
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

TAU Performance System® 

Sameer Shende
Research Professor

sameer@cs.uoregon.edu
University of Oregon

http://tau.uoregon.edu/TAU_TW45.pdf

mailto:malony@cs.uoregon.edu


VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• Instrument and measure performance of MPI and CUDA/ROCm/SYCL/OpenMP applications 
with:
• No change to the source code
• No change to the build system
• No change to the application binary! 

And use some of the tools we are already familiar with like Score-P, Scalasca, CUBE, 
Vampir, PAPI, Perfetto.dev… 

A unifying framework: TAU

Wouldn’t it be nice if we could … 
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• How much time is spent in each application routine and outer loops? Within loops, what is the 
contribution of each statement? What is the time spent in OpenMP loops? 

• How many instructions are executed in these code regions?  Using Likwid or PAPI, TAU 
measures floating point, Level 1 and 2 data cache misses, hits, branches taken. 

• What is the time taken in OS routines for thread scheduling? How much time is wasted?
• What is the memory usage of the code? When and where is memory allocated/de-allocated? 

Are there any memory leaks? What is the memory footprint of the application? What is the 
memory high water mark?

• What are the I/O characteristics of the code?  What is the peak read and write bandwidth of 
individual calls, total volume? 

• What is the contribution of each phase of the program? What is the time wasted/spent waiting 
for collectives, and I/O operations in Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime breakdown of performance 
across different core counts? 

Application Performance Engineering using TAU 
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TAU Performance System® 
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§ Simple tool 
§ No change to the application source code
§ No change to its build system
§ No change to its executable
§ Simply launch the application binary with tau_exec 

§ Works with Score-P, OTF2/Vampir
§ paraprof and perfexplorer: GUI tools
§ pprof: text based browser
§ Open Source: BSD style license
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Profiling:
MPI: % mpirun -np 16 tau_exec -ebs ./a.out

• Pthread:    % mpirun -np  16 tau_exec –T mpi,pthread –ebs ./a.out

• CUDA: % mpirun –np 16 tau_exec –T cupti,mpi –cupti -ebs ./a.out

• Score-P: % mpirun -np 16 tau_exec –T scorep,mpi ./a.out 

Analysis: % pprof –a –m | more;  % paraprof (GUI)

Tracing:
• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
          % mpirun -np  16 tau_exec ./a.out; vampir traces.otf2 &

• Chrome/Jumpshot: % export TAU_TRACE=1; mpirun -np  64 tau_exec ./a.out

   % tau_treemerge.pl; 

Chrome: % tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

   Chrome browser: chrome://tracing   (Load -> app.json) or Perfetto.dev

• Jumpshot: tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

TAU: Quickstart Guide
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TAU Performance System®

§Parallel performance framework and toolkit
§Supports all HPC platforms, compilers, runtime system
§Provides portable instrumentation, measurement, analysis
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TAU Performance System
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§ Instrumentation
§ Fortran, C++, C, UPC, Java, Python, Chapel
§ Automatic instrumentation

§ Measurement and analysis support
§ MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
§ pthreads, OpenMP, OMPT interface, hybrid, other thread models  
§ GPU, CUDA, OpenCL, OpenACC, ROCm, HIP
§ Parallel profiling and tracing
§ Use of Score-P for native OTF2 and CUBEX generation
§ Efficient callpath proflles and trace generation using Score-P

§ Analysis
§ Parallel profile analysis (ParaProf), data mining (PerfExplorer)
§ Performance database technology (TAUdb)
§ 3D profile browser
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TAU’s Support for Runtime Systems

§ MPI
§ PMPI profiling interface
§ MPI_T tools interface using performance and control variables

§ Pthread
§ Captures time spent in routines per thread of execution

§ OpenMP
§ OMPT tools interface to track salient OpenMP runtime events
§ Opari source rewriter
§ Preloading wrapper OpenMP runtime library when OMPT is not supported

§ OpenACC
§ OpenACC instrumentation API
§ Track data transfers between host and device (per-variable)
§ Track time spent in kernels 
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TAU’s Support for Runtime Systems (contd.)

§ OpenCL
§ OpenCL profiling interface
§ Track timings of kernels

§ Intel® OneAPI
§ Level Zero 
§ Track time spent in kernels executing on GPU
§ Track time spent in OneAPI runtime calls

§ CUDA
§ Cuda Profiling Tools Interface (CUPTI)
§ Track data transfers between host and GPU
§ Track access to uniform shared memory between host and GPU

§ ROCm
§ Rocprofiler and Roctracer instrumentation interfaces
§ Track data transfers and kernel execution between host and GPU

§ Kokkos
§ Kokkos profiling API
§ Push/pop interface for region, kernel execution interface

§ Python
§ Python interpreter instrumentation API
§ Tracks Python routine transitions as well as Python to C transitions
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Examples of Multi-Level Instrumentation 

§ MPI + OpenMP
§ MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

§ MPI + CUDA
§ PMPI + CUPTI interfaces 

§ Kokkos + OpenMP 
§ Kokkos profiling API + OMPT to transparently track events

§ Kokkos + pthread + MPI 
§ Kokkos + pthread wrapper interposition library + PMPI layer

§ Python + CUDA + MPI
§ Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch) + 

MPI
§ MPI + OpenCL
§ PMPI + OpenCL profiling interfaces
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Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact measurement
• Fine-grain control
• Calls inserted into 

code

• No code modification
• Minimal effort
• Relies on debug 

symbols (-g)

Call START(‘potential’)
// code
Call STOP(‘potential’)
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Types of Performance Profiles

§ Flat profiles
§ Metric (e.g., time) spent in an event
§ Exclusive/inclusive, # of calls, child calls, …

§ Callpath profiles
§ Time spent along a calling path (edges in callgraph)
§ “main=> f1 => f2 => MPI_Send”
§ Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

§ Callsite profiles
§ Time spent along in an event at a given source location
§ Set the TAU_CALLSITE environment variable

§ Phase profiles
§ Flat profiles under a phase (nested phases allowed)
§ Default “main” phase
§ Supports static or dynamic (e.g. per-iteration) phases
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Using TAU’s Runtime Preloading Tool: tau_exec

§Preload a wrapper that intercepts the runtime system call and substitutes with another
§MPI

§OpenMP

§POSIX I/O

§Memory allocation/deallocation routines

§Wrapper library for an external package

§No modification to the binary executable!

§Enable other TAU options (communication matrix, OTF2, event-based sampling)

§Add tau_exec before the name of the binary
§mpirun –np 64 tau_exec  ./a.out 

§mpirun tau_exec –T ompt,mpi,papi  -ompt ./a.out 
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tau_exec

§ Tau_exec preloads 
the TAU wrapper 
libraries and 
performs 
measurements. 
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$ tau_exec

Usage: tau_exec [options] [--] <exe> <exe options>

Options:
-v            Verbose mode
-s            Show what will be done but don't actually do anything (dryrun)
-qsub Use qsub mode (BG/P only, see below)
-io Track I/O
-memory       Track memory allocation/deallocation
-memory_debug Enable memory debugger
-cuda Track GPU events via CUDA
-cupti Track GPU events via CUPTI (Also see env. variable TAU_CUPTI_API)
-opencl Track GPU events via OpenCL
-openacc Track GPU events via OpenACC (currently PGI only)
-ompt Track OpenMP events via OMPT interface
-armci Track ARMCI events via PARMCI
-ebs Enable event-based sampling
-ebs_period=<count> Sampling period (default 1000)
-ebs_source=<counter> Counter (default itimer)
-um          Enable Unified Memory events via CUPTI
-T <DISABLE,GNU,ICPC,MPI,OMPT,OPENMP,PAPI,PDT,PROFILE,PTHREAD,SCOREP,SERIAL> : Specify TAU tags
-loadlib=<file.so>   : Specify additional load library
-XrunTAUsh-<options> : Specify TAU library directly
-gdb Run program in the gdb debugger

Notes:
Defaults if unspecified: -T MPI
MPI is assumed unless SERIAL is specified

No need to recompile the application!
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tau_exec Example (continued)

§ tau_exec can enable 
event based 
sampling while 
launching the 
executable using the 
–ebs flag!
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Example:
    mpirun -np 2 tau_exec -T icpc,ompt,mpi  -ompt ./a.out
    mpirun -np 2 tau_exec -io ./a.out
Example - event-based sampling with samples taken every 1,000,000 FP instructions
    mpirun -np 8 tau_exec -ebs -ebs_period=1000000 -ebs_source=PAPI_FP_INS ./ring
Examples - GPU:
    tau_exec -T serial,cupti -cupti ./matmult (Preferred for CUDA 4.1 or later)
    tau_exec -openacc ./a.out
    tau_exec -T serial –opencl ./a.out (OPENCL)
    mpirun -np 2 tau_exec -T mpi,cupti,papi -cupti -um ./a.out (Unified Virtual Memory in CUDA 6.0+)

qsub mode (IBM BG/Q only):
    Original:

qsub -n 1 --mode smp -t 10 ./a.out
    With TAU:
      tau_exec -qsub -io -memory -- qsub -n 1 … -t 10 ./a.out

Memory Debugging:
    -memory option:
      Tracks heap allocation/deallocation and memory leaks.
    -memory_debug option:
      Detects memory leaks, checks for invalid alignment, and checks for
      array overflow.  This is exactly like setting TAU_TRACK_MEMORY_LEAKS=1
      and TAU_MEMDBG_PROTECT_ABOVE=1 and running with -memory
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Simplifying TAU’s usage (tau_exec)

§Uninstrumented execution linked with –dynamic (dynamic executables only!) 
% mpirun -np 16  ./a.out

§Track MPI performance
% mpirun -np 16 tau_exec  ./a.out

§Track OpenMP, and MPI performance (MPI enabled by default; OMPT in Clang 9+, Intel 19+)
 % export TAU_OMPT_SUPPORT_LEVEL=full; 
 % mpirun -np 16  tau_exec –T mpi,pdt,ompt,papi   –ompt  ./a.out

§Track memory operations
% export TAU_TRACK_MEMORY_LEAKS=1
% mpirun -np 16 tau_exec –memory_debug ./a.out (bounds check)

§Use event based sampling (compile with –g)
% mpirun -np 16 tau_exec –ebs ./a.out
Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count> -ebs_resolution=<file|function|line>

§Load wrapper interposition library
% mpirun -np 16 tau_exec –loadlib=<path/libwrapper.so> ./a.out

§Track GPGPU operations (-rocm, -l0, -opencl, -cupti, -cupti –um, -openacc):
% mpirun -np 16 tau_exec –cupti ./a.out
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Installing and Configuring TAU

§Installing PDT:
§ wget http://tau.uoregon.edu/pdt.tgz
§ ./configure;  make ; make install

§Installing TAU :
§  wget http://tau.uoregon.edu/tau.tgz
§  ./configure -mpi –c++=mpicxx –cc=mpicc –fortran=mpif90 –mpi -bfd=download -pdt=<dir> -papi=<dir> ...
§ make install; export PATH=<taudir>/arm64_linux/bin:$PATH  
§ All configurations are stored in <taudir>/.all_configs if you wish to see how TAU was configured! 

§Using TAU for source instrumentation:
§ export TAU_MAKEFILE=<taudir>/x86_64/lib/Makefile.tau-<TAGS>
§ make CC=tau_cc.sh   CXX=tau_cxx.sh   F90=tau_f90.sh
§ Use tau_exec with uninstrumented binaries instead of recompiling the source code. 
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Configurations available on CoolMuc2, LRZ

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

C

% module use  /lrz/sys/courses/vihps/2024/modulefiles/
% module load tau
% ls $TAU/Makefile*
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-mpi-pdt-scorep
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-mpi-pthread-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-ompt-mpi-pdt-openmp
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-mpi-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-pthread-pdt
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-papi-tbb-pdt
For an uninstrumented binary: 
% mpirun –np 16 tau_exec –T mpi,scorep ./a.out 
Picks the configuration represented by 
/lrz/sys/courses/vihps/2024/tools/tau/tau-2.33.2/x86_64/lib/Makefile.tau-intel-papi-mpi-pdt-scorep
To use OpenMP instrumentation:
% export TAU_OMPT_SUPPORT_LEVEL=full
% export OMP_NUM_THREADS=<N> 
% mpirun –np 16 tau_exec –T ompt,mpi –ompt –ebs ./a.out 

% pprof –a | more 
% paraprof 
% paraprof --pack foo.ppk 
# Copy it to your local machine and launch: % paraprof foo.ppk 
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Configuration tags for tau_exec
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% ./configure –pdt=<dir> -mpi –papi=<dir>; make install
Creates in $TAU:
Makefile.tau-papi-mpi-pdt(Configuration parameters in stub makefile)
shared-papi-mpi-pdt/libTAU.so

% ./configure –pdt=<dir> -mpi; make install  creates
Makefile.tau-mpi-pdt 
shared-mpi-pdt/libTAU.so

To explicitly choose preloading of shared-<options>/libTAU.so change:
% mpirun -np 256 ./a.out     to
% mpirun -np 256  tau_exec –T <comma_separated_options> ./a.out

% mpirun -np 256  tau_exec –T papi,mpi,pdt ./a.out 
Preloads $TAU/shared-papi-mpi-pdt/libTAU.so 
% mpirun -np 256  tau_exec –T papi ./a.out 
Preloads $TAU/shared-papi-mpi-pdt/libTAU.so by matching.
% aprun –n 256 tau_exec –T papi,mpi,pdt –s ./a.out
Does not execute the program. Just displays the library that it will preload if executed without the –s option. 
NOTE: -mpi configuration is selected by default. Use –T serial for 
Sequential programs.
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Binary instrumentation of libraries: Work in progress

§ % tau_run a.out –o a.inst
instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>

§ % tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310
§    instruments a DSO
§ % tau_exec ./a.out 
§    executes the uninstrumented application with the instrumented shared object. 
§ Works on x86_64 with –g (-O2 has issues). Issues with aarch64: 
§ https://github.com/dyninst/dyninst/issues/1708 and https://github.com/dyninst/dyninst/pull/1712
§ To use with DyninstAPI 13 on x86_64:
§ 1. Load spack: spack/share/spack/setup-env.sh
§ 2. Install dyninst: spack install dyninst@13 %gcc@11
§ 3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

§ 3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install

https://github.com/dyninst/dyninst/issues/1708
https://github.com/dyninst/dyninst/pull/1712
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Installing TAU on your laptop for paraprof (GUI)

§Microsoft Windows
§ Install Java from Oracle.com 
§ http://tau.uoregon.edu/tau.exe
§ Install, click on a ppk file to launch paraprof

§macOS
§ Install Java 11.0.3:

§ Download http://tau.uoregon.edu/java.dmg
§ If you have multiple Java installations, add to your ~/.zshrc (or ~/.bashrc as appropriate):
§ export PATH=/Library/Java/JavaVirtualMachines/jdk-11.0.3.jdk/Contents/Home/bin:$PATH
§ java -version

§ Download and install TAU (copy to /Applications from dmg):
§ http://tau.uoregon.edu/tau.dmg  
§ export PATH=/Applications/TAU/tau/apple/bin:$PATH
§ paraprof  app.ppk &  

§ macOS (arm64, M1/M2)
§ http://tau.uoregon.edu/java_arm64.dmg 
§ http://tau.uoregon.edu/tau_arm64.dmg

§ Linux (http://tau.uoregon.edu/tau.tgz)
§ ./configure; make install; export PATH=<taudir>/x86_64/bin:$PATH
§ paraprof app.ppk & 
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TAU Execution Command (tau_exec)

§Uninstrumented execution
§ % mpirun -np 256  ./a.out

§Track GPU operations
§ % mpirun –np 256  tau_exec –rocm ./a.out
§ % mpirun –np 256  tau_exec –cupti ./a.out
§ % mpirun –np 256 tau_exec –opencl ./a.out
§ % mpirun –np 256 tau_exec –openacc ./a.out 
§ % mpirun –np 256 tau_exec –l0 ./a.out 

§Track MPI performance
§ % mpirun -np 256   tau_exec ./a.out

§Track I/O, and MPI performance (MPI enabled by default)
§ % mpirun -np 256  tau_exec -io  ./a.out

§ Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+) 
§ % export TAU_OMPT_SUPPORT_LEVEL=full; 
§ % mpirun –np 256  tau_exec –T ompt,mpi  -ompt  ./a.out

§Track memory operations
§ % export TAU_TRACK_MEMORY_LEAKS=1
§ % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

§Use event based sampling (compile with –g)
§ % mpirun –np 256 tau_exec –ebs ./a.out
§ Also  -ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>   -ebs_resolution=<file | function | line>
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Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of memory 
usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically. 

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and 
context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive 
time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU’s Runtime Environment Variables 
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Environment Variable Default Description

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g., 
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level respectively. 

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, “lowoverhead” option is 
available. 

TAU_OMPT_RESOLVE_ADDRESS_EAGERLY 1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting to 0 allows the 
user to do offline address translation. 

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

Runtime Environment Variables
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Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., TAU_EBS_SOURCE=PAPI_TOT_INS 
when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging. 

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations. 

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is 
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime. 

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

Runtime Environment Variables
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TAU’s Analysis Tools:
ParaProf
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TAU Analysis
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ParaProf Profile Analysis Framework
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TAU Analysis Tools: paraprof

§ Launch paraprof
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% paraprof

Metric
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Metrics in the profile

ParaProf Manager Widow: scout.cubex
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Paraprof main window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Colors represent code 
regions

Options -> uncheck Stack Bars 
Together
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Paraprof main window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Unselect this to expand each routine 
in its own space
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ParaProf Profile Browser

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Paraprof main window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Each routine occupies its own space. 
Can see the extent of imbalance 
across all threads. 

Left/right 
click here
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Paraprof node window (function barchart window)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Exclusive time 
spent in each 
code region 
(OpenMP loop) is 
shown here for 
MPI rank 0 
thread 1
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Instrumenting Source Code with PDT and Opari

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Frequently 
executing 
lightweight 
routines are 
automatically 
throttled at 
runtime. 
Reduces 
runtime 
dilation.
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ParaProf: Node view in a callpath profile

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: Add thread to comparison window



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Paraprof Thread Statistics Table with TAU_SAMPLING=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Right click 
here
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Click to sort by a given metric, drag 
and move to rearrange columns

ParaProf: Thread Statistics Table

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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ParaProf

§ Click on Columns:
§ to sort by incl time

§ Open binvcrhs
§ Click on Sample
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Paraprof Thread Statistics Table

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Right click 
here and 
choose 
“Show 
Source 

Code” for a 
sample
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ParaProf

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Statement Level Profiling with TAU

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Source 
location 
where 

samples are 
taken. 

Compute 
intensive 
region.
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ParaProf Comparison Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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TAU – Event Based Sampling (EBS)

% export TAU_SAMPLING=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Examples: Callstack Sampling in TAU

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1
VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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UNWINDING CALLSTACKS

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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UNWINDING CALLSTACKS

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Deep Learning: Tensorflow

% tau_python –ebs nt3_baseline_keras2.py (CANDLE)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Sampling Tensorflow

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Event Based Sampling (EBS)

% mpirun -np 16 tau_exec –ebs a.out

Uninstrumented!

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Callsite Profiling and Tracing

% export TAU_CALLSITE=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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CALLPATH THREAD RELATIONS WINDOW

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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CALLPATH THREAD RELATIONS WINDOW

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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ParaProf: Callpath Thread Relations Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Callsite Profiling and Tracing (TAU_CALLSITE=1)

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Identifying MPI Collective Sync Wait in Thread Callpath Relations

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

MPI Collective Sync is the time spent in a barrier operation inside a collective
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Thread Comparison Window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Comparing Rank 118 with 22. 
Right click on “node 118” ->
Add node to comparison window
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TAU – Context Events

Bytes written to each file

Write bandwidth per file

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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ParaProf with Optimized Instrumentation 

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Create a Selective Instrumentation File, Re-instrument, Re-run
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Paraprof 3D visualization window

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Windows -> 
3D visualization

Click Bar Plot

Move Function 
and Thread Sliders
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VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: 3D Visualization Window Showing Entire Profile
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Callsite Profiling and Tracing

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Callsite Profiling and Tracing

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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Parallel Profile Visualization: ParaProf
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ParaProf 3D Communication Matrix

% export TAU_COMM_MATRIX=1

VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)
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ParaProf: 3D Scatter Plot
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ParaProf: Score-P Profile Files, Database
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ParaProf: File Preferences Window
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ParaProf: Group Changer Window
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VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: Derived Metric Panel in Manager Window
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VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

Sorting Derived FLOPS metric by Exclusive Time
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VIHPS 45TH PORTING & TUNING WORKSHOP (LRZ, TUM JUNE 2024)

ParaProf: 
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Performance Research Lab, University of Oregon, Eugene, USA
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http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]
https://e4s.io [Containers for Extreme-Scale Scientific Software Stack]

http://adaptivecomputing.com [ODDC with ParaTools Pro for E4S on cloud systems]

Free download, open source, BSD license

Download TAU from U. Oregon
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http://e4s.io
http://adaptivecomputing.com/

