VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

linaroforge

Linaro Forge
Performance Engineering with Linaro PR and Linaro MAP

Rudy Shand - Field Application Engineer
Linaro
rudy.shand@linaro.org



mailto:rudy.shand@linaro.org

- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

HPC Development Solutions from Linaro

Best in class commercially supported tools for Linux and
high-performance computing (HPC)

Linaro Forge

%

Debug Profile Analyse
Linaro DDT Linaro MAP Linaro

Performance Reports

Performance Engineering for any architecture, at any scale

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)




- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Forge
An interoperable toolkit for debugging and profiling

K The de-facto standard for HPC development

e Most widely-used debugging and profiling suite in HPC
e Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities

e Powerful and in-depth error detection mechanisms (including memory debugging)
e Sampling-based profiler to identify and understand bottlenecks
e Available at any scale (from serial to exascale applications)

Easy to use by everyone
e Unique capabilities to simplify remote interactive sessions
e Innovative approach to present quintessential information to users

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Supported Platforms

[Intel Compiler] [ROCm [ CCE } [ACfLJ [ GCC J [NVHPCJ [ IBM XL J
[Intel MPI} [HPE MPI MPICH } [Open MPI} [] [ IBM Spectrum MPI } W w
[ RHEL 7+ [ SLES 15 } [ Ubuntu 20.04+ } macO

AMD ROCm NVIDIA CUDA Intel Xe-HPC

[ Intel (x86-64) } [ AMD (x86-64) } [ arm (aarch64) }

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Performance tools

Characterize and understand the performance of HPC application runs

lgl’\\ Gather a rich set of data

%, .

_' e Analyses metric around CPU, memory, 10, hardware counters, etc.
Comme,:;'i':ry,:,zpported e Possibility for users to add their own metrics

@ Build a culture of application performance & efficiency awareness

e Analyses data and reports the information that matters to users
Accurate and

Astute insight e Provides simple guidance to help improve workloads’ efficiency
: ? Adds value to typical users’ workflows
10X e Define application behaviour and performance expectations
Relevant advice e |Integrate outputs to various systems for validation (eg. continuous integration)

to avoid pitfalls ! .
e Can be automated completely (no user intervention)

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)




- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Performance Reports

A high-level view of application performance with “plain English” insights

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /

—j .
./Bin/low_freq/../../../../Input/input_250x125_corner.nml A breakdown of the 16.2% |/O time:
2 nodes (8 physical, 8 logical cores per node)

15 GiB per node Time in reads 0.0% |

16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% (NN

node-1

Thu Jul 9 2015 10:32:13 Effective process read rate  0.00 bytes/s |

;,65/ S/eswnds (about 3 minutes) Effective process write rate 1.38 MB/s I
In/../src

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

20.6% - Time spent running application code. High values are usually good.
Com DUte . This is very low; focus on improving MPI or 1/O performance first
2% _ Time spent in MPI calls. High values are usually bad.
MPI 63. This is high; check the MPI breakdown for advice on reducing it
. Time spent in filesystem 1/0. High values are usually bad.
I/O 16.2% This is average; check the 1/0 breakdown section for optimization advice

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)




VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Linaro Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report

Multi-threaded U SIMD 110

A breakdown of the % CPU time: A breakdown of how the % total /O time was spent:

| I | single-core code 306% MW - | | | I Ti
para eliIsm —_ ’ para elism ime in reads
OpenMP regions % Time in writes Memory
Scalar numeric ops ~ 9.5% |l Estimated read rate| Per-process memory usage may also affect scaling:
Vector numeric ops  0.0% A Estimated write ratd 1 orocess memory usage 160 Mb I
Memory accesses — Most of the time is §  Peak process mem:
transfer rate. This Lustre
The per-core perform) M P | inefficient access p4 Peak node memory
identify time-consumy write calls are affec Lustre file operations (per node)
performance. 3% total time spentin MPI calls: l.'“:.ﬁ.e;knﬁ'ﬁﬁ,iﬁ“ci” ! '
No time is spent in V| Time in collective calls 100.0% ] processes and mord Mean write I
compiler's vectorizat| Peak write 1] E
be vectorized Time in point-to-point calls 0.0% Load nergy
Esti d collective rate 4.07 bytes/s |1 < I~ - b | Mean file opf breakdown of how the 32.3 Wh was used
Estimated point-to-point rate 0 bytes/s | Im a ance Mean metad CPU 61.9% N
Al of the time is spent in_collective calls with low transfer rate. System % M
This suggests a signific| ,
e it M d ‘ w .
synchronization overhej O pen MPp ean node power
MPI profiler. L Peak node power  98.0 W |
P A breakdown of the 99.5% time in OpenMP regions: OM P
Significant time is spent waiting for memory accesses. Reducing
Computation % —1 . .
effICIenC the CPU clock frequency could reduce overall energy usage.
Synchronization 41.1% 1 y

Physical core utilization % [l

| System
System load 99.7% HH usa e
Significant time is spent synchronizing threads in parallel regions. g
Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



VI-HPS

Cores

The Performance Roadmap

Optimizing high performance applications Piscover synchronization

overhead and core utilization

@Synchronization-heavy code and
implicit barriers are revealed

Improving the efficiency of your parallel
software holds the key to solving more

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Verification

®yalidate corrections and
optimal performance

Vectorization

Understand numerical intensity
and vectorization level.

Hot loops, unvectorized code and
GPU performance reveleaed

complex research problems faster.

This pragmatic, 9 Step best practice guide,
will help you identify and focus on
application readiness, bottlenecks and ~
optimizations one step at a time.

Vo

® Discover lines of code
spending a long time in I/0.

Analyze before you optimize

Measure all performance aspects.
You can't fix what you can't see.
Prefer real workloads over artificial tests.

Bugs
eCorrect application

® Trace and debug slow access
patterns.

Linaro Forge T
Linaro Performance Reporis I e
l‘hf ]

Memory

eReveal lines of code bottlenecked by
memory access times.

.Trace allocation and use of hot data
structure

Communication

;Track communication performance.

Workloads

Detect issues with balance.

Discover which communication calls
@are slow and why.

@Slow communication calls and
processes.

Dive into partitioning code.



-HPS

MAP Capabilities

MAP is a sampling based scalable profiler
e Built on same framework as DDT
e Parallel support for MPI, OpenMP, CUDA
e Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
e Stack traces
e Augmented with performance metrics

Adaptive sampling rate

e Throws data away - 1,000 samples per process
e Low overhead, scalable and small file size

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s

Application activity

CPU floating-point

31.9% SRR e pE e e PR P e ittt
0 = .:‘j Lot d——— i — - e mek ww e whe 77 - -—— ) W wa—" .
Memory usage HED
149 MB
[
07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP %, MPI 19.1 %, File /O 8.6 %, Synchronisation %, OpenMP overhez

f hydro.fo0 X

ttttos st

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks
Total core time A MPI Overhead Function(s) on line Source

= & clover_leaf [program]

clover_leaf CALL

= hydro

39.7% suman ™ e 11 advection_module::advection
E: 2 R 8.3% # timestep_module::timestep
70% . 0.7% # pdv_module::pdv
7.0% - <0.1% ) visit
5.0% 1.2% # pdv_module::pdv
3.1% #acce Cycles per instruction i
2.6% 1  flux_
2.3% wresel 83 .
Showing data from 32,000 samples taken over 32 processes (1000 | cpy Cycles 55.3 [ e e—
515G/s
0
Instructions a7 _ ]
61.5G/s
0
L2 Cache Accesses 680
379 M /s o
0
L2 Cache Misses 225 .
125 M /s e s AT



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

_inaro MAP Source Code Profiler Highlights
4 A 30 1 late to the party
3 = }.8% 31 do jzl,ZO‘npvocs; a=st
1 E end it Input/Output | Project Files | Main Thread Stacks | Functions
§ 34 = if (pe /= @) then fain Thread Stacks
g 32 dg;“ NEICEN (ATR) otal coretime ~ MPI  Function(s) on line Sour
L — 37 8 do from=1,nprocs-1 = CallActionsSeparatedConcerns [inlined]... stef
= L% 38 call MPLRECV(b, sii = Call [inlined] Call
- Jlj -22 do 121:5?}; ":5‘":“" =hemelb:net:IteratedAction:CallActi... rett
Iy e . Py mg'::‘ + Answer Tror =hemelb::extraction::PropertyActor:... Endl
- 2 end if =hemelb::extraction::PropertyWr
43 end do hemelb::extraction::LocalPropert... locg
0, 0, | 1.0% e 44 Call MPI BARRIER(MPI COMM 80.3% I  80.3% PMPI_file_write_at MPI_
ympute 76 %, MPI 24 %, File |/ i st i
a6 if (pe == 8) print *,*fles <01% #1 other
47 = do iterations=1,2 o
48 a(:) = 1000.0"real(pe+2, ihowing data from 32,768 samples taken over 512 processes (64 per process)

Remove 1?0 bottleneck

Find the peak memory use Fix an MPI imbalance

Hide Metrics...

{

mmult(size, nproc, mat a, mat

e _ (el o5 += Ali*size+k]*B[k*size+]]

. Sleeping © % | CPU floating-point 0 %; Zoom *1 = © MPI_Finalize();
murite(cize. mat r. filename )

Make sure OpenMP regions

Improve memory access Restructure for vectorization

make sense

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



- PS VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

GPU Profiling

File Edit View Metrics Window Help
Profiled: mixed-cpu-gpu on 3 processes, 1 node, 3 cores (1 per process) Sampled from: Mon Feb 28 21:22:24 2022 for 6.1s  Hide Metrics... P rofi Ie

Main thread activity

e Supports both AMD and Nvidia GPUs
6Py utilzation ) ) T e Able to bring up metadata of the profile
Gpu:miw = e Mixed CPU [green] / GPU [purple] application
41% ) e CPU time waiting for GPU Kernels [purple]
GPU memory utilization ‘°° e GPU Kernels graph indicating Kernel activity
21:22:24-21:22:30 (6.131s): Mai"nmpute 3.1.2 %, h;m. Accele-rator GIA% - ’ T Zoom %1 =

GUI information
detine e GUI is consistent across platforms
===« Zoominto main thread activity

B e Ranked by highest contributors to app time

™ mixed-cpu-gpu.cpp X

]

ti-= Vo ¥ +

4

Input/Output  Project Files ~ Main Thread Stacks ~ Functions = GPU Kernels

GPU Kemels @®
Breakdown “ GPU Kemels Source
~ & mixed-cpu-gpu [program] GPU: line-level information is not available for ROCm kernels
28.1% @ MatrixMulHIP
Showing data from 900 samples taken over 3 processes (300 per process) & Main Thread View

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



-HPS

Python Profiling

19.0 adds support for Python
e Call stacks
e Time in interpreter

Works with MPI4PY

e Usual MAP metrics

Source code view
e Mixed language support

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)

VIRTUAL INSTITUTE - HIGH PRODUC

IVITY SUPERCOMPUTIN

: Profiled: python3.5 on 2 processes, 1 node, 2 cores (1 per process) Sampled from: Wed Jan 30 2019 18:49:21 (UTC) for 45.1s Hide Metrics...

100

Main thread activity

CPU floating-point
33%

POSIX /O write rate  '*?
11.0 kB/s

Memory usage
78.1 MB

0
MPI point-to-point e

3.77 k calls/s

o JF

| 18:49:21-18:50:06 (45.068s): Main thread compute 42.5 %, MPI 48.4 %, File 1/0 3.8 %, Python interpreter 5.4 % Zoom A&

77 diffusion-fv-2d.py X Time spent on line 74 ®

Breakdown of the 38.3% time
spent on this line:

Executing instructions
Calling other functions
Executing Python code & |

e il 4 72
TR TR

bl s N s

ik P n\-n‘wmlu it m

[«

[l D

Input/Output | Project Files | Main Thread Stacks | Functions |
Main Thread Stacks

| Total core time A MPI Function(s) on line Source
= & python3.5 [program]
@ # diffusion-fv-2d.py
= main
1array_subtract, array_multiply.
@ halo

| |®
Y@

Position

diffusion-fv-2d.py:1
diffusion-fv-2d.py:169
diffusion-fv-2d.py:74
diffusion-fv-2d.py:77

Arm Forge 19.0.2 * Main Thread View

38.3% s bt ol it g
LRSI vy T T —F LT

Showing data from 2,000 samples taken over 2 processes (1000 per process)

[«

map —--profile srun -n 2 python3 ./diffusion-fv-2d.py



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

-HPS

Compiler Remarks

gma (newval, value

1]

¥ ¥pr

Annotates source code with compiler remarks
e Remarks are extracted from the compiler optimisation report
e Compiler remarks are displayed as annotations next to your source code a

© wave openmp.c:207 __kmpc_fork_call will not be inlined into update
wave_openmp.c:167 because its definition is unavailable [inline]

BN N

wave_openmp.c:207 _ kmpc_fork_call will not be inlined into update
wave_openmp.c:167 because its definition is unavailable [inline]
Colour coded
e Their colour indicates the type of remark present in the following priority order: 0
1. Red: failed or missed optimisations

2. Green: successful or passed optimisations MP{-/ wave_openmp.c:207 'update.omp_outlined_debug_ " inlined into
3. White: information or analysis notes 'update.omp_outlined wave_openmp.c:207": always inline attribute at
callsite update.omp_outlined:0:1; [inline]

wave_openmp.c:207 6 virtual registers copies 1.756000e+01 total
copies cost generated in function [regalloc]

Compiler Remarks menu. ® wave_openmp.c:207 96 stack bytes in function [prologepilog] )
e Specify build directories for non-trivial build systems .
o Filter out remarks - ® wave_openmp.c:207 80 instructions in function [asm-printer] E
T oUA Y
" ,. 1f ((first + j - 1 == 1) || (first + j - 1 == tpoints)) -
newvallj] = 0.0;
216 do math(j);

SWap _arravs */
»

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

wrf_neoverse-512tvb.exe mp X wrf_neoverse-512tvb,

C @ O Ffile:///h beapaio1/demo/WRFGravil f_neoverse-512tvb_8p_1n_8t_2022-10-16_ ¥ =

mpirun -n 8 --map-by socket:PE=8 ../main
/wrf_neoverse-512tvb.exe

Linaro 1 node (64 physical, 64 logical cores per node)
Performance 124 GiB per node
Reports 8 processes, OMP_NUM_THREADS was 8

ip-172-31-25-35.us-west-2.compute.internal

Sun Oct 16 11:07:00 2022 MPI
615 seconds (about 10 minutes)

/home/ec2-user/WRFV4.4/main

Summary: wrf_neoverse-512tvb.exe is Compute-bound in this
configuration

. N Time spent running application code. High values are usually good.

ompute 68.8% _ This is average; check the CPU performance section for advice
. Time spent in MPI calls. High values are usually bad
MPI 31.0% - This is average; check the MPI breakdown for advice on reducing it
o Time spent in filesystem I/0. High values are usually bad.
0.1% This is very low; however single-process 1/O may cause MPI wait times

This application run was . A breakdown of this time and advice for investigating further is in the

section below.

CPU Metrics MPI

Linux perf event metrics: A breakdown of the 31.0% MPI time:

Single-core code % | Time in collective calls % -
OpenMP regions % Time in point-to-point calls 320% H
Cycles per instruction Effective process collective rate 45.1MB/s |

L2D cache miss ratio 1.13 - Effective process point-to-point rate 938 MB/s I
Stalled backend cycles 65.3% Sl Most of the time is spent in t with a low transfer
Stalled frontend cycles  2.2% | rate. This can be caused by inefficient message sizes, such as

many small messages, or by imbalanced workloads causing
A high number of cycles are stalled in the CPU. A high amount processes to wait
of memory accesses could be responsible for the non
exploitation of all the CPU cycles.

OpenMP

A breakdown of the % 1/O time: A breakdown of the 94.8% time in OpenMP regions:

Time. in reads oz Comnutation oz

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

eoverse-512tvb_arm)

C @ O file:///home/beapaio1/demo/WRFGraviton/wrf_neoverse-512tvb_armpl_8p_1n_8t_2022 ¥ =

mpirun -n 8 --map-by socket:PE=8 ../main
/wrf_neoverse-512tvb_armpl.exe

Linaro 1 node (64 physical, 64 logical cores per node)
Performance 124 GiB per node
Reports 8 processes, OMP_NUM_THREADS was 8 P

ip-172-31-25-35.us-west-2.compute.internal

Sun Oct 16 11:23:15 2022
570 seconds (about 10 minutes)

/home/ec2-user/WRFV4.4/main

Summary: wrf_neoverse-512tvb_armpl.exe is Compute-bound in
this configuration

2 Time spent running application code. High values are usually good.
Compute
Compute es7% [N This is average; check the CPU performance section for advice
. Time spent in MPI calls. High values are usually bad.
MPI 31.1% - This is average; check the MPI breakdown for advice on reducing it
N Time spent in filesystem 1/0. High values are usually bad.
0.3% This is very low; however single-process I/O may cause MPI wait times
This application run was . A breakdown of this time and advice for investigating further is in the

section below.

CPU Metr MPI

Linux perf event metrics: A breakdown of the 31.1% MPI time:

single-core code 6% | Time in collective calls % -

OpenMP regions % Time in point-to-point calls 258% W

Cycles per instruction Effective process collective rate 39.9MB/s |

L2D cache miss ratio 1.54 N Effective process point-to-point rate 1.26 GB/s [N

Stalled backend cycles 67.1% NIl Most of the time is spent in 3 e with a low transfer

Stalled frontend cycles  2.1% | rate. This can be caused by inefficient message sizes, such as
many small messages, or by imbalanced workloads causing

A high number of cycles are stalled in the CPU. A high amount processes to wait

of memory accesses could be responsible for the non
exploitation of all the CPU cycles.

OpenMP

A breakdown of the % 1/0 time: A breakdown of the 94.4% time in OpenMP regions:

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

wrf_neoverse-512tvb_arm,

C @ :///home/beapai01/demo/WRFGraviton/wrf_neoverse-512tvb_armpl_z_8p_1n_8t_20. ¥ )
mpirun -n 8 --map-by socket:PE=8 ../main
. /wrf_neoverse-512tvb_armpl_z.exe
Linaro 1 node (64 physical, 64 logical cores per node)
Performance 124 GiB per node |
Reports 8 processes, OMP_NUM_THREADS was 8 )

ip-172-31-25-35.us-west-2.compute.internal

Sun Oct 16 11:41:26 2022 MP|
540 seconds (about 9 minutes)

/home/ec2-user/WRFV4.4/main

Summary: wrf_neoverse-512tvb_armpl_z.exe is Compute-bound in
this configuration

) . . Time spent running application code. High values are usually good.
compute 715 [N This s high; check the CPU performance section for advice

. Time spent in MPI calls. High values are usually bad
MPI 27.9% - This is low; this code may benefit from a higher process count

Time spent in filesystem 1/0. High values are usually bad

‘ 4% This is very low; however single-process /0 may cause MPI wait times
This application run was . A breakdown of this time and advice for investigating further is in the
section below.

As little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU Metrics MPI

Linux perf event metrics: A breakdown of the 1% MPI time:

Single-core code 1.8% | Time in collective calls 69.7% N

OpenMP regions % Time in point-to-point calls 30.3% M

Cycles per instruction Effective process collective rate 56.9 MB/s |

L2D cache miss ratio 1.65 I Effective process point-to-point rate 1.26 GB/s N

Stalled backend cycles  67.2% [ Most of the time is spent in with a low transfer

Stalled frontend cycles  2.1% rate. This can be caused by inefficient message sizes, such as
many small messages, or by imbalanced workloads causing

A high number of cycles are stalled in the CPU. A high amount processes to wait

of memory accesses could be responsible for the non-

exploitation of all the CPU cycles.

| OpenMP

A breakdown of the % 1/0 time: A breakdown of the 95.2% time in OpenMP reaions:

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10 - 13 JUNE 2024)



VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

rudy.shand@linaro.org



mailto:rudy.shand@linaro.org

