
Hands-On Score-P/Scalasca/CUBE

Table of contents:
Baseline measurement

Initial setup​

Build benchmark​

Run benchmark​

Instrumentation

Filtering

Explore profile with CUBE

Scalasca trace analysis

Baseline measurement
In this part we are going to build and run a specific benchmark to identify how long it runs without any

specific tools (also called as a reference/baseline run). A reference run provides a valuable point of

comparison and context for performance analysis, enabling more informed decision-making and

effective optimization efforts.

Initial setup
First of all let's login into CoolMUC-2 using ssh:

The -Y option is necessary to enable X11 forwarding. X11 forwarding is a SSH protocol that enables

users to run graphical applications on a remote server and interact with them using their local display

and I/O devices.

Now we need to create our own directory for the exercises:

The -p prevents error messages if the specified directories already exists.

Then, we need to load required software, e.g. compiler, MPI, text editor:

Build benchmark
Start by copying the tutorial sources to your working directory:

$ ssh -Y userid@lxlogin1.lrz.de

$ mkdir -p $HOME/tw45

$ module load intel intel-mpi/2019-intel nano

For this tutorial we are going to use the NAS Parallel Benchmark suite (MPI+OpenMP version). It is

available here, and includes three benchmarks written in Fortran77. You can configure the benchmark

for various sizes and classes. This allows the benchmark to be used on a wide range of systems, from

workstations to supercomputers.

INFO

NPB solves discretized versions of the unsteady, compressible Navier-Stokes equations in three

spatial dimensions. Each operates on a structured discretization mesh that is a logical cube. In

realistic applications, however, a single such mesh is often not sufficient to describe a complex

domain, and multiple meshes or zones are used to cover it.

Multi-zone versions of NPB (NPB-MZ) are designed to exploit multiple levels of parallelism in

applications and to test the effectiveness of multi-level and hybrid parallelization paradigms and

tools. There are three types of benchmark problems derived from single-zone pseudo applications

of NPB:

Block Tri-diagonal (BT) - uneven-sized zones within a problem class, increased number of

zones as problem class grows

Scalar Penta-diagonal (SP) - even-sized zones within a problem class, increased number of

zones as problem class grows

Lower-Upper Symmetric Gauss-Seidel (LU) - even-sized zones within a problem class, a

fixed number of zones for all problem classes

Benchmark Classes

Class S: small for quick test purposes

Class W: workstation size (a 90's workstation; now likely too small)

Classes A, B, C: standard test problems; ~4X size increase going from one class to the next

Classes D, E, F: large test problems; ~16X size increase from each of the previous classes

MPI is used for communication across zones and OpenMP threads for computation inside zones.

More technical details are provided in this paper.

$ cd $HOME/tw45
$ tar zxvf /lrz/sys/courses/vihps/2024/material/NPB3.3-MZ-MPI.tar.gz -C .
$ cd $HOME/tw45/NPB3.3-MZ-MPI

http://www.nas.nasa.gov/Software/NPB
https://www.nas.nasa.gov/assets/nas/pdf/techreports/2003/nas-03-010.pdf

Move into the NPB3.3-MZ-MPI root directory and check what is inside:

Subdirectories BT-MZ , LU-MZ and SP-MZ contain source code for each benchmark, config and

common include additional configuration and common code. The provided distribution has already been

configured for the hands-on, such that it is ready to be build.

During this hands-on we will focus on BT-MZ exercise. It performs 200 time-steps on a regular 3-

dimensional grid. It uses combination of MPI and OpenMP.

Type make for instructions

$ ls
bin/ common/ jobscript/ Makefile README.install SP-MZ/
BT-MZ/ config/ LU-MZ/ README README.tutorial sys/

$ make
 ===
 = NAS PARALLEL BENCHMARKS 3.3 =
 = MPI+OpenMP Multi-Zone Versions =
 = F77 =
 ===

 To make a NAS multi-zone benchmark type

 make <benchmark-name> CLASS=<class> NPROCS=<nprocs>

 where <benchmark-name> is "bt-mz", "lu-mz", or "sp-mz"
 <class> is "S", "W", "A" through "F"
 <nprocs> is number of processes

 To make a set of benchmarks, create the file config/suite.def
 according to the instructions in config/suite.def.template and type

 make suite

 * Custom build configuration is specified in config/make.def *
 * Suggested tutorial exercise configuration for LiveDVD: *
 * make bt-mz CLASS=W NPROCS=4 *

To build application the following parameters need to be specified:

The benchmark configuration benchmark name (bt-mz, lu-mz, sp-mz): bt-mz

The number of MPI processes: NPROCS=28

The benchmark class (S, W, A, B, C, D, E): CLASS=C

Alternatively, you can just use make suite .

$ make bt-mz CLASS=C NPROCS=28
 ===
 = NAS PARALLEL BENCHMARKS 3.3 =
 = MPI+OpenMP Multi-Zone Versions =
 = F77 =
 ===

cd BT-MZ; make CLASS=C NPROCS=28 VERSION=
make[1]: Entering directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'
make[2]: Entering directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-
MPI/sys'
cc -o setparams setparams.c -lm
make[2]: Leaving directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/sys'
../sys/setparams bt-mz 28 C
make[2]: Entering directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'
mpif77 -c -O3 -g -qopenmp bt.f
mpif77 -c -O3 -g -qopenmp initialize.f
mpif77 -c -O3 -g -qopenmp exact_solution.f
mpif77 -c -O3 -g -qopenmp exact_rhs.f
mpif77 -c -O3 -g -qopenmp set_constants.f
mpif77 -c -O3 -g -qopenmp adi.f
mpif77 -c -O3 -g -qopenmp rhs.f
mpif77 -c -O3 -g -qopenmp zone_setup.f
mpif77 -c -O3 -g -qopenmp x_solve.f
mpif77 -c -O3 -g -qopenmp y_solve.f
mpif77 -c -O3 -g -qopenmp exch_qbc.f
mpif77 -c -O3 -g -qopenmp solve_subs.f
mpif77 -c -O3 -g -qopenmp z_solve.f
mpif77 -c -O3 -g -qopenmp add.f
mpif77 -c -O3 -g -qopenmp error.f
mpif77 -c -O3 -g -qopenmp verify.f
mpif77 -c -O3 -g -qopenmp mpi_setup.f
cd ../common; mpif77 -c -O3 -g -qopenmp print_results.f

If compilation succeeds, you can find in the bin directory.

Run benchmark
Lets go to the bin directory, copy a prepared batch script and examine what it does:

Here is what you should see in your batch script:

cd ../common; mpif77 -c -O3 -g -qopenmp timers.f
mpif77 -O3 -g -qopenmp -o ../bin/bt-mz_C.28 bt.o initialize.o
exact_solution.o exact_rhs.o set_constants.o adi.o rhs.o zone_setup.o
x_solve.o y_solve.o exch_qbc.o solve_subs.o z_solve.o add.o error.o verify.o
mpi_setup.o ../common/print_results.o ../common/timers.o
make[2]: Leaving directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'
Built executable ../bin/bt-mz_C.28
make[1]: Leaving directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'

$ cd bin
$ cp ../jobscript/coolmuc2/reference.sbatch .
$ nano reference.sbatch

#!/bin/bash
#SBATCH -o bt-mz.%j.out
#SBATCH -e bt-mz.%j.err
#SBATCH -J bt-mz
#SBATCH --clusters=cm2_tiny
#SBATCH --partition=cm2_tiny
#SBATCH --reservation=hhps1s24
#SBATCH --nodes=2
#SBATCH --ntasks=28
#SBATCH --ntasks-per-node=14
#SBATCH --get-user-env
#SBATCH --time=00:05:00

export OMP_NUM_THREADS=4

Benchmark configuration (disable load balancing with threads)
export NPB_MZ_BLOAD=0

To exit text editor you can use Ctrl+X

On CoolMUC-2 we are going to use:

2 standard compute nodes with 2x Intel Haswell 14-Core Processor each (28 cores / 56 threads)

56GB RAM per node

14 MPI ranks per node and 4 OpenMP threads per MPI rank

Now we are ready to submit our batch script:

INFO

To submit the job use sbatch <script you want to submit> .

To check status of all your jobs use squeue -M cm2_tiny --me .

To cancel specific job use scancel -M cm2_tiny <jobid you want to cancel> .

Once the job has finished you will see two files in your directory, one with standard output bt-mz.

<jobid>.out and one with standard error output bt-mz.<jobid>.err . The former one should

include all output provided by your application and the latter one only system specific output. Let's

examine standard output file:

PROCS=28
CLASS=C

Run the application
mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

$ sbatch reference.sbatch

$ cat bt-mz.<jobid>.out
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Number of zones: 16 x 16
Iterations: 200 dt: 0.000100
Number of active processes: 28

Use the default load factors with threads

Total number of threads: 112 (4.0 threads/process)

Calculated speedup = 110.34

Time step 1
Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Verification being performed for class C
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual
 1 0.3457703287806E+07 0.3457703287806E+07 0.1092202750127E-12
 2 0.3213621375929E+06 0.3213621375929E+06 0.1320422658492E-12
 3 0.7002579656870E+06 0.7002579656870E+06 0.1496217033982E-13
 4 0.4517459627471E+06 0.4517459627471E+06 0.2280652586031E-13
 5 0.2818715870791E+07 0.2818715870791E+07 0.1486830094937E-14
Comparison of RMS-norms of solution error
 1 0.2059106993570E+06 0.2059106993570E+06 0.1540627820550E-12
 2 0.1680761129461E+05 0.1680761129461E+05 0.2132015705369E-12
 3 0.4080731640795E+05 0.4080731640795E+05 0.3084595553087E-13
 4 0.2836541076778E+05 0.2836541076778E+05 0.1026032398931E-12
 5 0.2136807610771E+06 0.2136807610771E+06 0.2335870996607E-12
Verification Successful

BT-MZ Benchmark Completed.
Class = C
Size = 480x 320x 28
Iterations = 200
Time in seconds = 13.91
Total processes = 28
Total threads = 112
Mop/s total = 174439.35
Mop/s/thread = 1557.49
Operation type = floating point
Verification = SUCCESSFUL

The most important metric in the output is "Time in seconds" which indicates how much time the

application spent executing 200 iterations (pre and post. processing are excluded from the time

measurement). Further, "Validation" is important as it indicates if the computation completed

successfully (e.g. converged). Please write down the time value you received, as we are going to refer

to its value in the next section.

INFO

For time measurements you can use time utility which is used to measure the execution time of a

program or command. It provides information about how long a particular process took to execute,

including user time, system time, and real time, i.e.

User time is the time spent executing user-space instructions.

System time is the time spent executing system calls.

Real time is the actual time elapsed from start to finish, including all waiting and execution

time.

It's a handy tool for performance analysis and optimization.

QUESTION

In this exercise we measured the basic performance metric, i.e. walltime. What else do you think

can be used to measure the performance of the application in general and of the code you are

working on?

Version = 3.3.1
Compile date = 04 Jun 2024

Instrumentation
As a next step we are going to instrument our application, i.e. insert additional code into our program to

collect performance data during its execution. Instrumentation can be done either manually by the

programmer or automatically by tools like Score-P. The data collected includes information about user

function calls, communication events, synchronization events, and more.

Score-P can automatically instrument the code by using e.g. compiler wrappers. This eliminates the

need for manual modification of the source code and makes the process easier and less error-prone.

To use Score-P, we first need to make sure that all required software is available:

We loaded Scalasca trace tools at this stage as well to use convenience commands that allow to control

execution measurement collection and analysis, and analysis report postprocessing. This is not

necessary but highly recommended step to do.

Go to our work directory

Edit config/make.def to adjust build (see highlighted lines)

$ # Reload modules if needed
$ module load intel intel-mpi/2019-intel nano
$ # Load additional software being used in the following steps
$ module use /lrz/sys/courses/vihps/2024/modulefiles/
$ module load scorep/8.4-intel-intelmpi scalasca/2.6.1-intel-intelmpi

$ cd $HOME/tw45/NPB3.3-MZ-MPI

#--
-
#
SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS.
#
#--
-

1

2
3
4
5

6

#--
-
Configured for generic MPI with GCC compiler
#--
-
#OPENMP = -fopenmp # GCC compiler
OPENMP = -qopenmp # Intel compiler

#--
-
Parallel Fortran:
#
The following must be defined:
#
MPIF77 - Fortran compiler
FFLAGS - Fortran compilation arguments
F_INC - any -I arguments required for compiling MPI/Fortran
FLINK - Fortran linker
FLINKFLAGS - Fortran linker arguments
F_LIB - any -L and -l arguments required for linking MPI/Fortran
#
compilations are done with $(MPIF77) $(F_INC) $(FFLAGS) or
$(MPIF77) $(FFLAGS)
linking is done with $(FLINK) $(F_LIB) $(FLINKFLAGS)
#--
-

#--
-
The fortran compiler used for hybrid MPI programs
#--
-
MPIF77 = mpif77

Alternative variants to perform instrumentation
#MPIF77 = psc_instrument -t user,mpi,omp -s ${PROGRAM}.sir mpif77
#MPIF77 = scalasca -instrument mpif77
#MPIF77 = tau_f90.sh
#MPIF77 = vtf77 -vt:hyb -vt:f77 mpif77
MPIF77 = scorep --user mpif77

PREP is a generic macro for instrumentation preparation
#MPIF77 = $(PREP) mpif77

This links MPI fortran programs; usually the same as ${F77}

7

8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

31
32

33
34
35
36
37
38
39
40
41
42
43
44
45

FLINK = $(MPIF77)

#--
-
Global *compile time* flags for Fortran programs
#--
-
FFLAGS = -O3 -g $(OPENMP)

#--
-
These macros are passed to the compiler
#--
-
F_INC =

#--
-
These macros are passed to the linker
#--
-
F_LIB =

#--
-
Global *link time* flags. Flags for increasing maximum executable
size usually go here.
#--
-
FLINKFLAGS = $(FFLAGS)

#--
-
Utilities C:
#

41,0-1 58%
Other allowed values are "randi8_safe", "randdp" and "randdpvec"
#--
-
RAND = randi8
The following is highly reliable but may be slow:
RAND = randdp

46
47
48

49
50

51
52
53

54
55

56
57
58

59
60

61
62
63

64
65
66

67
68
69
70

71
72
73

74
75

76
77
78

INFO

In config/make.def we can set necessary flags for appropriate compilation, e.g. enabling

OpenMP, optimisation flags, etc.

To enable instrumentation we added special wrapper scorep before actual compiler wrapper, e.g.

mpif77 . This will insert additional flags during compilation and add required libraries during

linking phase.

WARNING

The scorep instrumenter must be used with the link command to ensure that all required Score-P

measurement libraries are linked with the executable. However, not all object files need to be

instrumented, thereby avoiding measurements and data collection for routines and OpenMP

constructs defined in those files. Instrumenting files defining OpenMP parallel regions is essential,

as Score-P has to track the creation of new threads.

Lets return to our root directory and clean-up:

Next, we build the instrumented version of BT-MZ:

$ cd $HOME/tw45/NPB3.3-MZ-MPI/
$ make clean

$ make bt-mz CLASS=C NPROCS=28
 ===
 = NAS PARALLEL BENCHMARKS 3.3 =
 = MPI+OpenMP Multi-Zone Versions =
 = F77 =
 ===

cd BT-MZ; make CLASS=C NPROCS=28 VERSION=
make[1]: Entering directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'
make[2]: Entering directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-
MPI/sys'
cc -o setparams setparams.c -lm
make[2]: Leaving directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/sys'
../sys/setparams bt-mz 28 C

As you might noticed now scorep stands before each compilation and linking command. This time

executable was created in bin.scorep directory that allow us not to mess up with our baseline

experiments.

Let's go to the directory where our new executable lies and copy batch script

Let's examine what scorep.sbatch does by executing nano scorep.batch

make[2]: Entering directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'
scorep --user mpif77 -c -O3 -g -qopenmp bt.f
scorep --user mpif77 -c -O3 -g -qopenmp initialize.f
scorep --user mpif77 -c -O3 -g -qopenmp exact_solution.f
scorep --user mpif77 -c -O3 -g -qopenmp exact_rhs.f
scorep --user mpif77 -c -O3 -g -qopenmp set_constants.f
scorep --user mpif77 -c -O3 -g -qopenmp adi.f
scorep --user mpif77 -c -O3 -g -qopenmp rhs.f
scorep --user mpif77 -c -O3 -g -qopenmp zone_setup.f
scorep --user mpif77 -c -O3 -g -qopenmp x_solve.f
scorep --user mpif77 -c -O3 -g -qopenmp y_solve.f
scorep --user mpif77 -c -O3 -g -qopenmp exch_qbc.f
scorep --user mpif77 -c -O3 -g -qopenmp solve_subs.f
scorep --user mpif77 -c -O3 -g -qopenmp z_solve.f
scorep --user mpif77 -c -O3 -g -qopenmp add.f
scorep --user mpif77 -c -O3 -g -qopenmp error.f
scorep --user mpif77 -c -O3 -g -qopenmp verify.f
scorep --user mpif77 -c -O3 -g -qopenmp mpi_setup.f
cd ../common; scorep --user mpif77 -c -O3 -g -qopenmp print_results.f
cd ../common; scorep --user mpif77 -c -O3 -g -qopenmp timers.f
scorep --user mpif77 -O3 -g -qopenmp -o ../bin.scorep/bt-mz_C.28 bt.o
initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o rhs.o
zone_setup.o x_solve.o y_solve.o exch_qbc.o solve_subs.o z_solve.o add.o
error.o verify.o mpi_setup.o ../common/print_results.o ../common/timers.o
make[2]: Leaving directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'
Built executable ../bin.scorep/bt-mz_C.28
make[1]: Leaving directory '/dss/dsshome1/0C/hpckurs11/tw45/NPB3.3-MZ-MPI/BT-
MZ'

$ cd bin.scorep
$ cp ../jobscript/coolmuc2/scorep.sbatch .

In highlighted line we set name of the directory where we store measurements. This is not required, but

helps identifying the measurement later on.

INFO

Score-P measurements are configured via environment variables with the prefix SCOREP_ . The full

list of available variables and their description can be found by executing the following command

scorep-info config-vars --full

Now we are ready to submit our batch script:

#!/bin/bash
#SBATCH -o bt-mz.%j.out
#SBATCH -e bt-mz.%j.err
#SBATCH -J bt-mz
#SBATCH --clusters=cm2_tiny
#SBATCH --partition=cm2_tiny
#SBATCH --reservation=hhps1s24
#SBATCH --nodes=2
#SBATCH --ntasks=28
#SBATCH --ntasks-per-node=14
#SBATCH --get-user-env
#SBATCH --time=00:05:00

module use /lrz/sys/courses/vihps/2024/modulefiles/
module load scorep/8.4-intel-intelmpi
export OMP_NUM_THREADS=4

Score-P measurement configuration
export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum
#export SCOREP_FILTERING_FILE=../config/scorep.filt

Benchmark configuration (disable load balancing with threads)
export NPB_MZ_BLOAD=0
PROCS=28
CLASS=C

Run the application
mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Once your job complete check what is new in the execution directory

What we see new there? bt-mz.657477.err includes stderr output, bt-mz.657477.out includes

stdout output, and scorep_bt-mz_sum includes the measurement results collected by our

instrumented application.

Let's examine what is inside measurement directory:

The directory contains three files. MANIFEST.md includes the description of metadata,

profile.cubex is an analysis report that was collected during the measurement, and scorep.cfg is

a record of measurement configuration.

QUESTION

Open the stdout file and find the metric "Time in seconds". Compare it to our baseline

measurement here. Has it increased or decreased? If so, by how much? What do you think was the

reason for the change?

sbatch scorep.sbatch

$ ls -l
bt-mz_C.28
bt-mz.657477.out
bt-mz.657477.err
scorep_bt-mz_sum
scorep.sbatch

$ ls -1 scorep_bt-mz_sum/
MANIFEST.md
profile.cubex
scorep.cfg

https://zhukov1.pages.jsc.fz-juelich.de/perf-analysis-hands-on/docs/baseline

Filtering
Congratulations, we have made our first measurement with Score-P. But how good was the

measurement? The measured execution gave the desired valid result, but the execution took a bit

longer than expected! The instrumented run has a large increase in runtime compared to a baseline

(around 46s versus 14s). Your runtime may vary slightly from our measurements. Even if we ignore the

start and end of the measurement, it was probably prolonged by the instrumentation/measurement

overhead.

To make sure you don't draw the wrong conclusions based on data that has been disturbed by

significant overhead, it's often a good idea to optimise the measurement configuration before you do

any more experiments. There are lots of ways you can do this, for example, by using runtime filtering,

selective recording, or manual instrumentation to control the measurement.

However, in many cases, it's enough to filter a few frequently executed but otherwise unimportant user

functions to reduce the measurement overhead to an acceptable level (based on experience, we

consider 0-20% of runtime dilation as acceptable). The selection of those routines has to be done with

care, though, as it affects the granularity of the measurement and too aggressive filtering might "blur"

the location of important hotspots.

To understand where the overhead is coming from it is necessary to make scoring of the measurement.

It can be done via the following command:

As an output you will see the following:

$ scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 160GB
Estimated requirements for largest trace buffer (max_buf): 6GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 6GB
(warning: The memory requirements cannot be satisfied by Score-P to avoid
 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the
 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us]
region
 ALL 6,282,548,755 6,586,867,463 5044.19 100.0 0.77 ALL

As can be seen from the top of the score output, the estimated size for an event trace measurement

without filtering applied is approximately 160GB, with the process-local maximum across all ranks being

roughly 6GB.

The next section of the score output provides a table which shows how the trace memory requirements

of a single process (column max_buf) as well as the overall number of visits and CPU allocation time

are distributed among certain function groups. In current execution, the following groups are

distinguished:

ALL : All functions of the application.

MPI : MPI API functions.

OMP : OpenMP constructs and API functions.

COM : User functions/regions that appear on a call path to an OpenMP construct, or an OpenMP or

MPI API function. Useful to provide the context of MPI/OpenMP usage.

USR : User functions/regions that do not appear on a call path to an OpenMP construct, or an

OpenMP or MPI API function.

SCOREP : This group aggregates activities within the measurement system.

INFO

There are more function groups available, e.g. CUDA ,OPENACC ,MEMORY ,IO ,LIB , etc. For more

details consult with the documentation here.

As we can see from the scoring output, the USR group is making the biggest contribution to the trace

memory requirements. To figure out which routines are causing the problem, we need to see a

breakdown by function. To do this, we just need to run the following command:

As an output you will see the following

 USR 6,265,237,940 6,574,825,097 2257.25 44.7 0.34 USR
 OMP 17,537,080 10,975,232 2602.86 51.6 237.16 OMP
 MPI 985,204 339,446 180.12 3.6 530.62 MPI
 COM 738,530 727,660 3.93 0.1 5.41 COM
 SCOREP 41 28 0.03 0.0 934.60
SCOREP

$ scorep-score -r scorep_bt-mz_sum/profile.cubex

https://perftools.pages.jsc.fz-juelich.de/cicd/scorep/tags/latest/html/score.html

Estimated aggregate size of event trace: 160GB
Estimated requirements for largest trace buffer (max_buf): 6GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 6GB
(warning: The memory requirements cannot be satisfied by Score-P to avoid
 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the
 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us]
region
 ALL 6,282,548,755 6,586,867,463 5044.19 100.0 0.77 ALL
 USR 6,265,237,940 6,574,825,097 2257.25 44.7 0.34 USR
 OMP 17,537,080 10,975,232 2602.86 51.6 237.16 OMP
 MPI 985,204 339,446 180.12 3.6 530.62 MPI
 COM 738,530 727,660 3.93 0.1 5.41 COM
 SCOREP 41 28 0.03 0.0 934.60
SCOREP

 USR 2,014,873,848 2,110,313,472 913.03 18.1 0.43
binvcrhs_
 USR 2,014,873,848 2,110,313,472 553.30 11.0 0.26
matvec_sub_
 USR 2,014,873,848 2,110,313,472 718.20 14.2 0.34
matmul_sub_
 USR 88,951,746 87,475,200 31.80 0.6 0.36
lhsinit_
 USR 88,951,746 87,475,200 24.24 0.5 0.28
binvrhs_
 USR 64,926,576 68,892,672 16.66 0.3 0.24
exact_solution_
 OMP 1,398,960 411,648 0.18 0.0 0.43 !$omp
parallel @exch_qbc.f:204
 OMP 1,398,960 411,648 0.18 0.0 0.44 !$omp
parallel @exch_qbc.f:215
 OMP 1,398,960 411,648 0.19 0.0 0.45 !$omp
parallel @exch_qbc.f:244
 OMP 1,398,960 411,648 0.19 0.0 0.45 !$omp
parallel @exch_qbc.f:255
 OMP 702,960 206,848 0.93 0.0 4.49 !$omp
parallel @rhs.f:28
 OMP 699,480 205,824 0.12 0.0 0.57 !$omp
parallel @add.f:22
 OMP 699,480 205,824 0.21 0.0 1.01 !$omp
parallel @z_solve.f:43
 OMP 699,480 205,824 0.21 0.0 1.01 !$omp

parallel @x_solve.f:46
 OMP 699,480 205,824 0.21 0.0 1.02 !$omp
parallel @y_solve.f:43
 MPI 429,336 112,962 0.65 0.0 5.74
MPI_Irecv
 MPI 429,336 112,962 4.12 0.1 36.48
MPI_Isend
 OMP 418,080 411,648 2.28 0.0 5.53 !$omp
do @exch_qbc.f:204
 OMP 418,080 411,648 0.55 0.0 1.35 !$omp
implicit barrier @exch_qbc.f:213
 OMP 418,080 411,648 1.75 0.0 4.26 !$omp
do @exch_qbc.f:215
 OMP 418,080 411,648 0.47 0.0 1.14 !$omp
implicit barrier @exch_qbc.f:224
 OMP 418,080 411,648 2.81 0.1 6.82 !$omp
do @exch_qbc.f:244
 OMP 418,080 411,648 0.63 0.0 1.52 !$omp
implicit barrier @exch_qbc.f:253
 OMP 418,080 411,648 2.31 0.0 5.62 !$omp
do @exch_qbc.f:255
 OMP 418,080 411,648 0.52 0.0 1.27 !$omp
implicit barrier @exch_qbc.f:264
 OMP 210,080 206,848 0.44 0.0 2.15 !$omp
implicit barrier @rhs.f:439
 OMP 210,080 206,848 20.74 0.4 100.24 !$omp
do @rhs.f:37
 OMP 210,080 206,848 18.05 0.4 87.25 !$omp
do @rhs.f:62
 OMP 210,080 206,848 1.35 0.0 6.55 !$omp
implicit barrier @rhs.f:72
 OMP 210,080 206,848 31.36 0.6 151.61 !$omp
do @rhs.f:80
 OMP 210,080 206,848 29.51 0.6 142.68 !$omp
do @rhs.f:191
 OMP 210,080 206,848 23.38 0.5 113.02 !$omp
do @rhs.f:301
 OMP 210,080 206,848 5.61 0.1 27.13 !$omp
implicit barrier @rhs.f:353
 OMP 210,080 206,848 0.62 0.0 2.99 !$omp
do @rhs.f:359
 OMP 210,080 206,848 0.46 0.0 2.21 !$omp
do @rhs.f:372
 OMP 210,080 206,848 10.30 0.2 49.80 !$omp
do @rhs.f:384

 OMP 210,080 206,848 0.58 0.0 2.78 !$omp
do @rhs.f:400
 OMP 210,080 206,848 0.39 0.0 1.89 !$omp
do @rhs.f:413
 OMP 210,080 206,848 0.92 0.0 4.44 !$omp
implicit barrier @rhs.f:423
 OMP 210,080 206,848 3.17 0.1 15.33 !$omp
do @rhs.f:428
 OMP 209,040 205,824 8.36 0.2 40.62 !$omp
do @add.f:22
 OMP 209,040 205,824 0.89 0.0 4.35 !$omp
implicit barrier @add.f:33
 OMP 209,040 205,824 185.22 3.7 899.88 !$omp
implicit barrier @z_solve.f:428
 OMP 209,040 205,824 632.18 12.5 3071.45 !$omp
do @z_solve.f:52
 OMP 209,040 205,824 169.53 3.4 823.67 !$omp
implicit barrier @x_solve.f:407
 OMP 209,040 205,824 610.73 12.1 2967.25 !$omp
do @x_solve.f:54
 OMP 209,040 205,824 177.68 3.5 863.28 !$omp
implicit barrier @y_solve.f:406
 OMP 209,040 205,824 638.08 12.6 3100.13 !$omp
do @y_solve.f:52
 COM 209,040 205,824 0.81 0.0 3.91
copy_x_face_
 COM 209,040 205,824 0.75 0.0 3.63
copy_y_face_
 MPI 125,424 112,962 93.58 1.9 828.44
MPI_Waitall
 OMP 52,520 51,712 0.03 0.0 0.60 !$omp
master @rhs.f:74
 OMP 52,520 51,712 0.03 0.0 0.50 !$omp
master @rhs.f:183
 OMP 52,520 51,712 0.02 0.0 0.46 !$omp
master @rhs.f:293
 OMP 52,520 51,712 0.02 0.0 0.30 !$omp
master @rhs.f:424
 COM 52,520 51,712 0.31 0.0 6.09
compute_rhs_
 COM 52,260 51,456 0.22 0.0 4.27 adi_
 COM 52,260 51,456 0.36 0.0 6.94
x_solve_
 COM 52,260 51,456 0.35 0.0 6.73
y_solve_

 COM 52,260 51,456 0.35 0.0 6.88
z_solve_
 COM 52,260 51,456 0.29 0.0 5.62 add_
 USR 37,882 40,796 0.00 0.0 0.10
get_comm_index_
 OMP 6,960 2,048 0.01 0.0 2.70 !$omp
parallel @initialize.f:28
 COM 5,226 5,628 0.34 0.0 61.16
exch_qbc_
 OMP 5,200 5,120 0.00 0.0 0.80 !$omp
atomic @error.f:51
 OMP 5,200 5,120 0.00 0.0 0.28 !$omp
atomic @error.f:104
 OMP 3,480 1,024 0.01 0.0 5.34 !$omp
parallel @error.f:27
 OMP 3,480 1,024 0.00 0.0 1.90 !$omp
parallel @error.f:86
 OMP 3,480 1,024 0.00 0.0 1.96 !$omp
parallel @exact_rhs.f:21
 OMP 2,080 2,048 0.04 0.0 18.45 !$omp
implicit barrier @initialize.f:204
 OMP 2,080 2,048 0.19 0.0 94.36 !$omp
do @initialize.f:31
 OMP 2,080 2,048 11.81 0.2 5765.89 !$omp
do @initialize.f:50
 OMP 2,080 2,048 0.06 0.0 30.97 !$omp
do @initialize.f:100
 OMP 2,080 2,048 0.06 0.0 30.76 !$omp
do @initialize.f:119
 OMP 2,080 2,048 0.09 0.0 45.78 !$omp
do @initialize.f:137
 OMP 2,080 2,048 0.09 0.0 45.85 !$omp
do @initialize.f:156
 OMP 2,080 2,048 1.83 0.0 892.68 !$omp
implicit barrier @initialize.f:167
 OMP 2,080 2,048 0.07 0.0 33.67 !$omp
do @initialize.f:174
 OMP 2,080 2,048 0.07 0.0 33.21 !$omp
do @initialize.f:192
 OMP 1,040 1,024 0.15 0.0 143.32 !$omp
implicit barrier @error.f:54
 OMP 1,040 1,024 0.96 0.0 935.38 !$omp
do @error.f:33
 OMP 1,040 1,024 0.00 0.0 2.08 !$omp
implicit barrier @error.f:107

 OMP 1,040 1,024 0.02 0.0 17.27 !$omp
do @error.f:91
 OMP 1,040 1,024 0.00 0.0 2.48 !$omp
implicit barrier @exact_rhs.f:357
 OMP 1,040 1,024 0.21 0.0 201.46 !$omp
do @exact_rhs.f:31
 OMP 1,040 1,024 0.08 0.0 80.42 !$omp
implicit barrier @exact_rhs.f:41
 OMP 1,040 1,024 0.95 0.0 927.89 !$omp
do @exact_rhs.f:46
 OMP 1,040 1,024 1.00 0.0 974.77 !$omp
do @exact_rhs.f:147
 OMP 1,040 1,024 0.51 0.0 501.47 !$omp
implicit barrier @exact_rhs.f:242
 OMP 1,040 1,024 0.98 0.0 956.34 !$omp
do @exact_rhs.f:247
 OMP 1,040 1,024 0.27 0.0 264.42 !$omp
implicit barrier @exact_rhs.f:341
 OMP 1,040 1,024 0.02 0.0 20.34 !$omp
do @exact_rhs.f:346
 MPI 612 252 0.82 0.0 3266.14
MPI_Bcast
 USR 572 616 0.00 0.0 0.36
timer_clear_
 COM 520 512 0.02 0.0 47.11
initialize_
 COM 260 256 0.00 0.0 12.22
exact_rhs_
 COM 260 256 0.00 0.0 6.18
error_norm_
 COM 260 256 0.00 0.0 5.87
rhs_norm_
 MPI 204 84 0.44 0.0 5205.99
MPI_Reduce
 MPI 136 56 1.36 0.0 24257.44
MPI_Barrier
 MPI 52 56 0.00 0.0 1.83
MPI_Comm_rank
 SCOREP 41 28 0.03 0.0 934.60 bt-
mz_C.28
 MPI 26 28 0.00 0.0 4.69
MPI_Comm_size
 MPI 26 28 29.83 0.6 1065350.67
MPI_Comm_split
 MPI 26 28 0.01 0.0 352.54

The detailed breakdown by region below the summary provides a classification according to these

function groups (column type) for each region found in the summary report. Investigation of this part of

the score report reveals that most of the trace data would be generated by about 6.8 billion calls to

each of the three routines binvcrhs , matmul_sub and matvec_sub (these routines are highlighted),

which are classified as USR . And although the percentage of time spent in these routines at first glance

suggest that they are important, the average time per visit is below 270 nanoseconds (column

time/visit). That is, the relative measurement overhead for these functions is substantial, and thus a

significant amount of the reported time is very likely spent in the Score-P measurement system rather

than in the application itself. Therefore, these routines constitute good candidates for being filtered (like

they are good candidates for being inlined by the compiler). Additionally selecting the lhsinit ,

binvrhs , and exact_solution routines, which generates about 810MB of event data on a single rank

with very little runtime impact.

MPI_Finalize
 MPI 26 28 49.31 1.0 1760964.30
MPI_Init_thread
 COM 26 28 0.11 0.0 3827.25
MAIN__
 COM 26 28 0.01 0.0 224.01
mpi_setup_
 COM 26 28 0.01 0.0 179.26
env_setup_
 USR 26 28 0.00 0.0 47.11
zone_setup_
 USR 26 28 0.01 0.0 262.41
map_zones_
 USR 26 28 0.00 0.0 32.67
zone_starts_
 USR 26 28 0.00 0.0 1.76
set_constants_
 USR 26 28 0.00 0.0 117.36
timer_start_
 USR 26 28 0.00 0.0 8.33
timer_stop_
 USR 26 28 0.00 0.0 1.11
timer_read_
 COM 26 28 0.01 0.0 263.89
verify_
 USR 26 1 0.00 0.0 523.75
print_results_

Score-P allows users to exclude specific routines or files from being measured using a filter file. This

file, written in a specific format, specifies what should be included or excluded. In our case, we define

rules for certain functions between the keywords SCOREP_REGION_NAMES_BEGIN and

SCOREP_REGION_NAMES_END , the keyword EXCLUDE indicating that functions must be excluded from

the measurements. A typical Score-P filter file looks like this:

We have prepared a filter file scorep.filter , which you can find here NPB3.3-MZ-

MPI/config/scorep.filt . You may notice some differences from the example above, such as the

use of asterisks (*) as bash wildcards, because some Fortran compilers handle _ symbols in function

names differently. We have also excluded timer functions from the measurement.

INFO

Just to let you know that the filter is safe to use. It doesn't prevent any of the listed routines from

being executed. They are simply not recorded in the measurement, so they won't appear in the

profile/trace explorer.

INFO

Please refer to the Score-P manual here for a detailed description of the filter file format, how to

filter based on file names, define (and combine) blacklists and whitelists, and how to use wildcards

for convenience.

The effectiveness of this filter can be examined by scoring the initial summary report again, this time

specifying the filter file using the -f option of the scorep-score -r -f ../config/scorep.filt

scorep_bt-mz_sum/profile.cubex command. This way a filter file can be incrementally developed,

avoiding the need to conduct many measurements to step-by-step investigate the effect of filtering

individual functions.

SCOREP_REGION_NAMES_BEGIN
 EXCLUDE
 binvcrhs
 matmul_sub
 matvec_sub
 lhsinit
 binvrhs
 exact_solution
SCOREP_REGION_NAMES_END

https://perftools.pages.jsc.fz-juelich.de/cicd/scorep/tags/latest/html/measurement.html#filtering

The output of the aforementioned command will look like this:

Estimated aggregate size of event trace: 470MB
Estimated requirements for largest trace buffer (max_buf): 19MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 27MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=27MB to avoid intermediate flushes
 or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us]
region
 - ALL 6,282,548,755 6,586,867,463 5044.19 100.0 0.77 ALL
 - USR 6,265,237,940 6,574,825,097 2257.25 44.7 0.34 USR
 - OMP 17,537,080 10,975,232 2602.86 51.6 237.16 OMP
 - MPI 985,204 339,446 180.12 3.6 530.62 MPI
 - COM 738,530 727,660 3.93 0.1 5.41 COM
 - SCOREP 41 28 0.03 0.0 934.60
SCOREP

 * ALL 19,298,841 12,083,275 2786.95 55.3 230.65 ALL-
FLT
 + FLT 6,265,199,954 6,574,784,188 2257.24 44.7 0.34 FLT
 - OMP 17,537,080 10,975,232 2602.86 51.6 237.16 OMP-
FLT
 - MPI 985,204 339,446 180.12 3.6 530.62 MPI-
FLT
 * COM 738,530 727,660 3.93 0.1 5.41 COM-
FLT
 * USR 38,012 40,909 0.01 0.0 0.34 USR-
FLT
 - SCOREP 41 28 0.03 0.0 934.60
SCOREP-FLT

 + USR 2,014,873,848 2,110,313,472 913.03 18.1 0.43
binvcrhs_
 + USR 2,014,873,848 2,110,313,472 553.30 11.0 0.26
matvec_sub_
 + USR 2,014,873,848 2,110,313,472 718.20 14.2 0.34
matmul_sub_
 + USR 88,951,746 87,475,200 31.80 0.6 0.36
lhsinit_
 + USR 88,951,746 87,475,200 24.24 0.5 0.28
binvrhs_
 + USR 64,926,576 68,892,672 16.66 0.3 0.24
exact_solution_

 - OMP 1,398,960 411,648 0.18 0.0 0.43 !$omp
parallel @exch_qbc.f:204
 - OMP 1,398,960 411,648 0.18 0.0 0.44 !$omp
parallel @exch_qbc.f:215
 - OMP 1,398,960 411,648 0.19 0.0 0.45 !$omp
parallel @exch_qbc.f:244
 - OMP 1,398,960 411,648 0.19 0.0 0.45 !$omp
parallel @exch_qbc.f:255
 - OMP 702,960 206,848 0.93 0.0 4.49 !$omp
parallel @rhs.f:28
 - OMP 699,480 205,824 0.12 0.0 0.57 !$omp
parallel @add.f:22
 - OMP 699,480 205,824 0.21 0.0 1.01 !$omp
parallel @z_solve.f:43
 - OMP 699,480 205,824 0.21 0.0 1.01 !$omp
parallel @x_solve.f:46
 - OMP 699,480 205,824 0.21 0.0 1.02 !$omp
parallel @y_solve.f:43
 - MPI 429,336 112,962 0.65 0.0 5.74
MPI_Irecv
 - MPI 429,336 112,962 4.12 0.1 36.48
MPI_Isend
 - OMP 418,080 411,648 2.28 0.0 5.53 !$omp
do @exch_qbc.f:204
 - OMP 418,080 411,648 0.55 0.0 1.35 !$omp
implicit barrier @exch_qbc.f:213
 - OMP 418,080 411,648 1.75 0.0 4.26 !$omp
do @exch_qbc.f:215
 - OMP 418,080 411,648 0.47 0.0 1.14 !$omp
implicit barrier @exch_qbc.f:224
 - OMP 418,080 411,648 2.81 0.1 6.82 !$omp
do @exch_qbc.f:244
 - OMP 418,080 411,648 0.63 0.0 1.52 !$omp
implicit barrier @exch_qbc.f:253
 - OMP 418,080 411,648 2.31 0.0 5.62 !$omp
do @exch_qbc.f:255
 - OMP 418,080 411,648 0.52 0.0 1.27 !$omp
implicit barrier @exch_qbc.f:264
 - OMP 210,080 206,848 0.44 0.0 2.15 !$omp
implicit barrier @rhs.f:439
 - OMP 210,080 206,848 20.74 0.4 100.24 !$omp
do @rhs.f:37
 - OMP 210,080 206,848 18.05 0.4 87.25 !$omp
do @rhs.f:62
 - OMP 210,080 206,848 1.35 0.0 6.55 !$omp

implicit barrier @rhs.f:72
 - OMP 210,080 206,848 31.36 0.6 151.61 !$omp
do @rhs.f:80
 - OMP 210,080 206,848 29.51 0.6 142.68 !$omp
do @rhs.f:191
 - OMP 210,080 206,848 23.38 0.5 113.02 !$omp
do @rhs.f:301
 - OMP 210,080 206,848 5.61 0.1 27.13 !$omp
implicit barrier @rhs.f:353
 - OMP 210,080 206,848 0.62 0.0 2.99 !$omp
do @rhs.f:359
 - OMP 210,080 206,848 0.46 0.0 2.21 !$omp
do @rhs.f:372
 - OMP 210,080 206,848 10.30 0.2 49.80 !$omp
do @rhs.f:384
 - OMP 210,080 206,848 0.58 0.0 2.78 !$omp
do @rhs.f:400
 - OMP 210,080 206,848 0.39 0.0 1.89 !$omp
do @rhs.f:413
 - OMP 210,080 206,848 0.92 0.0 4.44 !$omp
implicit barrier @rhs.f:423
 - OMP 210,080 206,848 3.17 0.1 15.33 !$omp
do @rhs.f:428
 - OMP 209,040 205,824 8.36 0.2 40.62 !$omp
do @add.f:22
 - OMP 209,040 205,824 0.89 0.0 4.35 !$omp
implicit barrier @add.f:33
 - OMP 209,040 205,824 185.22 3.7 899.88 !$omp
implicit barrier @z_solve.f:428
 - OMP 209,040 205,824 632.18 12.5 3071.45 !$omp
do @z_solve.f:52
 - OMP 209,040 205,824 169.53 3.4 823.67 !$omp
implicit barrier @x_solve.f:407
 - OMP 209,040 205,824 610.73 12.1 2967.25 !$omp
do @x_solve.f:54
 - OMP 209,040 205,824 177.68 3.5 863.28 !$omp
implicit barrier @y_solve.f:406
 - OMP 209,040 205,824 638.08 12.6 3100.13 !$omp
do @y_solve.f:52
 - COM 209,040 205,824 0.81 0.0 3.91
copy_x_face_
 - COM 209,040 205,824 0.75 0.0 3.63
copy_y_face_
 - MPI 125,424 112,962 93.58 1.9 828.44
MPI_Waitall

 - OMP 52,520 51,712 0.03 0.0 0.60 !$omp
master @rhs.f:74
 - OMP 52,520 51,712 0.03 0.0 0.50 !$omp
master @rhs.f:183
 - OMP 52,520 51,712 0.02 0.0 0.46 !$omp
master @rhs.f:293
 - OMP 52,520 51,712 0.02 0.0 0.30 !$omp
master @rhs.f:424
 - COM 52,520 51,712 0.31 0.0 6.09
compute_rhs_
 - COM 52,260 51,456 0.22 0.0 4.27 adi_
 - COM 52,260 51,456 0.36 0.0 6.94
x_solve_
 - COM 52,260 51,456 0.35 0.0 6.73
y_solve_
 - COM 52,260 51,456 0.35 0.0 6.88
z_solve_
 - COM 52,260 51,456 0.29 0.0 5.62 add_
 - USR 37,882 40,796 0.00 0.0 0.10
get_comm_index_
 - OMP 6,960 2,048 0.01 0.0 2.70 !$omp
parallel @initialize.f:28
 - COM 5,226 5,628 0.34 0.0 61.16
exch_qbc_
 - OMP 5,200 5,120 0.00 0.0 0.80 !$omp
atomic @error.f:51
 - OMP 5,200 5,120 0.00 0.0 0.28 !$omp
atomic @error.f:104
 - OMP 3,480 1,024 0.01 0.0 5.34 !$omp
parallel @error.f:27
 - OMP 3,480 1,024 0.00 0.0 1.90 !$omp
parallel @error.f:86
 - OMP 3,480 1,024 0.00 0.0 1.96 !$omp
parallel @exact_rhs.f:21
 - OMP 2,080 2,048 0.04 0.0 18.45 !$omp
implicit barrier @initialize.f:204
 - OMP 2,080 2,048 0.19 0.0 94.36 !$omp
do @initialize.f:31
 - OMP 2,080 2,048 11.81 0.2 5765.89 !$omp
do @initialize.f:50
 - OMP 2,080 2,048 0.06 0.0 30.97 !$omp
do @initialize.f:100
 - OMP 2,080 2,048 0.06 0.0 30.76 !$omp
do @initialize.f:119
 - OMP 2,080 2,048 0.09 0.0 45.78 !$omp

do @initialize.f:137
 - OMP 2,080 2,048 0.09 0.0 45.85 !$omp
do @initialize.f:156
 - OMP 2,080 2,048 1.83 0.0 892.68 !$omp
implicit barrier @initialize.f:167
 - OMP 2,080 2,048 0.07 0.0 33.67 !$omp
do @initialize.f:174
 - OMP 2,080 2,048 0.07 0.0 33.21 !$omp
do @initialize.f:192
 - OMP 1,040 1,024 0.15 0.0 143.32 !$omp
implicit barrier @error.f:54
 - OMP 1,040 1,024 0.96 0.0 935.38 !$omp
do @error.f:33
 - OMP 1,040 1,024 0.00 0.0 2.08 !$omp
implicit barrier @error.f:107
 - OMP 1,040 1,024 0.02 0.0 17.27 !$omp
do @error.f:91
 - OMP 1,040 1,024 0.00 0.0 2.48 !$omp
implicit barrier @exact_rhs.f:357
 - OMP 1,040 1,024 0.21 0.0 201.46 !$omp
do @exact_rhs.f:31
 - OMP 1,040 1,024 0.08 0.0 80.42 !$omp
implicit barrier @exact_rhs.f:41
 - OMP 1,040 1,024 0.95 0.0 927.89 !$omp
do @exact_rhs.f:46
 - OMP 1,040 1,024 1.00 0.0 974.77 !$omp
do @exact_rhs.f:147
 - OMP 1,040 1,024 0.51 0.0 501.47 !$omp
implicit barrier @exact_rhs.f:242
 - OMP 1,040 1,024 0.98 0.0 956.34 !$omp
do @exact_rhs.f:247
 - OMP 1,040 1,024 0.27 0.0 264.42 !$omp
implicit barrier @exact_rhs.f:341
 - OMP 1,040 1,024 0.02 0.0 20.34 !$omp
do @exact_rhs.f:346
 - MPI 612 252 0.82 0.0 3266.14
MPI_Bcast
 + USR 572 616 0.00 0.0 0.36
timer_clear_
 - COM 520 512 0.02 0.0 47.11
initialize_
 - COM 260 256 0.00 0.0 12.22
exact_rhs_
 - COM 260 256 0.00 0.0 6.18
error_norm_

 - COM 260 256 0.00 0.0 5.87
rhs_norm_
 - MPI 204 84 0.44 0.0 5205.99
MPI_Reduce
 - MPI 136 56 1.36 0.0 24257.44
MPI_Barrier
 - MPI 52 56 0.00 0.0 1.83
MPI_Comm_rank
 - SCOREP 41 28 0.03 0.0 934.60 bt-
mz_C.28
 - MPI 26 28 0.00 0.0 4.69
MPI_Comm_size
 - MPI 26 28 29.83 0.6 1065350.67
MPI_Comm_split
 - MPI 26 28 0.01 0.0 352.54
MPI_Finalize
 - MPI 26 28 49.31 1.0 1760964.30
MPI_Init_thread
 - COM 26 28 0.11 0.0 3827.25
MAIN__
 - COM 26 28 0.01 0.0 224.01
mpi_setup_
 - COM 26 28 0.01 0.0 179.26
env_setup_
 - USR 26 28 0.00 0.0 47.11
zone_setup_
 - USR 26 28 0.01 0.0 262.41
map_zones_
 - USR 26 28 0.00 0.0 32.67
zone_starts_
 - USR 26 28 0.00 0.0 1.76
set_constants_
 + USR 26 28 0.00 0.0 117.36
timer_start_
 + USR 26 28 0.00 0.0 8.33
timer_stop_
 + USR 26 28 0.00 0.0 1.11
timer_read_
 - COM 26 28 0.01 0.0 263.89
verify_
 - USR 26 1 0.00 0.0 523.75
print_results_

Below the (original) function group summary, the score report now also includes a second summary

with the filter applied. Here, an additional group FLT is added, which subsumes all filtered regions.

Moreover, the column flt indicates whether a region/function group is filtered (+), not filtered (-), or

possibly partially filtered (∗ , only used for function groups).

As expected, the estimate for the aggregate event trace size drops down to 470MB, and the process-

local maximum across all ranks is reduced to 19MB. Since the Score-P measurement system also

creates a number of internal data structures (e.g., to track MPI requests and communicators), the

suggested setting for the SCOREP_TOTAL_MEMORY environment variable to adjust the maximum amount

of memory used by the Score-P memory management is 27MB when tracing is configured.

:::

With the -g option, scorep-score can create an initial filter file in Score-P format. See more details

here.

:::

Let's modify our batch script score.sbatch to enable filtering (see highlighted lines):

#!/bin/bash
#SBATCH -o bt-mz.%j.out
#SBATCH -e bt-mz.%j.err
#SBATCH -J bt-mz
#SBATCH --clusters=cm2_tiny
#SBATCH --partition=cm2_tiny
#SBATCH --reservation=hhps1s24
#SBATCH --nodes=2
#SBATCH --ntasks=28
#SBATCH --ntasks-per-node=14
#SBATCH --get-user-env
#SBATCH --time=00:05:00

module use /lrz/sys/courses/vihps/2024/modulefiles/
module load scorep/8.4-intel-intelmpi
export OMP_NUM_THREADS=4

Score-P measurement configuration
export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filt
export SCOREP_FILTERING_FILE=../config/scorep.filt

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

https://perftools.pages.jsc.fz-juelich.de/cicd/scorep/tags/latest/html/score.html

In first highlighted line we added suffix _filt to create measurement directory with a different name.

In the second one we provided name of the filter file which will be used during the measurement.

INFO

If you do not specify SCOREP_EXPERIMENT_DIRECTORY variable, the experiment directory is

named in the format scorep-YYYYMMDD_HHMM_XXXXXXXX , where YYYYMMDD and HHMM represent

the date and time, followed by random numbers.

If a directory with the specified name already exists, it will be renamed with a date suffix by

default. To prevent this and abort the measurement if the directory exists, set

SCOREP_OVERWRITE_EXPERIMENT_DIRECTORY to false . This setting is effective only if

SCOREP_EXPERIMENT_DIRECTORY is set.

Now we are ready to submit our batch script with enabled filtering

QUESTION

Open the freshly generated stdout file and find the metric "Time in seconds". Compare it to our

baseline measurement here and our original instrumented run here. Has it increased or decreased?

If so, by how much? Which routines in your opinion are safe to filter?

Benchmark configuration (disable load balancing with threads)
export NPB_MZ_BLOAD=0
PROCS=28
CLASS=C

Run the application
mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

22
23
24
25
26
27
28

$ sbatch scorep.sbatch

https://zhukov1.pages.jsc.fz-juelich.de/perf-analysis-hands-on/docs/baseline
https://zhukov1.pages.jsc.fz-juelich.de/perf-analysis-hands-on/docs/instrumentation

Explore profile with CUBE
Congratulations, now we collected our first measurements with acceptable runtime dilation. This new

measurement should accurately represent the real runtime behavior of the BT-MZ application, and can

now be postprocessed and interactively explored using the Cube browser. These two steps can be

conveniently initiated using the following command:

This command will post-process a profile.cubex and create a summary report summary.cubex ,

then open the CUBE browser.

INFO

Exploring profiles via the CUBE over SSH can be very slow due to the high data transfer rates and

latency involved. To improve performance, it is recommended to copy the profile data to a local

machine where CUBE is installed. By examining the profile locally, you can benefit from faster data

access and more responsive analysis, leading to a more efficient and effective performance tuning

process.

Cube is a generic user interface for presenting and browsing performance and debugging information

from parallel applications. The Cube main window consists of three coupled panels containing tree

displays or alternate graphical views of analysis reports. The left panel shows performance properties

of the execution, such as time or the number of visits. The middle pane shows the call tree or a flat

profile of the application. The right pane either shows the system hierarchy consisting of, e.g.,

machines, compute nodes, processes, and threads, a topological view of the application's processes

and threads (if available), or a box plot view showing the statistical distribution of values across the

system. All tree nodes are labeled with a metric value and a color-coded box which can help in

identifying hotspots. The metric value color is determined from the proportion of the total (root) value or

some other specified reference value, using the color scale at the bottom of the window.

$ # Load modules if not loaded already
$ module load intel intel-mpi/2019-intel nano
$ module use /lrz/sys/courses/vihps/2024/modulefiles/
$ module load scorep/8.4-intel-intelmpi scalasca/2.6.1-intel-intelmpi
$ square scorep_bt-mz_sum_filt/

A click on a performance property or a call path selects the corresponding node. This has the effect

that the metric value held by this node (such as execution time) will be further broken down into its

constituents in the panels right of the selected node. For example, after selecting a performance

property, the middle panel shows its distribution across the call tree. After selecting a call path (i.e., a

node in the call tree), the system tree shows the distribution of the performance property in that call

path across the system locations. A click on the icon to the left of a node in each tree expands or

collapses that node. By expanding or collapsing nodes in each of the three trees, the analysis results

can be viewed on different levels of granularity (inclusive vs. exclusive values).

For example, in the figure we can see the distribution of the "Computation time" of the following three

functions x_solve , y_solve , z_solve over 14 MPI ranks on node one and accumulated time across

all MPI ranks on node two .

All tree displays support a context menu, which is accessible using the right mouse button and provides

further options. For example, to obtain the exact definition of a performance property, select "Online

Description" in the context menu associated with each performance property. A brief description can

also be obtained from the menu option "Info".

INFO

To make effective use of the GUI please also consult the Cube User Guide or visit the CUBE

YouTube channel.

QUESTION

Examine our BT-MZ measurements in the CUBE browser and try to answer the following questions

What percentage of the total time is spent on computation, MPI, OpenMP?

What is the name of the routine with the largest execution time (inclusive)?

What is the name of the routine with the largest execution time (exclusive)?

How many times has the adi routine been called?

Which routines are the biggest contributors to the runtime?

What is the min and max execution time of the compute_rhs routine across all threads (all

MPI processes)?

https://apps.fz-juelich.de/scalasca/releases/cube/4.8/docs/guide/html/
https://www.youtube.com/@scalascacube3343/videos

Scalasca trace analysis
While summary profiles only provide process- or thread-local data aggregated over time, event traces

contain detailed time-stamped event data which also allows to reconstruct the dynamic behavior of an

application. This enables tools such as the Scalasca trace analyzer to provide even more insights into

the performance behavior of an application, for example, whether the time spent in MPI communication

is real message processing time or incurs significant wait states (i.e., intervals where a process sits idle

without doing useful work waiting for data from other processes to arrive).

Trace collection and subsequent automatic analysis by the Scalasca trace analyzer can be enabled

using the -t option of scalasca -analyze . Since this option enables trace collection in addition to

collecting a summary measurement, it is often used in conjunction with the -q option which turns off

measurement entirely. (Note that the order in which these two options are specified matters.)

WARNING

Traces can easily become extremely large and unwieldy, and uncoordinated intermediate trace

buffer flushes may result in cascades of distortion, which renders such traces to be of little value.

It is therefore extremely important to set up an adequate measurement configuration (i.e., a

filtering file and SCOREP_TOTAL_MEMORY setting) before initiating trace collection and analysis!

For our example measurement, scoring of the initial summary report with the filter applied estimated a

total memory requirement of 27MB per process (see scoring report here). As this exceeds the default

SCOREP_TOTAL_MEMORY setting of 16MB, use of the prepared filtering file alone is not yet sufficient to

avoid intermediate trace buffer flushes. In addition, the SCOREP_TOTAL_MEMORY setting has to be

adjusted accordingly before starting the trace collection and analysis.

INFO

Renaming or removing the summary experiment directory is not necessary, as trace experiments

are created with suffix trace .

Make sure that all required software is available

$ # Load modules if not loaded already
$ module load intel intel-mpi/2019-intel nano

https://zhukov1.pages.jsc.fz-juelich.de/perf-analysis-hands-on/docs/filtering

Go to our work directory with already build executable and prepared filtering file

Let's copy scalasca.sbatch to the current directory

Let's examine what scalasca.sbatch does by executing nano scalasca.batch

$ module use /lrz/sys/courses/vihps/2024/modulefiles/
$ module load scorep/8.4-intel-intelmpi scalasca/2.6.1-intel-intelmpi

$ cd $HOME/tw45/NPB3.3-MZ-MPI/bin.scorep

$ cp ../jobscript/coolmuc2/scalasca.sbatch .

#!/bin/bash
#SBATCH -o bt-mz.%j.out
#SBATCH -e bt-mz.%j.err
#SBATCH -J bt-mz
#SBATCH --clusters=cm2_tiny
#SBATCH --partition=cm2_tiny
#SBATCH --reservation=hhps1s24
#SBATCH --nodes=2
#SBATCH --ntasks=28
#SBATCH --ntasks-per-node=14
#SBATCH --get-user-env
#SBATCH --time=00:05:00

module use /lrz/sys/courses/vihps/2024/modulefiles/
module load scorep/8.4-intel-intelmpi scalasca/2.6.1-intel-intelmpi
export OMP_NUM_THREADS=4

Score-P measurement configuration

export SCOREP_FILTERING_FILE=../config/scorep.filt
export SCOREP_TOTAL_MEMORY=27MB
#export SCAN_ANALYZE_OPTS="--time-correct"

Benchmark configuration (disable load balancing with threads)
export NPB_MZ_BLOAD=0
PROCS=28
CLASS=C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

In the first highlighted lines we set the measurement configuration, i.e. use the prepared filter file and

set the required amount of memory for tracing based on scoring. And in the last highlighted line we

enabled Scalasca trace analysis with the -t option.

Now we are ready to submit our batch script

After successful trace collection and analysis you should see freshly generated experiment directory

scorep_bt-mz_C_8x6_trace . Let us examine what is inside this directory:

Among the already known files there are some new ones, e.g. a copy of the filter file scorep.filt , an

OTF2 trace archive consisting of the anchor file traces.otf2 , the global definitions file traces.def
and the per-process data in the traces/ directory. Finally, the experiment also includes the trace

analysis reports scout.cubex and trace.stat , and a log file containing the output of the trace

analyser (scout.log).

Let's examine scout.log if the trace analysis was successful:

Run the application
scalasca -analyze -t mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

28
29
30

sbatch scalasca.sbatch

$ ls -1 scorep_bt-mz_C_8x6_trace
MANIFEST.md
profile.cubex
scorep.cfg
scorep.filter
scorep.log
scout.cubex
scout.log
traces
traces.def
traces.otf2
trace.stat

$ cat scorep_bt-mz_C_8x6_trace/scout.log
S=C=A=N: Tue Jun 4 18:42:20 2024: Analyze start

There are no errors or warnings, so the analysis was successful.

INFO

Sometimes in scout.log the Scalasca trace analyzer warns about point-to-point clock condition

violations. These violations happen when the local clocks of individual compute nodes are not

properly synchronized, causing logical event order errors. For example, a receive operation might

appear to finish before the corresponding send operation starts, which is impossible. Scalasca has

a correction algorithm to fix these errors and restore the logical event order, while trying to keep

the intervals between local events unchanged.

To use this correction algorithm, you need to pass the --time-correct option to the Scalasca

trace analyzer. Since the analyzer is started with the scalasca -analyze command, you set this

option using the SCAN_ANALYZE_OPTS environment variable. This variable holds the command-

line options for scalasca -analyze to pass to the trace analyzer. You can re-analyze an existing

trace measurement using the -a option with scalasca -analyze , so you don't have to collect

new data.

/dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/x86_64/intel-mpi/2019.12.320-
gcc-wx7cjlg/compilers_and_libraries_2020.4.320/linux/mpi/intel64/bin/mpiexec -
n 28
/lrz/sys/courses/vihps/2024/tools/scalasca/2.6.1/intel_intelmpi/bin/scout.hyb
./scorep_bt-mz_C_28x4_trace/traces.otf2
SCOUT (Scalasca 2.6.1)
Copyright (c) 1998-2022 Forschungszentrum Juelich GmbH
Copyright (c) 2014-2021 RWTH Aachen University
Copyright (c) 2009-2014 German Research School for Simulation Sciences GmbH

Analyzing experiment archive ./scorep_bt-mz_C_28x4_trace/traces.otf2

Opening experiment archive ... done (0.013s).
Reading definition data ... done (0.015s).
Reading event trace data ... done (0.131s).
Preprocessing ... done (0.181s).
Analyzing trace data ... done (10.301s).
Writing analysis report ... done (0.129s).

Max. memory usage : 279.777MB

Total processing time : 10.841s
S=C=A=N: Tue Jun 4 18:42:37 2024: Analyze done (status=0) 17s

The additional time required to execute the timestamp correction algorithm is typically small

compared to the trace data I/O time and waiting times in the batch queue for starting a second

analysis job. On platforms where clock condition violations are likely to occur (i.e., clusters), it is

therefore often convenient to enable the timestamp correction algorithm by default.

Similar to the summary report, the trace analysis report can finally be postprocessed and interactively

explored using the Cube report browser, e.g. by using the square command

The report generated by the Scalasca trace analyzer (i.e. trace.cubex) is again a profile in CUBE4

format, however, enriched with additional performance properties, e.g. "Delay costs", "Critical path",

etc. Examination shows that roughly half of the time spent in MPI point-to-point communication is

waiting time, mainly in "Late Sender" wait state.

INFO

A detailed list and description of performance metrics one can be found here.

While the execution time in the x_solve , y_solve and z_solve routines looked relatively balanced in

the summary profile, examination of the "Imbalance" in "Critical path" metric shows that these routines

in fact exhibit a small amount of imbalance, which is likely to cause the wait states at the next

synchronization point. This can be verified using the "Late Sender" in "Delay costs" metric, which

confirms that the x_solve , y_solve and z_solve routines are responsible for significant amount of

the "Late Sender" wait states.

$ square scorep_bt-mz_C_8x6_trace/
INFO: Post-processing runtime summarization report (profile.cubex)...
INFO: Post-processing trace analysis report (scout.cubex)...
INFO: Displaying ./scorep_bt-mz_C_8x6_trace/trace.cubex...

https://apps.fz-juelich.de/scalasca/releases/scalasca/2.6/help/scalasca_patterns.html

