
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Performance System®

Sameer Shende
Research Professor

sameer@cs.uoregon.edu
University of Oregon

http://tau.uoregon.edu/TAU_TW45.pdf

mailto:malony@cs.uoregon.edu

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• Instrument and measure performance of MPI and CUDA/ROCm/SYCL/OpenMP applications
with:
• No change to the source code
• No change to the build system
• No change to the application binary!

And use some of the tools we are already familiar with like Score-P, Scalasca, CUBE,
Vampir, PAPI, Perfetto.dev…

A unifying framework: TAU

Wouldn’t it be nice if we could …

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• How much time is spent in each application routine and outer loops? Within loops, what is the
contribution of each statement? What is the time spent in OpenMP loops?

• How many instructions are executed in these code regions? Using Likwid or PAPI, TAU
measures floating point, Level 1 and 2 data cache misses, hits, branches taken.

• What is the time taken in OS routines for thread scheduling? How much time is wasted?
• What is the memory usage of the code? When and where is memory allocated/de-allocated?

Are there any memory leaks? What is the memory footprint of the application? What is the
memory high water mark?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of
individual calls, total volume?

• What is the contribution of each phase of the program? What is the time wasted/spent waiting
for collectives, and I/O operations in Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime breakdown of performance
across different core counts?

Application Performance Engineering using TAU

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Performance System®

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

§ Simple tool
§ No change to the application source code
§ No change to its build system
§ No change to its executable
§ Simply launch the application binary with tau_exec

§ Works with Score-P, OTF2/Vampir
§ paraprof and perfexplorer: GUI tools
§ pprof: text based browser
§ Open Source: BSD style license

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling:
MPI: % mpirun -np 16 tau_exec -ebs ./a.out

• Pthread: % mpirun -np 16 tau_exec –T mpi,pthread –ebs ./a.out

• CUDA: % mpirun –np 16 tau_exec –T cupti,mpi –cupti -ebs ./a.out

• Score-P: % mpirun -np 16 tau_exec –T scorep,mpi ./a.out

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:
• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
 % mpirun -np 16 tau_exec ./a.out; vampir traces.otf2 &

• Chrome/Jumpshot: % export TAU_TRACE=1; mpirun -np 64 tau_exec ./a.out

 % tau_treemerge.pl;

Chrome: % tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

 Chrome browser: chrome://tracing (Load -> app.json) or Perfetto.dev

• Jumpshot: tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

TAU: Quickstart Guide

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Performance System®

§Parallel performance framework and toolkit
§Supports all HPC platforms, compilers, runtime system
§Provides portable instrumentation, measurement, analysis

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Performance System

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

§ Instrumentation
§ Fortran, C++, C, UPC, Java, Python, Chapel
§ Automatic instrumentation

§ Measurement and analysis support
§ MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
§ pthreads, OpenMP, OMPT interface, hybrid, other thread models
§ GPU, CUDA, OpenCL, OpenACC, ROCm, HIP
§ Parallel profiling and tracing
§ Use of Score-P for native OTF2 and CUBEX generation
§ Efficient callpath proflles and trace generation using Score-P

§ Analysis
§ Parallel profile analysis (ParaProf), data mining (PerfExplorer)
§ Performance database technology (TAUdb)
§ 3D profile browser

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU’s Support for Runtime Systems

§ MPI
§ PMPI profiling interface
§ MPI_T tools interface using performance and control variables

§ Pthread
§ Captures time spent in routines per thread of execution

§ OpenMP
§ OMPT tools interface to track salient OpenMP runtime events
§ Opari source rewriter
§ Preloading wrapper OpenMP runtime library when OMPT is not supported

§ OpenACC
§ OpenACC instrumentation API
§ Track data transfers between host and device (per-variable)
§ Track time spent in kernels

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU’s Support for Runtime Systems (contd.)

§ OpenCL
§ OpenCL profiling interface
§ Track timings of kernels

§ Intel® OneAPI
§ Level Zero
§ Track time spent in kernels executing on GPU
§ Track time spent in OneAPI runtime calls

§ CUDA
§ Cuda Profiling Tools Interface (CUPTI)
§ Track data transfers between host and GPU
§ Track access to uniform shared memory between host and GPU

§ ROCm
§ Rocprofiler and Roctracer instrumentation interfaces
§ Track data transfers and kernel execution between host and GPU

§ Kokkos
§ Kokkos profiling API
§ Push/pop interface for region, kernel execution interface

§ Python
§ Python interpreter instrumentation API
§ Tracks Python routine transitions as well as Python to C transitions

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Examples of Multi-Level Instrumentation

§ MPI + OpenMP
§ MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

§ MPI + CUDA
§ PMPI + CUPTI interfaces

§ Kokkos + OpenMP
§ Kokkos profiling API + OMPT to transparently track events

§ Kokkos + pthread + MPI
§ Kokkos + pthread wrapper interposition library + PMPI layer

§ Python + CUDA + MPI
§ Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch) +

MPI
§ MPI + OpenCL
§ PMPI + OpenCL profiling interfaces

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact measurement
• Fine-grain control
• Calls inserted into

code

• No code modification
• Minimal effort
• Relies on debug

symbols (-g)

Call START(‘potential’)
// code
Call STOP(‘potential’)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Types of Performance Profiles

§ Flat profiles
§ Metric (e.g., time) spent in an event
§ Exclusive/inclusive, # of calls, child calls, …

§ Callpath profiles
§ Time spent along a calling path (edges in callgraph)
§ “main=> f1 => f2 => MPI_Send”
§ Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

§ Callsite profiles
§ Time spent along in an event at a given source location
§ Set the TAU_CALLSITE environment variable

§ Phase profiles
§ Flat profiles under a phase (nested phases allowed)
§ Default “main” phase
§ Supports static or dynamic (e.g. per-iteration) phases

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Using TAU’s Runtime Preloading Tool: tau_exec

§Preload a wrapper that intercepts the runtime system call and substitutes with another
§MPI

§OpenMP

§POSIX I/O

§Memory allocation/deallocation routines

§Wrapper library for an external package

§No modification to the binary executable!

§Enable other TAU options (communication matrix, OTF2, event-based sampling)

§Add tau_exec before the name of the binary
§mpirun –np 64 tau_exec ./a.out

§mpirun tau_exec –T ompt,mpi,papi -ompt ./a.out

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

tau_exec

§ Tau_exec preloads
the TAU wrapper
libraries and
performs
measurements.

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

$ tau_exec

Usage: tau_exec [options] [--] <exe> <exe options>

Options:
-v Verbose mode
-s Show what will be done but don't actually do anything (dryrun)
-qsub Use qsub mode (BG/P only, see below)
-io Track I/O
-memory Track memory allocation/deallocation
-memory_debug Enable memory debugger
-cuda Track GPU events via CUDA
-cupti Track GPU events via CUPTI (Also see env. variable TAU_CUPTI_API)
-opencl Track GPU events via OpenCL
-openacc Track GPU events via OpenACC (currently PGI only)
-ompt Track OpenMP events via OMPT interface
-armci Track ARMCI events via PARMCI
-ebs Enable event-based sampling
-ebs_period=<count> Sampling period (default 1000)
-ebs_source=<counter> Counter (default itimer)
-um Enable Unified Memory events via CUPTI
-T <DISABLE,GNU,ICPC,MPI,OMPT,OPENMP,PAPI,PDT,PROFILE,PTHREAD,SCOREP,SERIAL> : Specify TAU tags
-loadlib=<file.so> : Specify additional load library
-XrunTAUsh-<options> : Specify TAU library directly
-gdb Run program in the gdb debugger

Notes:
Defaults if unspecified: -T MPI
MPI is assumed unless SERIAL is specified

No need to recompile the application!

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

tau_exec Example (continued)

§ tau_exec can enable
event based
sampling while
launching the
executable using the
–ebs flag!

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Example:
 mpirun -np 2 tau_exec -T icpc,ompt,mpi -ompt ./a.out
 mpirun -np 2 tau_exec -io ./a.out
Example - event-based sampling with samples taken every 1,000,000 FP instructions
 mpirun -np 8 tau_exec -ebs -ebs_period=1000000 -ebs_source=PAPI_FP_INS ./ring
Examples - GPU:
 tau_exec -T serial,cupti -cupti ./matmult (Preferred for CUDA 4.1 or later)
 tau_exec -openacc ./a.out
 tau_exec -T serial –opencl ./a.out (OPENCL)
 mpirun -np 2 tau_exec -T mpi,cupti,papi -cupti -um ./a.out (Unified Virtual Memory in CUDA 6.0+)

qsub mode (IBM BG/Q only):
 Original:

qsub -n 1 --mode smp -t 10 ./a.out
 With TAU:
 tau_exec -qsub -io -memory -- qsub -n 1 … -t 10 ./a.out

Memory Debugging:
 -memory option:
 Tracks heap allocation/deallocation and memory leaks.
 -memory_debug option:
 Detects memory leaks, checks for invalid alignment, and checks for
 array overflow. This is exactly like setting TAU_TRACK_MEMORY_LEAKS=1
 and TAU_MEMDBG_PROTECT_ABOVE=1 and running with -memory

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Simplifying TAU’s usage (tau_exec)

§Uninstrumented execution linked with –dynamic (dynamic executables only!)
% mpirun -np 16 ./a.out

§Track MPI performance
% mpirun -np 16 tau_exec ./a.out

§Track OpenMP, and MPI performance (MPI enabled by default; OMPT in Clang 9+, Intel 19+)
 % export TAU_OMPT_SUPPORT_LEVEL=full;
 % mpirun -np 16 tau_exec –T mpi,pdt,ompt,papi –ompt ./a.out

§Track memory operations
% export TAU_TRACK_MEMORY_LEAKS=1
% mpirun -np 16 tau_exec –memory_debug ./a.out (bounds check)

§Use event based sampling (compile with –g)
% mpirun -np 16 tau_exec –ebs ./a.out
Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count> -ebs_resolution=<file|function|line>

§Load wrapper interposition library
% mpirun -np 16 tau_exec –loadlib=<path/libwrapper.so> ./a.out

§Track GPGPU operations (-rocm, -l0, -opencl, -cupti, -cupti –um, -openacc):
% mpirun -np 16 tau_exec –cupti ./a.out

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Installing and Configuring TAU

§Installing PDT:
§ wget http://tau.uoregon.edu/pdt.tgz
§ ./configure; make ; make install

§Installing TAU :
§ wget http://tau.uoregon.edu/tau.tgz
§ ./configure -mpi –c++=mpicxx –cc=mpicc –fortran=mpif90 –mpi -bfd=download -pdt=<dir> -papi=<dir> ...
§ make install; export PATH=<taudir>/arm64_linux/bin:$PATH
§ All configurations are stored in <taudir>/.all_configs if you wish to see how TAU was configured!

§Using TAU for source instrumentation:
§ export TAU_MAKEFILE=<taudir>/x86_64/lib/Makefile.tau-<TAGS>
§ make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh
§ Use tau_exec with uninstrumented binaries instead of recompiling the source code.

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Configurations available on CoolMuc2, LRZ

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

C

% module use /lrz/sys/courses/vihps/2024/modulefiles/
% module load tau
% ls $TAU/Makefile*
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-mpi-pdt-scorep
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-mpi-pthread-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-ompt-mpi-pdt-openmp
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-mpi-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-pthread-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-tbb-pdt
For an uninstrumented binary:
% mpirun –np 16 tau_exec –T mpi,scorep ./a.out
Picks the configuration represented by
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-mpi-pdt-scorep
To use OpenMP instrumentation:
% export TAU_OMPT_SUPPORT_LEVEL=full
% export OMP_NUM_THREADS=<N>
% mpirun –np 16 tau_exec –T ompt,mpi –ompt –ebs ./a.out

% pprof –a | more
% paraprof
% paraprof --pack foo.ppk
Copy it to your local machine and launch: % paraprof foo.ppk

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Configuration tags for tau_exec

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

% ./configure –pdt=<dir> -mpi –papi=<dir>; make install
Creates in $TAU:
Makefile.tau-papi-mpi-pdt(Configuration parameters in stub makefile)
shared-papi-mpi-pdt/libTAU.so

% ./configure –pdt=<dir> -mpi; make install creates
Makefile.tau-mpi-pdt
shared-mpi-pdt/libTAU.so

To explicitly choose preloading of shared-<options>/libTAU.so change:
% mpirun -np 256 ./a.out to
% mpirun -np 256 tau_exec –T <comma_separated_options> ./a.out

% mpirun -np 256 tau_exec –T papi,mpi,pdt ./a.out
Preloads $TAU/shared-papi-mpi-pdt/libTAU.so
% mpirun -np 256 tau_exec –T papi ./a.out
Preloads $TAU/shared-papi-mpi-pdt/libTAU.so by matching.
% aprun –n 256 tau_exec –T papi,mpi,pdt –s ./a.out
Does not execute the program. Just displays the library that it will preload if executed without the –s option.
NOTE: -mpi configuration is selected by default. Use –T serial for
Sequential programs.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Binary instrumentation of libraries: Work in progress

§ % tau_run a.out –o a.inst
instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>

§ % tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310
§ instruments a DSO
§ % tau_exec ./a.out
§ executes the uninstrumented application with the instrumented shared object.
§ Works on x86_64 with –g (-O2 has issues). Issues with aarch64:
§ https://github.com/dyninst/dyninst/issues/1708 and https://github.com/dyninst/dyninst/pull/1712
§ To use with DyninstAPI 13 on x86_64:
§ 1. Load spack: spack/share/spack/setup-env.sh
§ 2. Install dyninst: spack install dyninst@13 %gcc@11
§ 3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

§ 3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install

https://github.com/dyninst/dyninst/issues/1708
https://github.com/dyninst/dyninst/pull/1712

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Installing TAU on your laptop for paraprof (GUI)

§Microsoft Windows
§ Install Java from Oracle.com
§ http://tau.uoregon.edu/tau.exe
§ Install, click on a ppk file to launch paraprof

§macOS
§ Install Java 11.0.3:

§ Download http://tau.uoregon.edu/java.dmg
§ If you have multiple Java installations, add to your ~/.zshrc (or ~/.bashrc as appropriate):
§ export PATH=/Library/Java/JavaVirtualMachines/jdk-11.0.3.jdk/Contents/Home/bin:$PATH
§ java -version

§ Download and install TAU (copy to /Applications from dmg):
§ http://tau.uoregon.edu/tau.dmg
§ export PATH=/Applications/TAU/tau/apple/bin:$PATH
§ paraprof app.ppk &

§ macOS (arm64, M1/M2)
§ http://tau.uoregon.edu/java_arm64.dmg
§ http://tau.uoregon.edu/tau_arm64.dmg

§ Linux (http://tau.uoregon.edu/tau.tgz)
§ ./configure; make install; export PATH=<taudir>/x86_64/bin:$PATH
§ paraprof app.ppk &

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

http://tau.uoregon.edu/tau.exe
http://tau.uoregon.edu/java.dmg
http://tau.uoregon.edu/java_arm64.dmg

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Execution Command (tau_exec)

§Uninstrumented execution
§ % mpirun -np 256 ./a.out

§Track GPU operations
§ % mpirun –np 256 tau_exec –rocm ./a.out
§ % mpirun –np 256 tau_exec –cupti ./a.out
§ % mpirun –np 256 tau_exec –opencl ./a.out
§ % mpirun –np 256 tau_exec –openacc ./a.out
§ % mpirun –np 256 tau_exec –l0 ./a.out

§Track MPI performance
§ % mpirun -np 256 tau_exec ./a.out

§Track I/O, and MPI performance (MPI enabled by default)
§ % mpirun -np 256 tau_exec -io ./a.out

§ Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)
§ % export TAU_OMPT_SUPPORT_LEVEL=full;
§ % mpirun –np 256 tau_exec –T ompt,mpi -ompt ./a.out

§Track memory operations
§ % export TAU_TRACK_MEMORY_LEAKS=1
§ % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

§Use event based sampling (compile with –g)
§ % mpirun –np 256 tau_exec –ebs ./a.out
§ Also -ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count> -ebs_resolution=<file | function | line>

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of memory
usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and
context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive
time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU’s Runtime Environment Variables

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Environment Variable Default Description

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, “lowoverhead” option is
available.

TAU_OMPT_RESOLVE_ADDRESS_EAGERLY 1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting to 0 allows the
user to do offline address translation.

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

Runtime Environment Variables

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., TAU_EBS_SOURCE=PAPI_TOT_INS
when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging.

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

Runtime Environment Variables

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

TAU’s Analysis Tools:
ParaProf

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Analysis

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf Profile Analysis Framework

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Analysis Tools: paraprof

§ Launch paraprof

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

% paraprof

Metric

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics in the profile

ParaProf Manager Widow: scout.cubex

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof main window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Colors represent code
regions

Options -> uncheck Stack Bars
Together

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof main window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Unselect this to expand each routine
in its own space

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf Profile Browser

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof main window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Each routine occupies its own space.
Can see the extent of imbalance
across all threads.

Left/right
click here

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof node window (function barchart window)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Exclusive time
spent in each
code region
(OpenMP loop) is
shown here for
MPI rank 0
thread 1

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumenting Source Code with PDT and Opari

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Frequently
executing
lightweight
routines are
automatically
throttled at
runtime.
Reduces
runtime
dilation.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf: Node view in a callpath profile

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: Add thread to comparison window

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof Thread Statistics Table with TAU_SAMPLING=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Right click
here

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Click to sort by a given metric, drag
and move to rearrange columns

ParaProf: Thread Statistics Table

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf

§ Click on Columns:
§ to sort by incl time

§ Open binvcrhs
§ Click on Sample

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof Thread Statistics Table

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Right click
here and
choose
“Show
Source

Code” for a
sample

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Statement Level Profiling with TAU

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Source
location
where

samples are
taken.

Compute
intensive
region.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf Comparison Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU – Event Based Sampling (EBS)

% export TAU_SAMPLING=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Examples: Callstack Sampling in TAU

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1
VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

UNWINDING CALLSTACKS

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

UNWINDING CALLSTACKS

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Deep Learning: Tensorflow

% tau_python –ebs nt3_baseline_keras2.py (CANDLE)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling Tensorflow

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Event Based Sampling (EBS)

% mpirun -np 16 tau_exec –ebs a.out

Uninstrumented!

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callsite Profiling and Tracing

% export TAU_CALLSITE=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CALLPATH THREAD RELATIONS WINDOW

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CALLPATH THREAD RELATIONS WINDOW

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf: Callpath Thread Relations Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callsite Profiling and Tracing (TAU_CALLSITE=1)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Identifying MPI Collective Sync Wait in Thread Callpath Relations

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

MPI Collective Sync is the time spent in a barrier operation inside a collective

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Thread Comparison Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Comparing Rank 118 with 22.
Right click on “node 118” ->
Add node to comparison window

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU – Context Events

Bytes written to each file

Write bandwidth per file

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf with Optimized Instrumentation

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Create a Selective Instrumentation File, Re-instrument, Re-run

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof 3D visualization window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Windows ->
3D visualization

Click Bar Plot

Move Function
and Thread Sliders

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: 3D Visualization Window Showing Entire Profile

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callsite Profiling and Tracing

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callsite Profiling and Tracing

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Parallel Profile Visualization: ParaProf

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf 3D Communication Matrix

% export TAU_COMM_MATRIX=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf: 3D Scatter Plot

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf: Score-P Profile Files, Database

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf: File Preferences Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

ParaProf: Group Changer Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: Derived Metric Panel in Manager Window

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Sorting Derived FLOPS metric by Exclusive Time

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf:

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance Research Lab, University of Oregon, Eugene, USA

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Support Acknowledgments

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

§US Department of Energy (DOE)
§ Office of Science contracts, ECP
§ SciDAC, LBL contracts
§ LLNL-LANL-SNL ASC/NNSA contract
§ Battelle, PNNL contract
§ ANL, ORNL contract

§Department of Defense (DoD)
§ PETTT, HPCMP

§National Science Foundation (NSF)
§ Glassbox, SI-2

§ NASA
§ CEA, France
§Partners:

§University of Oregon
§ParaTools, Inc., ParaTools, SAS
§The Ohio State University
§University of Tennessee, Knoxville
§T.U. Dresden, GWT
§Juelich Supercomputing Center

exascaleproject.org

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science
and the National Nuclear Security Administration)
responsible for the planning and preparation of a
capable exascale ecosystem, including software,
applications, hardware, advanced system engineering,
and early testbed platforms, in support of the nation’s
exascale computing imperative.

Acknowledgement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Acknowledgment
This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research (ASCR).

§ https://science.osti.gov/ascr
§ https://pesoproject.org
§ https://ascr-step.org

https://science.osti.gov/ascr
https://www.pesoproject.org/
https://ascr-step.org/

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]
https://e4s.io [Containers for Extreme-Scale Scientific Software Stack]

http://adaptivecomputing.com [ODDC with ParaTools Pro for E4S on cloud systems]

Free download, open source, BSD license

Download TAU from U. Oregon

VIHPS 44TH PORTING & TUNING WORKSHOP (ACHEN/DRESDEN, FEB. 2024)

http://e4s.io
http://adaptivecomputing.com/

