread
Unique name : flops	□ 0 bytes put (bytes)	□ 7.39e5 zone setup	■ 9.43e8 OMP thread 1
Data type : DOUBLE	□ 0 bytes_get (bytes)	■ 9.31e5 map_zones_	■ 9.47e8 OMP thread 2
Unit of measurement :	■ 5.75e12 PAPI_TOT_INS (#)	■ 9.39e4 zone_starts_	9.47e8 OMP thread 3
URL :	□ 2.69e12 PAPI_TOT_CYC (#)	■ 6.16e5 set_constants_	🖶 🗆 - MPI Rank 1
Description :	■ 2.12e12 PAPI_FP_OPS (#)	🗉 🖬 5.91e8 initialize_	🗖 1.17e9 Master thread
	3.12e9 bytes_sent (bytes)	📄 🗆 0.00 exact_rhs_	■ 9.87e8 OMP thread 1
	3.12e9 bytes_received (bytes)	🖹 🖬 145.62 !\$omp parallel @exac	■ 9.68e8 OMP thread 2
	1.84e9 FLOPS		9.72e8 OMP thread 3
		9.65e8 !\$omp do @exact_r	🖻 🗆 - MPI Rank 2
		⊕ 🖬 9.62e8 !\$omp do @exact_r	□ 1.10e9 Master thread
		■ ■ 8.14e8 !\$omp do @exact_r	■ 8.97e8 OMP thread 1
✓ <u>Calculation</u>		■ 1.21e5 !\$omp do @exact_r	■ 8.77e8 OMP thread 2
<pre>metric::PAPI_FP_OPS()/metric::time()</pre>		□ 0.00 !\$omp implicit barrier	■ 8.76e8 OMP thread 3
			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
		🗉 🖬 1.94e9 adi_	■ 1.09e9 Master thread
		■ 2.19e5 MPI_Barrier	■ 9.06e8 OMP thread 1
		■ ■ 1.92e9 < <bt_iter>> (200 itera</bt_iter>	■ 9.04e8 OMP thread 2
		■ ■ 1.98e8 verify_	9.02e8 OMP thread 3
Edit <u>m</u> etric <u>C</u> ancel		I I 1.05e5 MPI_Reduce	
Share this metric with SCALASCA group			All (32 elements)
Share this means with SCALASCA group	0.00 1.84e9 (100.00%) 1.84e	9 0.00 9.65e8 (-0.00%) -12858016489314434.00	0.00179769313486231570814527423731704356798070
	Selected "!\$omp do @exact rhs.f:46"		

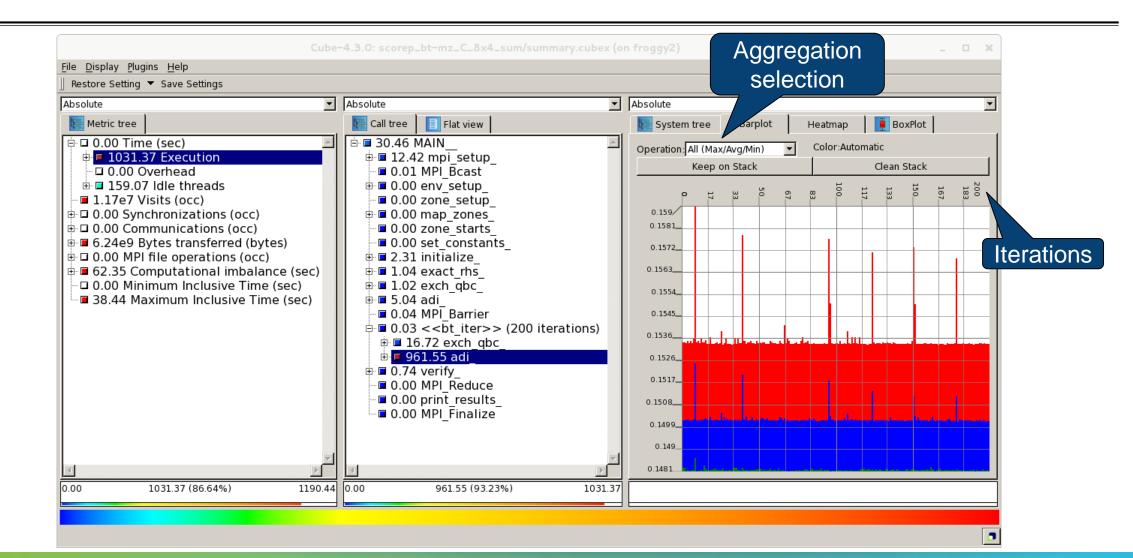
Iteration profiling

Show time dependent behavior by "unrolling" iterations

Preparations:

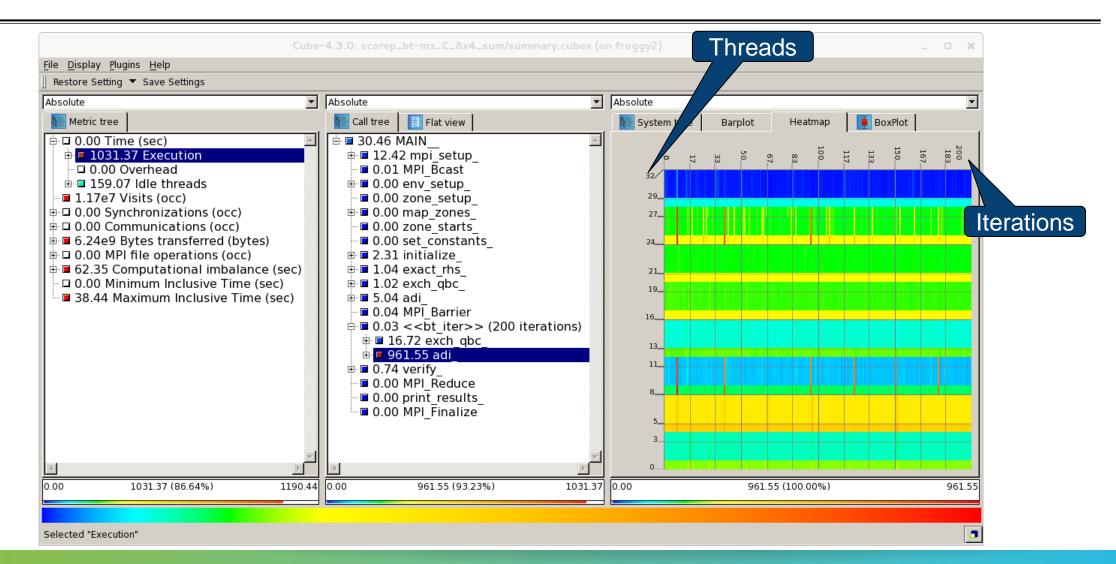
Mark loop body by using Score-P instrumentation API in your source code

```
SCOREP_USER_REGION_DEFINE( scorep_bt_loop )
SCOREP_USER_REGION_BEGIN( scorep_bt_loop, "<<bt_iter>>", SCOREP_USER_REGION_END( scorep_bt_loop )
```


- Result in the Cube profile:
 - Iterations shown as separate call trees
 - Useful for checking results for specific iterations

or

- Select your user-instrumented region and mark it as loop
- Choose "Hide iterations"
- View the Barplot statistics or the (thread x iterations) Heatmap


Iteration profiling: Barplot

Iteration profiling: Heatmap

CUBE algebra utilities

Extracting solver sub-tree from analysis report

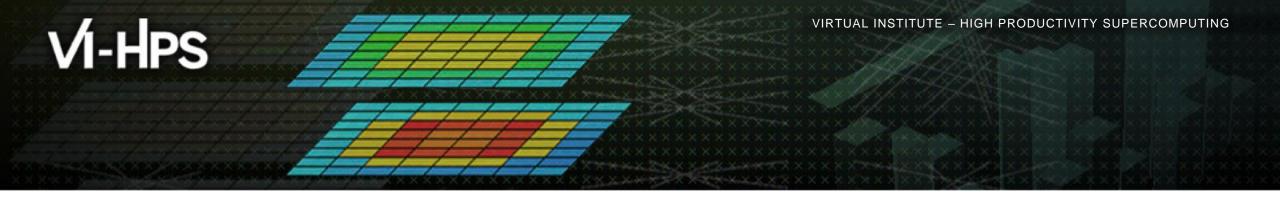
% cube_cut -r '<<ITERATION>>' scorep_bt-mz_C_16x8_sum/profile.cubex Writing cut.cubex... done.

Calculating difference of two reports

% cube_diff scorep_bt-mz_C_16x8_sum/profile.cubex cut.cubex
Writing diff.cubex... done.

- Additional utilities for merging, calculating mean, etc.
- Default output of cube_utility is a new report utility.cubex
- Further utilities for report scoring & statistics
- Run utility with `-h' (or no arguments) for brief usage info

Square sneak preview

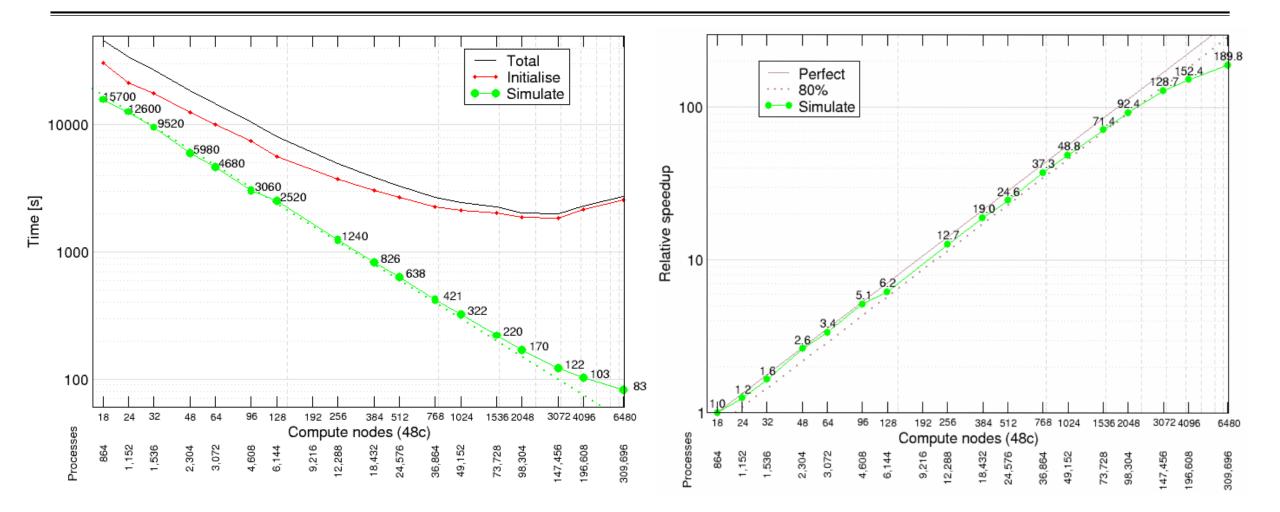

- Scalasca provides square to facilitate analysis report exploration
 - square = scalasca -examine [OPTIONS] (./scorep_expt_sum | ./profile.cubex)
- Processes intermediate .cubex files produced by Score-P and Scout
 - profile.cubex -> summary.cubex
 - scout.cubex -> trace.cubex
- and (optionally) starts CUBE GUI with the post-processed file
 - containing additional derived metrics and metric hierarchies

Cube: Further information

- Parallel program analysis report exploration tools
 - Libraries for Cube report reading & writing
 - Algebra utilities for report processing
 - GUI for interactive analysis exploration
- Available under 3-clause BSD open-source license
- Documentation & sources:
 - http://www.scalasca.org
- User guide also part of installation:
 - orefix>/share/doc/CubeGuide.pdf
- Contact:
 - mailto: scalasca@fz-juelich.de

Score-P/CUBE case study HemeLB

HemeLB (SuperMUC-NG: no GPUs)


- 3D macroscopic blood flow in human arterial system developed by UC London (UK)
 - lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary conditions
 - exascale flagship application of EU H2020 HPC Centre of Excellence for Computational Biomedicine
- HemeLB open-source code and test case: www.hemelb.org
 - C++ parallelized with MPI [+ CUDA unused]
 - Intel Studio 2019u4 compiler and MPI library (v19.0.4.243)
 - configured with 2 'reader' processes (intermediate MPI file writing disabled)
 - MPI-3 shared-memory model employed within compute nodes to reduce memory requirements when distributing lattice blocks from reader processes
 - Focus of analysis 5,000 time-step (500µs) simulation of cerebrovascular "circle of Willis" geometry
 - 6.4µm lattice resolution (21.15 GiB): 10,154,448,502 lattice sites
- Executed on SuperMUC-NG Lenovo ThinkSystem SD650 (LRZ):
 - 2x 24-core Intel Xeon Platinum 8174 ('Skylake') @ 3.1GHz
 - 48 MPI processes/node, 6452 (of 6480) compute nodes: 309,696 MPI processes
 - 190x speed-up from 864 cores: 80% scaling efficiency to over 100,000 cores

⇒ Identification & quantification of impact of load balance and its variation

 $6.98~\mathrm{cm}$

HemeLB@SNG strong scaling of FOA RunSimulation

[Execution of 9,216 processes on 192 compute nodes not possible due to insufficient compute nodes with adequate memory in 'fat' partition (768 GiB vs. regular 96 GiB node memory]

HemeLB@SNG strong scaling efficiency of FOA RunSimulation

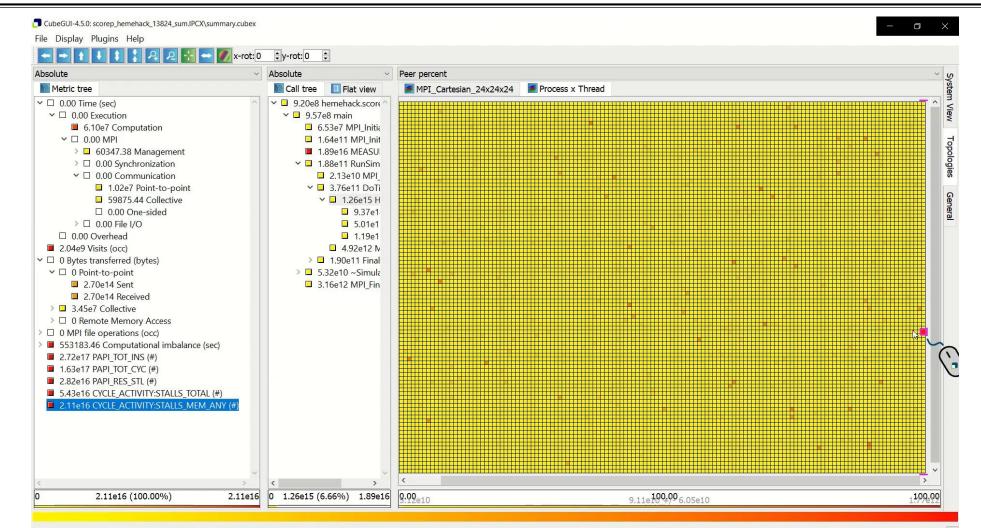
Compute nodes	24	32	48	64	96	128	192	256	384	512	768	1024	1536	2048	3072	4096	6452
Processes	1152	1536	2304	3072	4608	6144	9216	12288	18432	24576	36864	49152	73728	98304	147456	196608	309696
Global scaling efficiency	0.79	0.79	0.84	0.80	0.82	0.75		0.73	0.72	0.73	0.74	0.68	0.68	0.65	0.62	0.57	0.45
- Parallel efficiency	0.79	0.80	0.87	0.83	0.86	0.80		0.75	0.74	0.74	0.77	0.71	0.72	0.70	0.72	0.70	0.73
Load balance efficiency	0.79	0.80	0.88	0.84	0.86	0.80		0.75	0.74	0.75	0.78	0.72	0.74	0.72	0.74	0.73	0.80
Communication efficiency	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	0.99	0.99	0.99	0.98	0.98	0.97	0.96	0.92
- Computation scaling	1.00	0.99	0.96	0.96	0.95	0.93		0.98	0.98	0.98	0.96	0.96	0.94	0.93	0.87	0.81	0.61
 Instructions scaling 	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	0.99	0.97	0.94	0.89	0.79	0.67	0.45
IPC scaling	1.00	0.99	0.96	0.96	0.95	0.93		0.98	0.98	0.99	0.98	0.99	1.00	1.04	1.11	1.21	1.36
IPC	1.411	1.395	1.353	1.355	1.342	1.316		1.377	1.387	1.396	1.383	1.390	1.417	1.473	1.566	1.704	1.919
											Key:	<0.65	<0.75	<0.85	<0.95	<1.00	>1.00

Global scaling efficiency fairly good around 80%, before degrading at larger scales

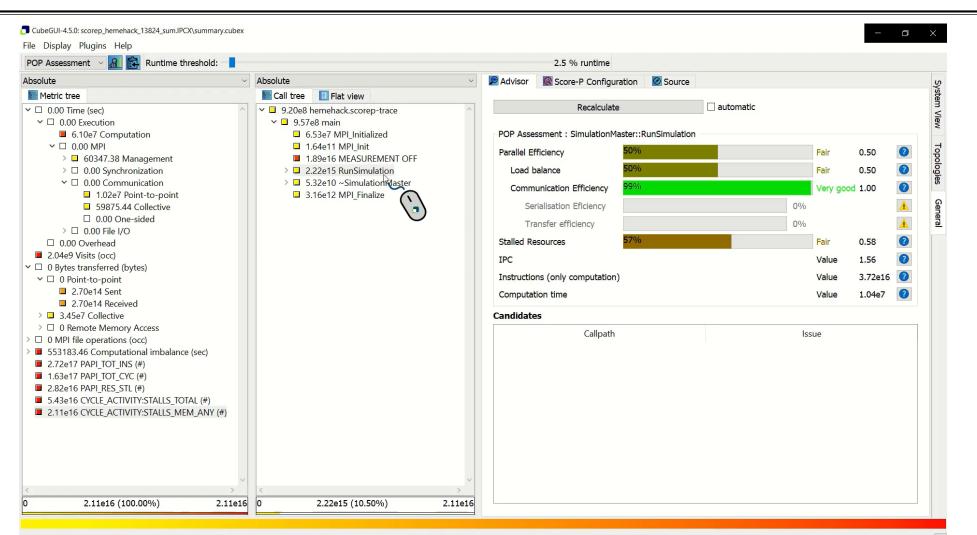
- Parallel efficiency deteriorating following Load balance efficiency
 - Communication efficiency excellent throughout
- Computation scaling (relative to 1152 processes) very good except at largest scale
- Degradation of Instructions scaling partially compensated by improving IPC scaling [POP CoE scaling efficiency model: www.pop-coe.eu]

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Initial tree presentation: Time of MPI_Gather per MPI process


DOI 10.5281/zenodo.4080701

Absolute	~ Absolute	Absolute
Metric tree	Call tree	System tree 🚺 Statistics 🔯 Sunburst
 7.13e7 Time (sec) 2.04e9 Visits (occ) 5.40e14 Bytes transferred (bytes) 0 MPI file operations (occ) 553183.46 Computational imbalance (sec) 2.72e17 PAPI_TOT_INS (#) 1.63e17 PAPI_TOT_CYC (#) 2.82e16 PAPI_RES_STL (#) 5.43e16 CYCLE_ACTIVITY:STALLS_TOTAL (#) 2.11e16 CYCLE_ACTIVITY:STALLS_MEM_ANY (#) 	 17.31 hemehack.scorep-trace 2.09 main 0.82 MPI_Initialized 36495.62 MPI_Initialized 36495.62 MPI_Initialized 36495.62 MPI_Initialized 36495.62 MPI_Simulation 228.68 MPI_Gather 20.97 DoTimeStep 1.04e7 HandleActors 1.02e7 MPI_Waitall 4198.07 MPI_Irecv 12757.64 MPI_Isend 57501.42 MPI_Gather 2147.51 Finalise 87.83 ~SimulationMaster 23850.59 MPI_Finalize 	✓ machine SuperMUC-NG (Intel+IMPI) ✓ switch i07opa ✓ node i07r01c01s01.sng.lrz.de §6.14 MPI Rank 0 0.00 MPI Rank 1 0.60 MPI Rank 2 0.00 MPI Rank 3 16.22 MPI Rank 4 0.00 MPI Rank 5 11.01 MPI Rank 6 0.00 MPI Rank 7 0.00 MPI Rank 8 0.00 MPI Rank 7 0.00 MPI Rank 8 0.00 MPI Rank 10 0.00 MPI Rank 11 3.07 MPI Rank 12 0.00 MPI Rank 13 0.09 MPI Rank 13 0.09 MPI Rank 14 0.00 MPI Rank 15 24.07 MPI Rank 16 0.00 MPI Rank 17 0.00 MPI Rank 18 0.00 MPI Rank 21 13.03 MPI Rank 22 0.00 MPI Rank 23 26.02 MPI Rank 23 26.02 MPI Rank 24 0.00 MPI Rank 25 0.00 MPI Rank 26 0.00 MPI Rank 27 0.32 MPI Rank 28
<	> <	All (13824 elements)


VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

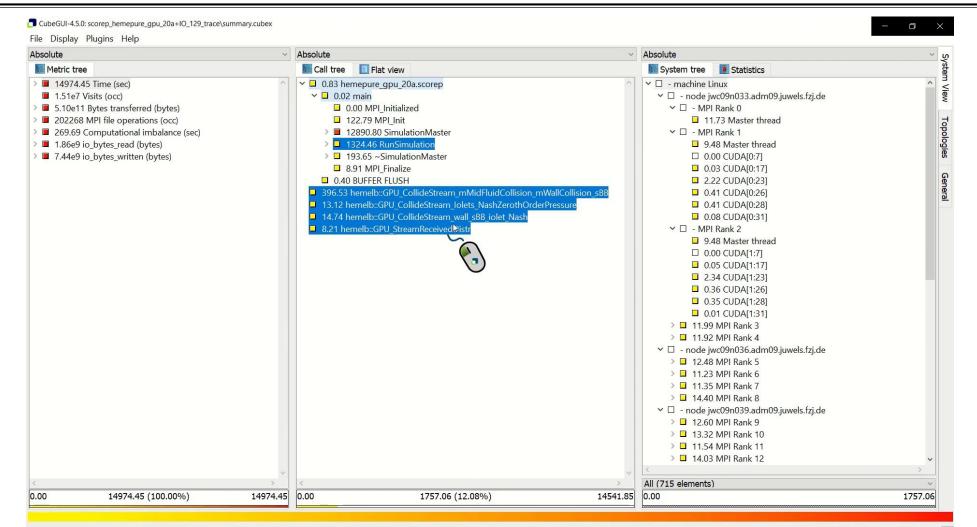
Topological presentation: STALLS_MEM_ANY for HandleActors

Advisor: POP efficiency assessment for RunSimulation

HemeLB (JUWELS-Volta)

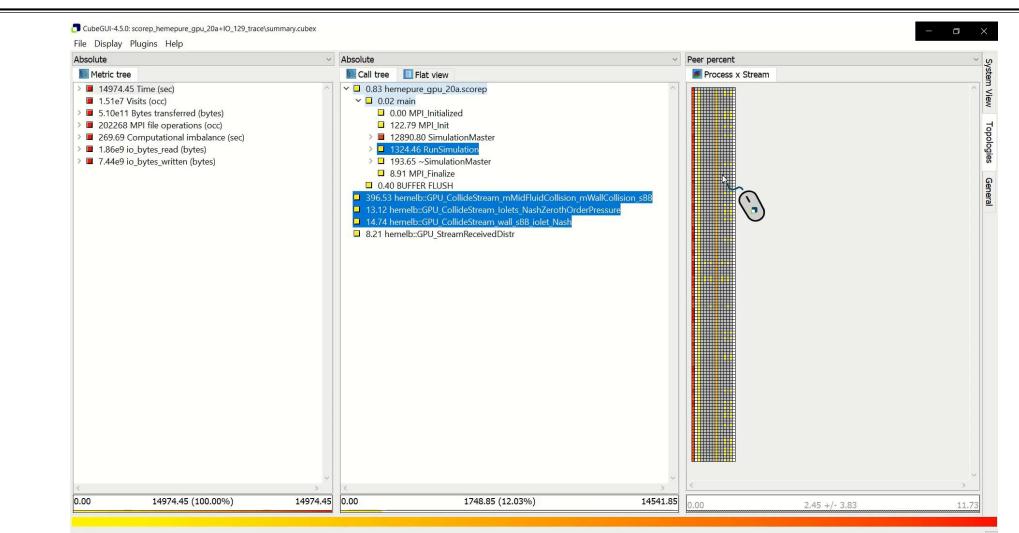
- 3D macroscopic blood flow in human arterial system developed by UC London (UK)
 - lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary conditions
 - exascale flagship application of EU H2020 HPC Centre of Excellence for Computational Biomedicine
- HemeLB open-source code and test case: www.hemelb.org
 - C++ parallelized with MPI + CUDA (in development)
 - GCC/8.3.0 compiler, CUDA/10.1.105 and ParaStationMPI/5.4 library
 - configured with 2 'reader' processes and intermediate MPI file writing
 - rank 0 `monitor' process doesn't participate in simulation

- Focus of analysis 2,000 time-step (each 100µs) simulation of CBM2019_Arteries_patched geometry
 - 1.78 GiB: 66,401,494 lattice sites, 1+38 iolets
- Executed on JUWELS-Volta (@JSC):
 - 2x 20-core Intel Xeon Platinum 8168 ('Skylake') CPUs + 4 Nvidia V100 'Volta' GPUs
 - 4* MPI processes/node (one per GPU), 32 (of 56) compute nodes: 129 MPI processes


⇒ Identification & quantification of impact of load balance and its variation

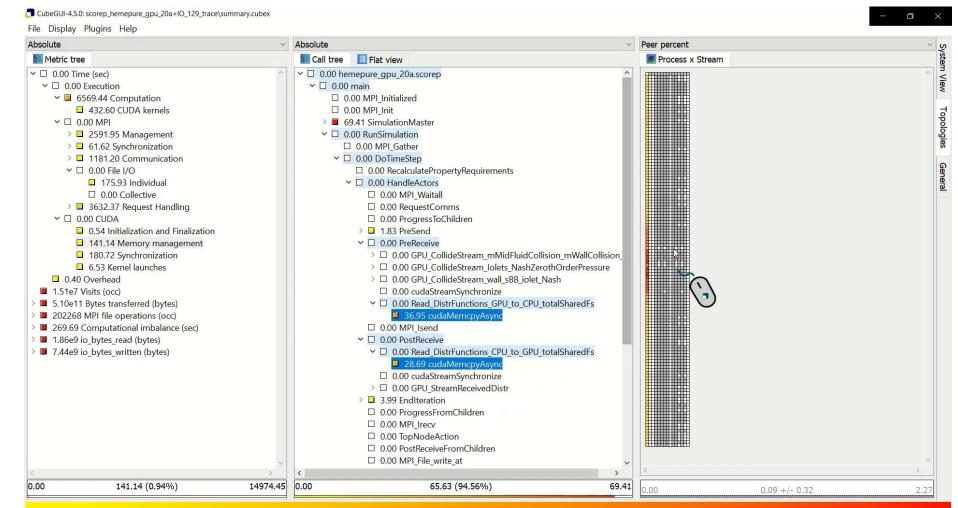
V VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tree: Time for asynch. CUDA kernels on separate CUDA streams

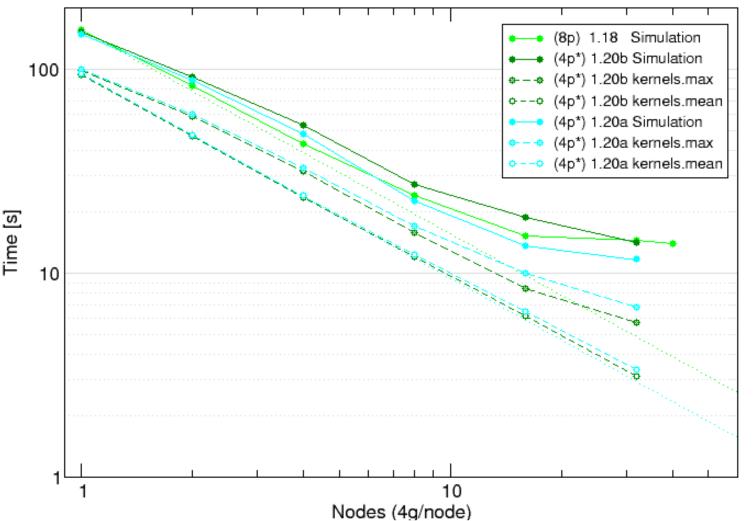


DOI 10.5281/zenodo.4081080

Topo: Time for asynch. CUDA kernels on separate CUDA streams



Topo: Time for MPI file writing on CPU varies per MPI process


Metric tree I Call tree I Flat view Process x Stream 0.000 Time (sec) 0.000 hemegure_gpu; 20a.scorep 0.000 hemegure_gpu; 20a.scorep 0.000 MPI 425.60 CUDA kernels 2.591.95 Management 0.61 25 which orization 0.000 MPI 0.000 MPI 0.000 MPI 0.000 Dottine 0.000 MPI 0.000 Prefixed 0.000 Prefixed	• 0.000 Time (sec) • 0.000 Execution • 0.000 Execution • 0.000 Memepure.gpu.20a.scorep • 432.60 CUDA kernels • 0.000 MPI [.nitialized • 0.000 MPI • 0.000 MPI [.nitialized • 0.000 MPI • 0.000 MPI [.nitialized • 0.000 File V/0 • 0.000 File Starter • 0.000 File V/0 • 0.000 PriceStep • 178.531 Request Handling • 0.000 PriceStep • 0.000 Collective • 0.000 PreSend • 15.1er Visits (coc) • 0.000 PreSend • 15.1er Visits (coc) • 0.000 PreSend • 202268 MPI file operations (coc) • 0.000 PreSend • 2000 ProgressTocThildren • 0.000 ProgressTocThildren • 17.449 io bytes_written (bytes) • 0.000 ProgressTorThildren • 7.44e9 io bytes_written (bytes) • 0.000 ProgressTorThildren • 7.44e9 io bytes_written (bytes) • 0.000 ProgressTorThildren	Absolute	 Absolute 	 Peer percent 	
[•] 0.000 Execution [•] 0.000 main [•] 0.000 MPI [•] 0.000 MPI [•] 0.000 MPI [•] 0.000 MPI [•] 0.000 File citod [•] 0.000 RescalculatePropertyRequirements [•] 0.000 File citod [•] 0.000 RecalculatePropertyRequirements [•] 0.000 Clie citoe [•] 0.000 RecalculatePropertyRequirements [•] 0.000 Clie citoe [•] 0.000 RecalculatePropertyRequirements [•] 0.000 Clie citoe [•] 0.000 RecalculatePropertyRequirements [•] 0.000 Colle titoe [•] 0.000 ProgressTorms [•] 0.000 Colle titoe	• 000 Execution • 000 MPI (milliad • 1432.60 CUDA kenels 0.00 MPI (milliad • 000 MPI 0.00 MPI (milliad • 000 MPI 0.00 MPI (milliad • 000 MPI 0.00 MPI (milliad • 000 MPI (milliad 0.00 MPI (milliad) • 000 MPI (milliad) 0.00 MPI (milliad) • 000 TB120 Communication • 0.00 Do Reaclulate/ropertyRequirements • 000 TB120 Communication • 0.00 Do Reaclulate/ropertyRequirements • 000 TB120 Communication • 0.00 Do Reaclulate/ropertyRequirements • 000 TB120 Communication • 0.00 Preservice • 000 Free Column • 0.00 Preservice • 0.	Metric tree	Call tree 🔲 Flat view	Frocess x Stream	
□ 0.00 AreDensitiesAvailable > □ 0.00 Finalise > □ 0.00 ~SimulationMaster		▼ 0.00 Time (sec) ▼ 0.00 Execution ↓ 6569.44 Computation ↓ 432.60 CUDA kernels ↓ 0.00 MPI ↓ 2 S91.95 Management ↓ 61.62 Synchronization ↓ 1181.20 Communication ↓ 0.00 File I/O ↓ 175.93 Individua ↓ 0.00 Collective ↓ 3632.37 Request Handling ↓ 328.93 CUDA ↓ 0.40 Overhead ↓ 1.51e7 Visits (occ) ↓ 202268 MPI file operations (occ) ↓ 269.69 Computational imbalance (sec) ↓ 1.86e9 io_bytes_read (bytes)	Image: Constraint of the constrain		

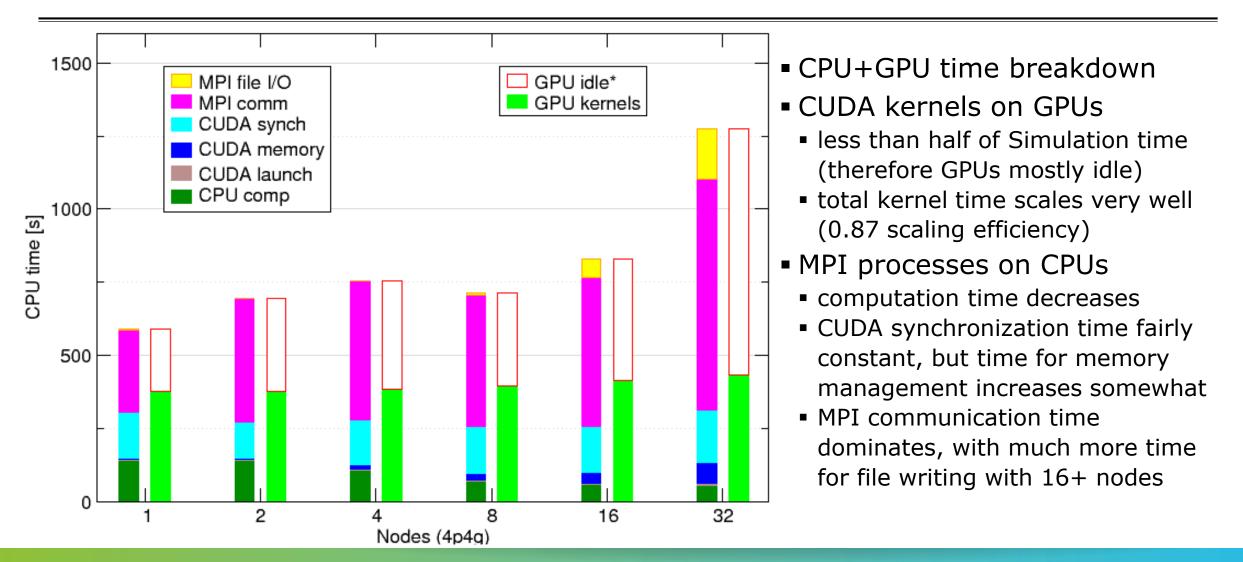
Topo: Time for CUDA asynchronous memory copies is imbalanced

Ready

HemeLB@JUWELS-Volta strong scaling of FOA RunSimulation

- Reference execution with 8ppn
 - multiple processes offloading GPU kernels generally unproductive
- Comparison of versions (4ppn)
 v1.20a generally better
- Synchronous MPI file writing is the primary bottleneck
- CUDA kernels on GPUs
 - less than half of Simulation time (therefore GPUs mostly idle)
 - total kernel time scales very well (0.93 scaling efficiency)
 - load balance deteriorates (0.95 for single node, 0.50 for 32 nodes)

HemeLB@JUWELS/Volta strong scaling efficiency of RunSimulation


Simulation time [s]	1n 5p 147.87	2n 9p 88.38	4n 17p 48.13	8n 33p 22.66	16n 65p 13.68	32n 129p 11.67	Key: 1.1 1.0 0.9 0.8
Global scaling efficiency	0.64	0.53	0.49	0.52	0.43	0.25	0.7
 Parallel efficiency 	0.64	0.53	0.50	0.54	0.47	0.29	0.5
– – Load balance efficiency (GPU)	0.95	0.78	0.73	0.73	0.65	0.50	0.4
 – Communication efficiency (GPU) 	0.67	0.68	0.68	0.75	0.73	0.58	0.2
 Computation scaling (GPU) 	1.00	1.00	0.99	0.96	0.92	0.87	0.1 0.0

Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused)

- Single (quad-GPU) node already suffers significant communication inefficiency
- includes MPI file writing, but doesn't degrade much as additional nodes are included
- Load balance of GPUs deteriorates progressively
- GPU computation scaling remains reasonably good
 [POP CoE scaling efficiency model: www.pop-coe.eu]

HemeLB@JUWELS-Volta strong scaling of FOA RunSimulation

