L VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

;1101
B 101107 8%
zn0191:w

MAQAO
Performance Analysis and Optimization Framework

uvsQe

Cédric VALENSI, Emmanuel OSERET, Hugo BOLLORE
{cedric.valensi, emmanuel.oseret, hugo.bollore}@uvsq.fr
Performance Evaluation Team, University of Versailles S-Q-Y
http://www.magao.org
VI-HPS 45t TW Garching near Minchen, Germany
10-13 June 2024

s shemsy T RHARR © Fsens T B o s

arm %umm ENaﬁonalLaboratory DRESDEN VERSAILLES AT
@= @) JULICH [o supercomputng cene @ s TUT e O | e or oo s

Gonter adesporomputs ~dP Forschungszentrum of DARMSTADT Miinchen =

http://www.maqao.org/

Performance analysis and optimisation

Where is the application spending most execution time and
resources?

Why is the application spending time there?
= Algorithm, implementation, runtime or hardware?
= Data access or computation?

How to improve the application?
= At which step(s) of the workflow or dev process?

= What additional information is needed?

How much gain can be expected?
= At what cost?

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

Algorithm

|

Implementation

[Source Code }[Parallelisation }

|

Compilation

|

Execution

Motivating example

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Code of a loop representing ~10% walltime

do j = ni + nvaluel, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel
ul =x11 — x(njl) ; u2 = x12 — x(nj2) ; u3 = x13 — x(nj3)
rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qql*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gE

glc =glc-ulg; g2c =g2c—u2g; g3c =g3c—-u3g
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

Where are the bottlenecks?

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Motivating example

Code of a loop representing ~10% walltime

1) High number of statements

/ 6) Variable number of iterations

do j=ni + nvaluel, nato 2) Non-unit stride accesses

i nj1 =ndim3d* + nc; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \

ul =x11 —x(nj1) ; u2 = x12 —x(nj2) ; u3 = x13 - x(n|3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)e—— 4) DIV/SQRT
Eq = qql*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses
Eqc = Eqc + Eq ; Ephob = Ephob + Ed ducti
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gE

glc =glc—-ulg; g2c =g2c —u2g; g3c = g3c—-u3g
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

i _gr(nj3, thread_num) = gr(nj3, thread_num) + u3

end do 2) Non-unit stride accesses

1) High number of statements
2) Non-unit stride accesses

3) Indirect accesses

4) DIVISQRT

5) Reductions

6) Variable number of iterations

Which is the dominant one?

=» Need analysis tools to
identify performance issues

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

A multifaceted problem

What type of problems are we facing?
= CPU or data access problems
» Identifying the dominant issues: Algorithms,
implementation, parallelisation, ...
What transformations to apply?

Compiler switches, Partial/full vectorization
Loop blocking/array restructuring, If removal, Full unroll ? p
Binary tranforms (prefetch),

Making the best use of the machine features
Finding the most rewarding issues to be fixed
= 40% total time, expected 10%0 speedup

= 9 TOTAL IMPACT: 4% speedup _
= 209%b total time, expected 50% speedu
= => TOTAL IMPACT: 10% speedup “

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 5

= Need for dedicated and complementary tools

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Our Approach

Nobody wants problems everybody wants solutions ©

= Focusing on the knobs that code developers can operate:
= Compiler flags and runtime settings
» Code restructuring
= Data restructuring

= Helping the user in using these knobs
= Instead of pinpointing problems, guiding the user towards a way to address them.

Philosophy: Analysis at Binary Level

= Compiler optimizations increase the distance between the executed code and the source code
= Source code instrumentation may prevent the compiler from applying certain transformations
= What You Analyse Is What You Run

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 6

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:
= Characterizing performance of HPC applications

= Focusing on performance at the core level
= Guiding users through the optimization process
= Estimating return on investment (R.O.I1.)

Characteristics:
= Modular tool offering complementary views

Support for x86-64 and Aarch64 (beta version)
= Work in progress on GPU support

LGPL3 Open Source software
Developed at UVSQ since 2004
Binary release available as a static executable

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

BWATT L.
1511011072
Lo 0191 fongg

N\

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Success stories

Optimizing industrial and academic HPC applications:
= QMC=CHEM (IRSAMCQC)

= Quantum chemistry
= Speedup: > 3x

= Optimization: moved invocations of functions with identical parameters out of the loop body

= Yales2 (CORIA)

= Computational fluid dynamics
= Speedup: up to 2.8x

= Optimization: removing double structure indirections

= Polaris (CEA)

= Molecular dynamics
= Speedup: 1.5x - 1.7x
= Optimization: enforcing loop vectorization through compiler directives

= AVBP (CERFACS)
= Computational fluid dynamics

= Speedup: 1.08x - 1.17x
» Replaced divisions by reciprocal multiplications
= Complete unrolling of loops with a small humber of iterations

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 8

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Partnerships

MAQADO is part of the POP Centre of Excellence
» Provides performance optimisation and productivity services for academic and industrial codes
= https://pop-coe.eu/

Performance Optimisation
and Productivity

MAQAO has been funded by UVSQ, Intel and CEA (French department of energy) through Exascale
Computing Research (ECR) and through various European projects (FUI/ITEA: H4H, COLOC,

PerfCloud, ELCI, POP2 CoE, TREX CoE, etc...)
uvsQm P
Inte B

Provided core binary analysis and instrumentation capabilities and features for other tools:

= TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
= X86_64 only, aarch64 under development

= Intel Advisor

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 9

https://pop-coe.eu/

MAQAO team and collaborators

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO Team

= William Jalby, Prof.

= Cédric Valensi, Ph.D.

= Emmanuel Oseret, Ph.D.

» Mathieu Tribalat, M.Sc.Eng.

» Jasper Salah Ibnamar, M.Sc.Eng.
= Hugo Bolloré , M.Sc.Eng

= Kévin Camus, Eng.

= Aurélien Delval, Eng.

= Max Hoffer, Eng.
Collaborators

» David J. Kuck, Prof. (Intel US)

= Pablo de Oliveira, Prof. (UVSQ)
» Eric Petit, Ph.D. (Intel US)

= David C. Wong, Ph.D. (Intel US)
= Othman Bouizi, Ph.D. (Intel US)
» AbdelHafid Mazouz Ph.D.(Intel)
» Jeongnim Kim (Intel)

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

Past Collaborators or Team Members

Andrés S. Charif-Rubial, Ph.D.

Denis Barthou, Prof. (Univ. Bordeaux)
Jean-Thomas Acquaviva, Ph.D. (DDN)
Stéphane Zuckerman, Ph.D. (ENSEA)
Julien Jaeger, Ph.D. (CEA DAM)

Souad Koliai, Ph.D. (CELOXICA)
Zakaria Bendifallah, Ph.D. (ATOS)

Tipp Moseley, Ph.D. (Google)
Jean-Christophe Beyler, Ph.D. (Google)
Jean-Baptiste Le Reste, M.Sc.Eng. (start-up)
Sylvain Henry, Ph.D. (start-up)

José Noudohouenou, Ph.D. (Intel US)
Aleksandre Vardoshvili, M.Sc.Eng.
Romain Pillot, Eng

Youenn Lebras, Ph.D. (start-up)

10

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

More on MAQAO

MAQAO website: www.maqgao.org
= Mirror: magao.liparad.uvsqg.fr
Documentation: www.magao.org/documentation.html

= Tutorials for ONE View, LProf and CQA
= Lua API documentation

Latest release: http://www.magao.org/downloads.html
= Binary releases (2-3 per year)
= Source code

Publications around MAQAOQO: http://www.magao.org/publications.html
Repository of MAQAO analyses: http://datafront.exascale-computing.eu/public/
Email: contact@magao.org

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 11

http://www.maqao.org/
http://maqao.liparad.uvsq.fr/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html
http://datafront.exascale-computing.eu/public/
mailto:contact@maqao.org

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO Main Features

Binary layer

= Builds internal representation from binary
= Construct high level structures (CFG, DDG, SSA, ...)
» Links binary instructions to source code
= A A single source loop can be compiled as multiple assembly loops - Affecting unique identifiers to loops

= Allows patching through binary rewriting

Profiling
= | Prof: Lightweight sampling-based Profiler operating at process, thread, function and loops level

Static analysis
= CQA (Code Quality Analyzer): Evaluates the quality of the binary code and offers hints for improving it

Performance view aggregation module: ONE View

= Goal: Guiding the user through the analysis & optimization process.

= Synthesizes information provided by different MAQAO modules

= Automatizes execution of experiments invoking other MAQAO modules and aggregates their results to
produce high-level reports in HTML or XLSX format

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 12

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO Main structure

Reports

Loop 42 50%
vectorised
Potential x1.2
speedup
g CONmem g ONE View
+ Machine
model

modules

Internal

Representation

i

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Useful notions

SIMD/Vectorization/Data Parallelism Scalar addition Vector addition
» Scalar pattern: a[i] = b[i] + c[i] s—
= Vector pattern: a(i, i + 8) = b(i, i + 8) + c(i, i + 8) A B

= Benefits : increases memory bandwidth and IPC

= Example implementations :
= ARM : Neon, SVE

= Xx86 : SSE, AVX, AVX512 A+B

Vector register

Memory and caches

I [[T TTITTITTITT T ITTIaTIaTIT]
= Computations are in general faster than memory accesses [cwwine®s | Caneine@s) | Caheine 548 |
u Allgnment/contigl.“ty Of memory (X86) . Aligned memaory access

posix_memalign, aligned_alloc, ...
* Caches: L1, L2, L3, ... INIANNNNNNENE mEGEERRRRRENENENERENANGNGE

| Cacheline (84B) | Cacheline (64B) | Cacheline (64B) |

Crossing cacheline boundary

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 14

Unaligned memory access

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler

Goal: Lightweight localization of application Rl
hotspots

Right-click on a line to display the associated load balancing.
Double click on a loop to display its analysis details.

Coverage

. Nb o
Name ‘ Module) Time (s5) Tl Deviation
. = binvcrhs bt-mz.C.16 2319 1366 64 1.73
eatu res . ¥ y_solve bt-mz.C.16 13.09 7.71 64 1.08
¥ Loop 204 - y_solve f:53-407 - bt-mz.C.16 12.84 7.56
- - ¥ Loop 205 - y_solve.f:54-407 - bt-mz.C.16 12.84 7.56
[] Ll g h twe l g h t ¥ Loop 207 - y_solve.f:54-398 - bt-mz.C.16 12.84 7.56
o Loop 211 - y_solve f:145-307 - bt-mz.C.16 7.06 416
- o Loop 213 - y_solve.f:55-137 - bt-mz.C.16 4.43 2.61
- S I b d o Loop 206 - y_solve.f-394-398 - bt-mz.C.16 0.88 0.52
a m I n a Se o Loop 209 - y_solve.f:337-360 - bt-mz.C.16 0.33 0.19
o Loop 210 - y_solve.f:145-307 - bt-mz.C.16 0.09 0.05
o Loop 212 - y_solve f:55-137 - bt-mz.C.16 0.05 0.03
= Access to hardware counters I S R
o _INTERNAL_Z5_______src_kmp_bamer_cpp_ce635104 __kmp_hyper_barrier_release(barrier_type, libiomps 50 12 36 728 64 822
- - . kmp_info*, int, int, int, void*)
= Anal t funct dl larit :
nalysis at function and loop granulari > i pnecie | e ron | e o
» compute_rhs bt-mz.C.16 - Loop 211

» matvec_sub
= MPIDI_CH3I_Progress 7
o binvrhs

St re n g t h S : : Iahdscli;f”;mp_loop_o

o system_call_after_swapgs
= Non intrusive: No recompilation necessary | e mn i oo
t_check
ooyl
= Low overhead e .0
» exact_solution

= Agnostic with regard to parallel runtime - S e

- task tick far

» copy_y_facetomp_loop_0
o cpuacct_charge

o intel_pstate_update_util
o ktime,get 30083 30877 30042 30071 30079 30882 20040 308487 20981 30887

MAOAOQ thread rank

Coverage

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance |vcoarepor

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_sclve f:415-423

¥ Path 1
2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1CHz))

Featu res : [gain] potential l hint] expert
= Static analysis: no execution of the application

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing
- . . them, you can lower the cost of an iteration from 65.00 to 57.00 cycles (1.14x speedup).
= Allows cross-analysis of/on multiple architectures T
H H » Try to reorganize arrays of structures to structures of arrays
u Eva | U ates th e q u a I Ity Of CO m pl |e r g e n e ra ted COd e = Consider to permute loops (see vectorization gain report)
= To reference allocatable arrays, use "allocatable” instead of "pointer” pointers or qualify them with the
H H "contiguous” attribute (Fortran 2008)
» PrO pOseS h I ntS a nd Worka rou nd S to I m p rove » For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b
before this loop
quality/performance Ev— -
| | I Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your
Loo ps Ce ntrl c loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).
= In HPC, loops cover most of the processing time
T = Try another compiler or update/tune your current one:
|] b d d o use the vec-report option to understand why your loop was not vectorized. If "existence of vector
a rg ets com p Ute- ou n CO eS dependences”, try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”,
try the VECTOR ALWAYS directive.
= Remove inter-iterations dependences from your loop and make it unit-stride
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,
otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i1 do j a(i,j) =
b(i,j) (slow, non stride 1) == do i do j a(j,i) = b(i j) (fast, stride 1)
o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i
ali)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks
Found no such bottlenecks but see expert reports for more complex bottlenecks.

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) I _

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Main Concepts

Applications exploit at best 5 to 10% of the peak performance.

Main elements of analysis:
= Peak performance Same instruction — Same cost

= Execution pipeline .

» Resources/Functional units Process up to
.-.- 8X data

Key performance levers for core level efficiency:

= \ectorization

= Avoiding high latency instructions if possible (DIV/SQRT)
= Guiding the compiler code optimization
= Reorganizing memory and data structures layout

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 17

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

“What If” Scenarios: Vectorization

Code “Clean”

= Generate an Assembly “Clean” variant : keep only FP Arithmetic and Memory operations, suppress
all other

» Generate a CQA Performance estimate on the “"Clean” Variant

Code “FP Vector”

= Generate an Assembly "“FP Vector” variant : only replace scalar FP Arithmetic by Vector FP
Arithmetic equivalent. Generate additional instructions to fill in Vector Registers.

= Generate a CQA Performance estimate

Code “Full Vector”

= Generate an Assembly “Full Vector” variant : replace both scalar FP Arithmetic and FP Load/Store by
their Vector equivalent.
= Generate a CQA Performance estimate

All of these "What If Scenarios” are generated in a fully static manner.

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 18

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Guiding the compiler and implementation hints

Compilers can be driven using flags, pragmas, and keywords:

= Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
= Forcing optimizations (unrolling, vectorization, alignment, ...)

= Bypassing conservative behaviour when possible (e.g. 1/X precision)

Hints for implementation changes:

= Improve data access patterns
= Memory alignment
» Loop interchange
= Changing loop strides
= Reshaping arrays of structures

= Avoid instructions with high latency (SQRT, DIV, GATHER, SCATTER, ...)

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

19

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Application to Motivating Example

Issues identified by CQA

6) Variable number of iterations _ _
/ CQA can detect and provide hints to

do j=ni + nvaluel, nato -Uni i) v)
J 2) Non-unit stride accesses resolve most of the identified issues:

\""nj1 = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \
ul =x11 —x(nj1) ; u2 = x12 —x(nj2) ; u3 = x13 = x(nj3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)*—— 4) DIV/SQRT

Eq = qql*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses

Eqc = Eqc + Eq ; Ephob = Ephob + Ed : -
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions 5) Reductions

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gE : - -
01c = glc —ulg : 426 = g26 — u2g : g36 = g3c —u3g 6) Variable number of iterations
+ gr(nj1, thread_num) = gr(nj1, thread_num) + ulg 7) Vector vs scalar
i gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
. _gr(nj3, thread_num) = gr(nj3, thread_num) + u3

1) High number of statements
7) Vector vs scalar

end do 2) Non-unit stride accesses

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 20

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator

MA@AO cobal

Automating the whole analysis process

= Invoke multiple MAQAO modules

= Generate aggregated performance views
= Generate a report in HTML format

Main steps:
= Invokes LProf to identify hotspots , B :
» Invokes CQA on hotspots R

MA@®AQ dlabal

Available results:

= Speedup predictions

High-level summary

Global code quality metrics
Hints for improving performance
Parallel efficiency analysis

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

ONE View Reports Levels

ONE VIEW ONE

= Requires a single run of the application
= Profiling of the application using LProf
= Static analysis using CQA

Scalability mode
= Multiple executions with varying parallel configurations
= Allows to evaluate scalability or parallel behaviour of applications

Comparison mode
= Comparison of multiple runs (iso-binary or iso-source)
= Allows to compare performance across different datasets, compilers, or hardware platforms

Stability mode
= Multiple runs with identical parameters
= Allows to assess the stability of execution time

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

22

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Analysing an application with MAQAO

ONE View execution

= Provide all parameters necessary for executing the application

» Parameters can be passed on the command line or as a configuration file
» Parameters include binary name, MPI commands, dataset directory, ...

$ magao oneview --create-report=one --executable=bt-mz.C.16 --mpi command="mpirun -n 16"

$ magao oneview --create-report=one --config=my config.json"

= Analyses can be tweaked if necessary
= Report level one corresponds to lightweight profiling (LProf) and code quality analysis (CQA)

= ONE View can reuse an existing experiment directory to perform further analyses

= Results available in HTML format by default
» XLS spreadsheets and textual output generation are also available

Online help is available:
$ magao oneview --help

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 23

Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced analyses

= | Prof
= Profiling

$ maqao lprof xp=exp dir --mpi-command="mpirun -n 16 -ppn 4" ppn=4 -- ./bt-mz.C.16
» Display functions profile

$ magao lprof xp=exp dir -df
» Displaying the results from a ONE View run

$ maqao lprof xp=oneview xp dir/tools/lprof npsu -df

= CQA

$ magao cqa loop=42 bt-mz.C.16

Online help is available:
$ magao lprof --help

$ magao cga --help

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 24

I T S S S ; VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Navigating ONE View Reports

i
|
|
®
|

Technische S UNIVERSITE DE
ﬂ“m Universitat ! Universitat Stuttgart VERSAILLES
Minchen 2 ST-QUENTIN-EN-YVELINES

'l i C C THE
'J jU LI CH M h‘aa%"oengfeumor;e @ ééﬁﬁ%ﬂ% 0 UNIVERSITY OF OREGON —&W

FORSCHUNGSZENTRUM

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Global summary

Experiment summary
= Machine characteristics and configuration

Global metrics
= General quality metrics derived from MAQAO
analyses

p
HNb Lo o get B

= Global speedup predictions L S T
= Speedup prediction depending on the number of vectorised
loops
= Ordered speedups to identify the loops to optimise first E T TTT1]

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 26

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Time Categorisation

Identifying at a glance where time is spent

= Application
+ Main executable

= Parallelization

» Threads
= OpenMP
= MPI

= System libraries " -
= I/O operations e W
= String operations 1% :Ssmli]

= Memory management functions

= External libraries

= Specialised libraries such as libm / libmkl
= Application code in external libraries

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 28

Functions Profiling

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Identifying hotspots

= Exclusive coverage

» Load balancing across threads
= Loops nests by functions

¥ matmul_sub
o Loop 230 - solve_subs.f:71-175 - bt-mz.C.16
[z Loop 231 - scmlveisubs_f:m
¥ z_solve
W _Loop 232 - z_solve.f:53-423 - bt-mz.C.16
¥ Loop 233 - z_solve f:54-423 - bt-mz.C.16
¥ Loop 236 - z_solve f:54-423 - bt-mz.C.16
lo Loop 239 - z_solve f:146-308 - bt-mz.C.16 | Innermost
o Loop 235 - z_solve f:55-137 - bt-mz.C.16
o Loop 234 - z_solve f:415-423 - bt-mz.C.16

Single

Outermost

]\/’L\%A (j Global Application Functions Topology
[» Filters 7]
Name | Module ‘ CuNBran s Time (s) ‘ Nb Threads e
(%) (coverage)

© gomp_team_barrier_wait_end libgomp.s0.1.0.0 21.34 3.26 64 4.47
o binverhs bt-mz.C.16 16.06 2.45 64 1.10
» z_solve__omp_fn.0 bt-mz.C.16 9.84 15 64 0.52
o matmul_sub bt-mz.C.16 9.52 1.45 64 0.68
¥ y_solve__omp_fn.0 bt-mz.C.16 9.09 1.39 64 068

¥ Loop 114 - y_solve.f:4-398 - bt-mz.C.16 8.82 1.35

¥ Loop 115 - y_solve f4-398 - btmz.C.16 8.82 1.35

o Loop 118 - y_sclve.f:145-308 - bt-mz.C.16 5.85 0.89

o Loop 119 - y_solve f:55-137 - bt-mz.C.16 1.77 0.27

o Loop 116 - y_solve.f:394-398 - bt-mz.C.16 1.08 0.17

o Loop 117 - y_solve f:337-360 - bt-mz.C.16 0.12 0.02
» x_solve_._omp_fn.0 bt-mz.C.16 8.68 1.32 64 0.64
o gomp_barrier_wait_end libgomp.so.1.0.0 8.26 1.26 64 4.91
» compute_rhs__omp_fn.0 bt-mz.C.16 757 1.16 64 0.46
o mca_btl_vader_component_progress mca_btl_vader_so 362 0.55 16 1.76
o matvec_sub bt-mz.C.16 2.73 0.42 64 0.20
o lhsinit bt-mz.C.16 0.54 0.08 64 0.06

o opal_progress 0.18

» copy_x_face_._omp_fn.2 0.06
» add__omp_fn.0 0.05
o binvrhs y_solve 0.04
o ompi_coll_libnbc_progress 0.13
» copy_y_face_._omp_fn.0 1 0.05
o opal_timer_linux_get_cycles_sys_timer 0.09
o exact_solution 0.03
» copy_x_face_ _omp_fn_3 0.02
» copy_y_face__omp_fn.1 0.02
o gomp_team_barrier_wait_final 0.02
o exact_rhs__omp_fn.0 0.02
o opal_progress@plt :-ja 0.03
» initialize__omp_fn.0 5 0.01
o ompi_request_default_wait_all é 0.03
o gomp_thread_start 0.01
o Unknown kernel region 0.01

20251 2ae7s 2se@e 2efes 2eese 28262 28288 2BMee
MAOAO thread rank

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Loops Profiling Summary

IdentlfY| ng |Oop hotspots MAAO Global Application Functions Topology

.
Vecto r|sat|0n Informatlon Show Full Profile Open Expert Summary
1 Loops Index
= Potential speedup by
73 loops have been discarded from the report because their coverage is lower than the threshold set by object_coverage_threshold (0.01%)._ It represents about 0% of the
t' H t' application. To include them, change the value of abject_coverage_threshold in the experiment directory configuration file, then rerun the command with the additionnal
O p I m ISa IO n parameter --force-static-analysis
. . . i . ?)
= No scalar integer: Removing | LS _ S 9
. 1 Coverage (%) - Level FITime (s) = Vectorization Ratio (%) 1 Speedup If No Scalar Integer M 5peedup If FP Vectorized FSpeedup If Fully Vectorized
add ress Computat|ons ~Speedup If Perfect Load Balancing Select none
Loop . . Coverage Time | Vectorization Speedup If No Speedup If FP | Speedup If Fully | Speedup If Perfect
- FP Vectorl S€d . Vecto I‘ISI ng ﬂoatl ng - id SVLEE LR ‘ SHIEE AT (%) Level (s) Ratio (%) Scalar Integer Vectorized Vectorized Load Balancing
b bt-mz_C.8 - x_solv x_solve_._omp_fn.
. t t t 179 o F146-309 0 Innermost 1.29 1.04 1 2.06 1.22
oint computations s
I; Ilv Vect P iced: Vectorisi 207 ?t]-:z_a%ga - z_solve. S-SO"’"‘---Omp-f”- Innermost 1.29 1.02 1 2.06 115
" U ectorised: vectorisin '

y g 185 brmzC8-y-solve.y_solve__omp._fn. Innermost 124 1.03 1 2.06 122
floating-point computations and 208 DLmZ.CA -2 solve. ¢_solve__omp_fn rermost] 0.59 : . 226 .
memaory acCesses 180 Dtmz-C8-x-solv x_solve_._omp.fn. Innermost 0.52 1 111 223 1.25

u PerfeCt Load BalanC|ng . Optlmal 186 Pts’g‘i—gga ’V—SOIVe'\(‘;—50|Ve—'—0mp—fn' Innermost 0.52 1 111 223 121
balance across all threads 156 BEmz.C8 - rhs.40 compute.rhs.__om innermost 0.41 1 2 2 RE
133 |btmz_C.8 - ths.f:4- \compute_rhs_._om Innermost 031 1 1.65 341 1.29

349 p_fn.0
150 bimz-C8-rhs.f4 EO]E?]pt;‘tef’hsf-i’m Innermost 0.3 1 1.71 3.68 1.27
142 btmz_C.8-rhs.f:4- compute_rhs_._om Innermost 0.3 1 1.65 3.41 1.27

238 p_fn.0
204 Ptmz_C8 -z solve z_solve__omp._fn. Innermast 0 29 1 1 283 117

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

INSTITYUTE ~HIGH-PRODUCTIVITY SUPERCOMPUTING

Loop Analysis Reports

\/1 A @/—\ {j Global Application Functions Topology

High level reports .
= Reference to the source code

Jeee/dsku/ nts-server/user/cont001/acre/ valensic/NPB3 .3 . 1-H2 /NPB3 . 3-N2-NPT/BT-HZ//s0 Lve_t

Module: bt Source: solve_su

Workaround

ablock (5, 1) "oblock (1, 1)
sllock(5,2) "bblock (2, 1)

ab.
aklc gain | potential | hint | expert
anl

applying hints will yield predicted gain SR
= Gain: Good probability S ——

©
k3
PR

them with the "contiguous” attribute

t-math) to extend
b set to a%b before this loop

w
&
v

. . Coverage 479%
- B ttl n k descrl tl O n 71t chlock(1,1) = chlackil,1] - ablock(l,1) *bblock(1, 1) Function matmul_sub
() 63 (E(: 72: > - =block(1,2) bblock(z,1]
a5 z T ohlock(1,3) *bblock(3.1) Source file and lines solve_subs.f:71-175
74: > - sblock(l, 4) hhlock(4,1) Module bt-mzC16
. . . o T mteek(2,1) = eblackiz, 11 - eeteoes e e 1) The loop is defined in /cce/dsku/nfs-server/user/conto01 /ocre/valensic/NPE3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/s0lve_subs £ 71-175
77 > - ablock(z,2) *bhlock(z, 1)
u I n S O r I m p rov I n g pe r O rm a n Ce 78: > - sblack(2,3) *hblock(3, 1) It is main loop of related source loop which is unrolled by 2 (including vectorization)
73: > - sblock(2,4) thhlock(4,1)
a0: > - ablock(2,5) bblock(S, 1) . .
81: chblock(3,1) = cblock(3,1] - sblock(3,1) *bblock(1,1) gain | potential | hint | expert
. A a2 > - ablock(3,2) bblock(z, 1]
83: > - sblack(3,3) *hblock(3, 1)
n B4: > - sblock(3, 4) thhlock(4,1) Code clean check
851 > - ablock(3,S) fbblock(S, 1)
P chlock(4,1) = chlack(t, 1) - anleci(4,1) b lock(1,1] Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them, you can
87: > - ablock(4,2) *bbleck(z, 1) lower the cost of an iteration from 27.00 to 25.00 cycles (1.08x speedup)
a8: > - ablock(4,3) *bblock(3, 1)
ag: > - sblock(4,4) thhlack(4,1)
> - ablock(4,5) bblock(S, 1)

it unit-stride:

. . . = e A f both d ! '

= Potential gain: Average probability e e —————
03 > ide 1) => do 1 do J /A\/Xdero)cessors) By fully

< speedu

u H i ntS : LoWe r p ro ba bi I ity l gain] :)Dr:l:emial} hint I expert P {Intel(R) Xean(R) itructures of arrays

o a%x(i) = box(i)

entheses) in arithmetic
nable your compiler to

. . .) »cis avalid FMA (MUL
195 SSE or AVX instructions are processing arithmetic or math operations on double precision FP elements in 'ADD then MUL).

scalar mode (one at a time).

Type of elements and instruction set «Ctor registers). Since your execttion

. . s a bottleneck). By
wer the cost of an iteration from 204.00 to 141.33

Matching between your loop (in the source code) and the binary loop

The binary loop is composed of 195 FP arithmetical operations:

« 70: addition or subtraction
* 125 multiply

ympiler

The binary loop is loading 1760 bytes (220 double precision FP elements). The binary loop is storing 1632 bytes rresponding for’ loop

(204 double precision FP elements)

Arithmetic intensity

Arithmetic intensity is 0.06 FP operations per loaded or stored byte.

Unroll opportunity

Loop is data access bound

Workaround

Unroll your loop if trip count is significantly higher than target unroll factor and if some data references are
common to consecutive iterations. This can be done manually. Or by recompiling with -funroll-loops and/or
-floop-unroll-and-jam_

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Application to Motivating Example

['cain T Potentia gain [ints [experts onty S
Vectorization etected 48 FMA (fused multiply-add) operations.
Presence of both ADD/SUB and MUL operations.

Your loop is partially vectorized.

Only 28% of vector register length is used (average across all SS5E/AVX instructions).
By fully vectorizing your loop, you can lower the cost of an iteration from 57.00 to 21.50 cycles (2.65x speedup).

Pro s):
Try to change order in which elements are evaluated (using parentheses) in arithmetic expressions containing both ADD/SUB and
MUL operations to enable your compiler to generate FMA instructions wherever possible.

51% of SSE/AVX instructions are used in vector version (process two or more data elements in vector reqisters):) N -
For instance a + b*c is a valid FMA (MUL thi 7 . . .
_ _ .) Gain | Potential gain || Hints § Experts only
» 24% of SSE/AVX loads are used in vector version. However (a+b)* ¢ cannot be translated into
s 0% of SSE/AVX stores are used in vector version. —
—

Cicwr Aata structures access
DRetected data structures (typically arrays) that cannot be efficiently readf B

Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

+ Constant non-unit stride: 1 occurrence(s)

* Try another compiler or update/tune your current one: « Iegular (variable stride) or indirect: 1 occumence(s)

o use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences”, try
Vil =-E : T T e o P ihlo bt 5 inefficient”, try the VECTOR ALWAYS directive.

g -

* Remove inter-iterations dependences from your loop and make it unit-stride:

! T i I d. otherwise, try t 1
permute loops accordingly: o e e e * 1) H I g h n U m b er Of S t ate m e n tS
Fortran storage order is column-major: do i do j ali.j) = b(i,j) (slow, non stride 1) == do i do j a(}.i) = b(&

1)

o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA):

do i a(i)¥éx = b(i)%x (slow, non stride 1) == do i a%x(i) = b%x(i) (fast, stride 1) 2) N O n - u n I t St r I d e aC C eS S eS
-
oo ferere 3) Indirect accesses «

Performance is limited by:

oot operations (the divide/square root unit is a bottleneck)
actor registers (the VPU is a bottleneck) I 4) D IV/S Q RT

geration from 57.00 to 48.00 cycles (1.19x speedup).

+ execution of divide and squafe
+ execution of INT/FP operations

By removing all these bottlenecks, you can lower the cost 0

Proposed solution(s): 5) Red u Cti O nS
* Reduce the number of division or square root instructions.
If denominator is constant over iterations, use reciprocal (replace x/y with x*(1/y)).
done by your compiler with no-prec-div or Ofast.
Check whether you really need double precision. If not, switch to single precision 1o speedup execution.
* Reduce arithmetical operations on array elements

precision impact. This will be

6) Variable number of iterations

7) Vector vs scalar

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Loop Analysis Reports — Expert View

|‘ Gain | Potential gain | Hints | Experts only |

Low level reports for performance experts | |

In the binary file, the address of the loop is: 421409

= Assembly-level
Sse eve Instruction Nb FU PO P1 P2 P3 P4 P5 P& Latency Recip. throughput
. MOVAPS %XMM13,%6XMM3 1 0.50 0.50]] Y] o 0 2 0.50
INC %RDI 1 0 o] 0] 1.50 0.50 0 1 1
= Instructions cycles costs
DIVSD 0x28(%R10.%RDX.1).%XMM5 4 1 o 0.50 0.50 0 o] 40-42 12-32
. d - h d H - MOVAPS %XMM5 %XMM15 1 0.50 0.50]] Y] o 0 2 0.50
u Instructlons Ispatc pre Ictlons MULSD %XMM5 %XMM15 1 0.50 0.50]] 0 o 0] 0.50
MOVSD %XMM5,0x12890(%R14) 1 o0 0 0.50 0.50 V] 0 1 2 1
[] M m y Iy MULSD %XMM1 5 %XMM5 1 0.50 0.50 0 [¢] V] o] 6 0.50
e O r a Cce SS a n a S I S Loop Id: 224 Module: bt-mz.C.16 0 o0 1 D) 1
ECY° ° ! !
n0 0 12 1
Hide groups 0 0 1 2 1
analysis
As se m b | CO d e Source: solve_subs.f:71-175 Coverage: 4.79%
Ox424e35 MOVUPS (¥RDIFRAX 8)%FAMMA [3]
0x424e39 MOVAPS %X MM5 %XMM2 D/' e
- - - - Ox424e3c MULPD %XMM4, %BXMM2 =
= Highlights groups of instructions et LEA RO RS = T .
Metric Value
. 0x424e48 SUBPD %xMM2, %X MM1 5 .
Coverage (% app. time) 479
aCcessin € Same MEMOIrY AUArEeSSES oursecd enoasmroimraxs)wrs
Tirme (s) 023
COA speedup if clean 1.08
COQA speedup if FP arith vectorized 165
Ox424e5e MOVAPS %xXMM1 2 %xXMM1 4
24052 MULFD SMM2 b1 CQA speedup if fully vectorized 2.00
e - CQA speedup if no inter-iteration dependency NA
H H CQA speedup if next bottleneck killed 1.08
INternal me-trics Ox42486e SUBPD BXMM1 %XMM1 5
Source solve_subs f71-175
Source loop unrall info unrolled by 2
Ox424e78 MULPD %xXMMT, %X MMO
Source loop unrall confidence level max
Ox424e7c SUBPD %xXMMO%xMMT 5
Unroll /vectarization loop type main
Unroll factor 2
CQA cycles 27.00
Ox424e8e MULPD %XMMO%XMM3
0424652 SUBRD %XMM 35X 1 5 o creles (clean z50n
% i . COA cycles if FP arith vectorized 16.32
COA cycles if fully vectorized 13.50
MOVSD 0x38(%R10,%RDX,1),%XMM3 1 0 o Front-end cycles 2250
MOVSD 0x12898(%R14),%XMM2 1 0 0 | PO cycles 25.00
MULSD %XMM 3 %XMM2 1 0.50 0.9P1 cycles 27.00
RALI M GV RARA S GOV RARA D 1 nen nqP2 cycles 13.00
P3 cycles 13.00

T —
45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024) 33

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Thread/Process View

MA AO Global Application Functions Topology

Software Topology
" List of nodes

L] Processes by nOde ID | Processes | Threads | Time(s)
¥ Node ¢251-109.wrangler_tacc.utexas.edu 8 32 5.34
¥ Process 145897 4 534
[]
Th read by process o Thread 145897 534
o Thread 145933 532
o Thread 145952 532
. o Thread 145969 53
View by thread » Process 145899 4 5.34
. . > Process 145901 4 534
» Function profile at the thread or process level > Process 145903 4 534
» Process 145898 4 534
» Process 145900 4 534
» Process 145895 4 534
» Process 145896 4 534
» Node ¢251-110.wrangler.tacc.utexas.edu 8 32 5.36

| o AVERAGE 5.36

Profiling node c251-109.wrangler.tacc.utexas.edu - process 145897 - thread 145897

Name Module ‘ Cm;;aﬁr)age Time (s)

o binvcrhs bt-mz_B.16 24.34 1.3

o _INTERNAL_25_______ src_kmp_barrier_cpp_fa608613::__kmp_hy

per_barrier_gather(barrier_type, kmp_info*, int, int, void (*)(void*, v libiomp5.s0 176 0.94
oid*), void*)

» matmul_sub bt-mz_B.16 12.73 0.68
» y_solve bt-mz_B.16 7.87 0.42
» compute_rhs bt-mz_B.16 7.49 0.4
» x_solve bt-mz_B.16 7.12 0.38
» z_solve bt-mz_B.16 674 0.36

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports

Goal: Provide a view of the application scalability
= Profiles with different numbers of threads/processes
= Displays efficiency metrics for application

ancy (higher is better)

Effici

run_1 [FEF)

Run
M Efficie
¥ Detailed Efficiency
Run [Number of observed threads Efficiency (ideal is 1)

run_1 (REF) 2
run_0 96
nn_z 3
run_3 5
run_4 8
nn_s 9
run_7 9
n_g 16
nn_g 16
run_9 32

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports — Application View

Coverage per category
= Comparison of categories for each run

Coverage per parallel efficiency

Tsequential

» Efficiency =

Tparaliet*Nthreads

» Distinguishing functions only represented in parallel or sequential

= Displays efficiency by coverage

MAS®AO clobal

} /'7.;‘2\7 mﬂ‘ fj Global Application Functions Topology

Application Categorization ? Scalability - Coverage per Category

Scalability - Coverage per Category
Scalability - Time per Category

Function Based Profile ? 85,714

Scalability - Coverage per Parallel Efficiency
Loop Based Profile
Detailed Loop Based Profile

Application Functions

100,000

71,429 |

57.143

42.857

Coverage [¥)]

28.571

14.286 |

0.000 -4

1 12 -4 18 16
Configuration (Processes MPI - Threads OpeniP)

Topology

Resllubype: B sl (SUINEINN Scalability - Coverage per Parallel Efficiency

Scalability - Coverage per
Category

Scalability - Time per Category
Function Based Profile ?

Scalability - Coverage per Parallel
Efficiency

Loop Based Profile ?

Detailed Loop Based Profile 2

Coverage (%)

100.000

85.714 -

71.429

57.143 +

42,857

28571

14.286 |

0.000

1 1-2

0% to
0% to 108 g 0% to 20% g 20% t0 30% o 30% to 40K o 40K to 50X o 505 to 60% — 60% to 70% o 70% to 80% o 80% to 90%
W e e B ficiency ™ efficiency I efficiency W efficiency W sfficiency M efficiency l?‘gfve

ccccccccccc v

1a I 16
Configuration (Processes MP| - Threads OpendP)

uuuuuuuuuu

ALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports — Functions and Loops Views

Displays metrics for each

function/loop
= Efficiency

= Potential speedup if efficiency=1

Loops Index

Global

Application Functions

]\/[L\ @f-\ (j Global Application Functions Topology

Functions and Loops

[» Filters

1-1) Efficiency [(1-1) Potential Speed-Up (%) &=(1-2) Efficiency &1(1-2) Potential Speed-Up (%) [FA(1-4) Efficiency &(1-4) Patential Speed-Up (%) &1(1-8) Efficiency [F(1-8) Potential Speed-Up (%)
1-18) Efficiency 1-16) Potential Speed-Up (%) [Select none

(1-2) (1-4) (1-8)

Deviation {1-1) Potential Potential Potential

(coverage) |Efficiency Efficiency| Speed- |Efficiency Speed- |Efficiency| Speed- [Efficiency| Speed-
Up (34) Up (4 Up () Up (36

Name Module Cov;;ur)age Time {(s) |Nb Threads

o _INTERMAL_25_______src_kmp_barrier_cpp_ac7c2c73:__

kmp_hyper_barrier_release(barrier_type, kmp_info* int, int, int libiomps so 2402 1538 16 1862
, woid*)

a binverhs bt-mz.C.1 20.71 1327 16 622

» compute_rhs bt-mz.C.1 10.76

Topology

Loop id
Loop
215
Loop
224
Loop
192
Loop
199
Loop
169
Loop
221
Loop
189
Loop
196
Loop
165
Loop
227
Loop
220
Loop
188
Loop
216
Loop

11

[Coverage (%)
E=(1-2) Efficiency
[Select none

Source
Lines

71175

146-308

146-308

145-307

40-50

55-137

57-139

55-137

B5-67

26-28

415-423

395-399

71175

304-349

bt-mz.C.1
f

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bt-mz.C.1
f

bt-mz.C.1

OTime (s)

Source File

salve_subs

z_solve.f
x_solvef
v_solvef
rhs.f
z_solve.f
x_solvef
v_solvef
rhs.f
add.f
z_solvef
x_solve.f

salve_subs

rhs.f

[OVectorization Ratio (%)
=11-2) Potential Speed-Up (%)

Source Function
matriul_sub
z_solve
%_salve
v_solve
compute_rhs
z_solve
%_salve
v_solve
compute_rhs
additomp_loop_0
z_solve
%_solve
matriul_sub

compute_rhs

OSpeedup If Clean OSpeedup If FP Vectorized [OSpeedup If Fully Vectorized [(1-1) Efficiency [J(1-1) Potential Speed-Up (%)
=(1-4) Efficiency FA(1-4) Potential Speed-Up (%) =(1-8) Efficiency =(1-8) Potential Speed-Up (%) =(1-16) Efficiency F(1-18) Potential Speed-Up (%)
(1-2) (1-2) Potential Speed- -4 (1-4) Potential Speed- (1-8) {1-8) Potential Speed- (1-16) {1-16) Potential Speed-

Efficiency Up (%) Efficiency Up (%) Efficiency Up (%) Efficiency Up (%90
1.51 2.49 2.99 2.96

1.34 273 262

122 1.92 2.04

1.09 1.99 211

2.95 2.3

1.56 1.66

1.28 1.26

1.18 1.12

231 1.64

1.14

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention!

Questions ?

UNIVERSITE DE
Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

i
§
|
®
|

Technische
RWRHER e
Miinchen

o . TECHNISCHE
#) JULICH |88 kzurence Liverrmore) SRSt O

FORSCHUNGSZENTRUM

	Diapositive 1 MAQAO Performance Analysis and Optimization Framework
	Diapositive 2 Performance analysis and optimisation
	Diapositive 3 Motivating example
	Diapositive 4 Motivating example
	Diapositive 5 A multifaceted problem
	Diapositive 6 Our Approach
	Diapositive 7 MAQAO: Modular Assembly Quality Analyzer and Optimizer
	Diapositive 8 Success stories
	Diapositive 9 Partnerships
	Diapositive 10 MAQAO team and collaborators
	Diapositive 11 More on MAQAO
	Diapositive 12 MAQAO Main Features
	Diapositive 13 MAQAO Main structure
	Diapositive 14 Useful notions
	Diapositive 15 MAQAO LProf: Lightweight Profiler
	Diapositive 16 MAQAO CQA: Code Quality Analyzer
	Diapositive 17 MAQAO CQA: Main Concepts
	Diapositive 18 “What If” Scenarios: Vectorization
	Diapositive 19 MAQAO CQA: Guiding the compiler and implementation hints
	Diapositive 20 Application to Motivating Example
	Diapositive 21 MAQAO ONE View: Performance View Aggregator
	Diapositive 22 ONE View Reports Levels
	Diapositive 23 Analysing an application with MAQAO
	Diapositive 24 Analysing an application with MAQAO
	Diapositive 25 Navigating ONE View Reports
	Diapositive 26 Global summary
	Diapositive 28 Time Categorisation
	Diapositive 29 Functions Profiling
	Diapositive 30 Loops Profiling Summary
	Diapositive 31 Loop Analysis Reports
	Diapositive 32 Application to Motivating Example
	Diapositive 33 Loop Analysis Reports – Expert View
	Diapositive 34 MAQAO ONE View Thread/Process View
	Diapositive 35 MAQAO ONE View Scalability Reports
	Diapositive 36 MAQAO ONE View Scalability Reports – Application View
	Diapositive 37 MAQAO ONE View Scalability Reports – Functions and Loops Views
	Diapositive 38 Thank you for your attention ! Questions ?

