

Understanding applications with Paraver

Judit Gimenez judit@bsc.es / tools@bsc.es

EXCELENCIA SEVERO OCHOA

Humans are visual creatures

Films or books?

PROCESS

- Two hours vs. days (months)
- Memorizing a deck of playing cards

STORE

- Each card translated to an image (person, action, location)
- Our brain loves pattern recognition

IDENTIFY

What do you see on the pictures?

BSC Performance Tools

- Since 1991
- Based on traces
- Open Source (http://tools.bsc.es)
- Focus
 - Detail, variability, flexibility
 - Visual analysis
 - Intelligence: Performance Analytics
 - Behavioral structure vs. syntactic structure
 - Key factors

Paraver

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Paraver – Performance data browser

Trace visualization/analysis

+ trace manipulation

Goal = Flexibility

No semantics Programmable

Comparative analyses

Multiple traces
Synchronize scales

From timelines to tables

From timelines to tables

Supercomputing

Centro Nacional de Supercomputación

Analyzing variability

Analyzing variability

By the way: six months later

From tables to timelines

CESM: 16 processes, 2 simulated days

- Histogram useful computation duration shows high variability
- How is it distributed?

THREAD 1.11.1 [2,555e+006] = 0 u

- Dynamic imbalance
 - In space and time
 - Day and night.
 - Season ? ☺

Trace manipulation

- Data handling/summarization capability
 - Filtering
 - Subset of records in original trace
 - By duration, type, value,...
 - Filtered trace IS a paraver trace and can be analysed with the same cfgs (as long as needed data kept)
 - Cutting
 - All records in a given time interval
 - Only some processes
 - Software counters
 - Summarized values computed from those in the original trace emitted as new even types
 - #MPI calls, total hardware count,...

Dimemas

Dimemas: Coarse grain, Trace driven simulation

- Simulation: Highly non linear model
 - MPI protocols, resource contention...
- Parametric sweeps
 - On abstract architectures
 - On application computational regions
- What if analysis
 - Ideal machine (instantaneous network)
 - Estimating impact of ports to MPI+OpenMP/CUDA/...
 - Should I use asynchronous communications?
 - Are all parts equally sensitive to network?
- MPI sanity check
 - Modeling nominal
- Paraver Dimemas tandem
 - Analysis and prediction
 - What-if from selected time window

What if we had asynchronous comms

SPECFEM3D

Courtesy Dimitri Komatitsch

Ideal machine

The impossible machine: BW = ∞ , L = 0

- Actually describes/characterizes Intrinsic application behavior
 - Load balance problems?
 - Dependence problems?

Centro Nacional de Supercomputación

Efficiency Model

Parallel efficiency model

Parallel efficiency = LB eff * Comm eff

Parallel efficiency refinement: LB * μLB * Tr

- Serializations / dependences (μLB)
- Dimemas ideal network

 Transfer (efficiency) = 1

Why scaling?

$$\eta_{\parallel} = LB * Ser * Trf$$

CG-POP mpi2s1D - 180x120

Good scalability !! Should we be happy?

Why efficient?

Parallel efficiency =93.28 Communication = 93.84

Parallel efficiency 77.93 Communication eff . 79.79

Parallel efficiency 28.84 Communication eff . 30.42

THREAD 1.1.1
THREAD 1.9.1
THREAD 1.17.1

THREAD 1.25.1

THREAD 1.32.1 5,905,788 us

5,909,077 us

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

Using Clustering to identify structure

What should I improve?

What if

PEPC

... we increase the IPC of Cluster1?

... we balance Clusters 1 & 2?

Tracking scability through clustering

OpenMX (strong scale from 64 to 512 tasks)

Methodology

Performance analysis tools objective

Help generate hypotheses

Help validate hypotheses

Qualitatively

Quantitatively

First steps

- Parallel efficiency percentage of time invested on computation
 - Identify sources for "inefficiency":
 - load balance
 - Communication /synchronization
- Serial efficiency how far from peak performance?
 - IPC, correlate with other counters
- Scalability code replication?
 - Total #instructions
- Behavioral structure? Variability?

Paraver Tutorial:

Introduction to Paraver and Dimemas methodology

BSC Tools web site

- tools.bsc.es
 - downloads
 - Sources / Binaries
 - Linux / windows / MAC
 - documentation
 - Training guides
 - Tutorial slides
- Getting started
 - Start wxparaver
 - Help → tutorials and follow instructions
 - Follow training guides
 - Paraver introduction (MPI): Navigation and basic understanding of Paraver operation

Some recommendations

- The power of understanding

 Keep asking questions
- Our brain is more efficient with images → Use visual tools
- The key uses to be in the details → Do not miss them
- Do not expect what may be expected → Be flexible

And as Bruce Lee said, "Be water my friend!"

Demo

Same code, different behaviour

- Lulesh 2.0
 - Easy to install
 - Requires a cube number of MPI ranks

■ What about 27? Check how the system reacts to a "weird" request

Code	Parallel efficiency	Communication eff.	Load Balance eff.
lulesh@mn3	90.55	99.22	91.26
lulesh@leftraru	69.15	99.12	69.76
lulesh@uv2 (mpt)	70.55	96.56	73.06
lulesh@uv2 (impi)	85.65	95.09	90.07
lulesh@mt	83.68	95.48	87.64
lulesh@cori	90.92	98.59	92.20
lulesh@thunderX	73.96	97.56	75.81
lulesh@jetson	75.48	88.84	84.06
lulesh@claix	77.28	92.33	83.70
lulesh@jureca	88.20	98.45	89.57
lulesh@inti	88.16	98.65	89.36
lulesh@archer	88.01	97.95	89.86
lulesh@romeo	89.56	99.01	90.45
lulesh@mn4	91.02	98.38	92.52
lulesh@ stampede2 (skl)	85.76	97.63	87.84
lulesh@ stampede2 (knl)	89.21	98.42	90.64
lulesh@isambard	90.32	97.16	92.96
lulesh@hawk (mpt)	80.16	98.98	80.98
lulesh@hawk (openmpi)	87.82	98.28	89.35

Warning::: Higher parallel efficiency does not mean faster!