VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Performance Analysis
with Callgrind and KCachegrind

Josef Weidendorfer!
45th V|-HPS Tuning Workshop
June 2024, Garching

1 Leibniz Supercomputing Centre (LRZ)




VIRTYUALANSTITYTE ~HIGHPRODUCTIVITY SUPERCOMPUTING

Focus: CPU Cache Simulation using a Simple Machine Model

Why simulation? (in contrast to real measurement)

= Reproducability

= No influence of tool on results

= Allows to collect information not possible with real hardware
= No special permissions needed / cannot crash machine
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Focus: CPU Cache Simulation using a Simple Machine Model

Why a simple machine model?

= easier to understand
= still captures most problems
= faster simulation

A sophisticated model includes

= All pipeline stages, Out-of-Order scheduling, speculation, instr. troughput & latency

= All cache layers, coherency protocol, replacement, memory parallelism, contention,
hardware prefetching, exact interleaving of accesses from cores
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Focus: CPU Cache Simulation using a Simple Machine Model

Why a simple cache model?

= Bottlenecks in the memory hierarchy often dominate anything else
= You should first check this with real measurements

= Qualitative results still useful for cache optimizations
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Outline

= Background

= Callgrind and {Q,K}Cachegrind

= Measurement
= Visualization

= Hands-On
= Example: Matrix Multiplication
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Single Node CPU Performance: Cache Exploitation is Important
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Access latencies to local memory on modern x86 processors ~ 200 cycles
= AVX512 can do 200 * 8 (vector) * 4 (2 FMA units) = 6400 DP-FLOPs / access
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Single Node CPU Performance: Cache Exploitation is Important

This will mostly be true also in the future
= Latency of main memory access does not improve

= Bandwidth to typical main memory (DDRX) increases slower than compute power
= Lots of integrated cores requesting access to memory (multi-core, accelerators)

= Improvements GDDRx / HBMx: better bandwidth, but fixed capacity, higher power
(Examples: GPUs / A64FX with HBM)

= Power consumption

= DP FMADD: 100 pJ (2011) > 10 pJ (2018)
= DP Read DRAM: 4800 pJ (2011) > 1920 pJ (2018)

= "Power Wall”: drives large system designs (lots of compute but low memory capacity > NVM)
= “Affinity Wall”: pressure towards shorter transfer distances makes programming more complex
(increased number of NUMA domains, NUCA & PIM designs)
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Caches do their Job transparently...
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Caches work because programs expose access locality

= Temporal (hold recently used data) / Spatial (work on blocks of memory)

The “Principle of Locality” is not enough...

= “"Cache optimization”
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How to do Cache Optimization on Parallel Code

= Analyze sequential code phases

= Optimization of sequential phases always improve runtime
= No need to strip down to sequential program

= Influences of threads/tasks on cache exploitation
= On multi-core: all cores share bandwidth to main memory
= Use of shared caches:
cores compete for space vs. cores prefetch for each other

= Slowdown because of “false sharing”
» not easy to measure with hardware performance counters
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Going Sequential ...

= Sequential performance bottlenecks

= Logical errors (unneeded/redundant function calls)
= Bad algorithm (high complexity or huge “constant factor”)
= Bad exploitation of available resources (caches, vector units, pipelining,...)

= How to improve sequential performance

= Use tuned libraries where available
= Check for above obstacles = by use of analysis tools
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(Sequential) Performance Analysis Tools

= Count occurrences of events
= Resource exploitation is related to events
= SW-related: function call, OS scheduling, ...
= HW-related: FLOP executed, memory access, cache miss, time spent for an activity (like running an
instruction)

= Relate events to source code
» Find code regions where most time is spent
= Check for improvement after changes
= Profile data™: histogram of events happening at given code positions
= Inclusive vs. Exclusive cost
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How to measure Events

= Target: real hardware
= Needs sensors for interesting events
= For low overhead: hardware support for event counting
= May be difficult to understand because of unknown micro-architecture, overlapping and
asynchronous execution

= Target: machine model

= Events generated by a simulation of a (simplified) hardware model
= No measurement overhead: allows for sophisticated online processing
= Simple models make it easier to understand the problem and to think about solutions

= Both methods (real vs. model) have advantages & disadvantages,
but reality matters in the end
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Back to the Memory Wall: Improvements

Latency
= Exploit (fast) cache: improve locality of data
= Allow hardware to prefetch data (use access patterns which are easy to predict)
= Memory controller on chip (standard today) - be aware of NUMA

Bandwidth
= Share data in caches among cores
= Keep working set in cache (temporal locality)
= Use good data layout (spatial locality)

= If memory accesses are unavoidable
» Predictable access pattern (stream/strided) = exploit HW prefetcher
= Memory affinity
» Avoid data dependencies (linked list traversals)
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Cache Optimization (1): Reduce Number of Accesses

= Use large data types (may be done by compiler)
= Vectors instead of bytes

= 1 cache line = 1 access: use full cache lines
= Alignment: crossing cache line gives two accesses

= (redundant) Calculation instead of memory access

= Avoid unneeded writes

= Check if a variable already has given value before writing
= “Write-allocate” effect: higher bandwidth than expected
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Cache Optimization (2): Reorder Accesses

» If possible, do sequential accesses (in inner loop level)
= Exploit full cache line
» Trigger hardware prefetcher
(small sequential accesses reduce accuracy of HW prefetcher)

= Blocking: reuse data as much as possible —> -] —>
» Instead of multiple large sweeps over large buffer, > ><> ><>
split up into multiple small sweeps over buffer parts éi ‘sﬂ >

= Useful in 1d, 2d, 3d, ... e P s

= Recursive (multi-level) blocking: “cache-oblivious”:
best use of multiple cache levels at once!
= Multi-core: consecutive iterations on cores with shared cache
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Cache Optimization (3): Improve Data Layout

= Group data with same access frequency and access type (read vs. write)

= Use every byte of a fetched cache line (unused data is wasted space + bandwidth)
= AoS-to-SoA

= Reorder data in memory according to traversal order in program

= Avoid power-of-2 strides: may produce conflict misses
= By padding
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Callgrind
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Callgrind: Basic Features

Based on Valgrind

= Runtime instrumentation infrastructure (no recompilation needed)
= Dynamic binary translation of user-level processes

» Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM/ARM64, MIPS

= Open source (GPL), www.valgrind.org

» Includes correctness checking & profiling tools
» *“memcheck”: accessibility/validity of memory accesses
= “helgrind” / “drd”: race detection on multithreaded code
= “cachegrind”/"callgrind”: cache & branch prediction simulation
= “massif”: memory profiling

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 10, 2024 19



VIRTYUALANSTITYTE ~HIGHPRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Part of Valgrind

= Open Source, GPL Binary -—){&‘Vd]gllncq
= Callgrind vs. Cachegrind Voebugino | (O
. ] Memor ven
Dynamic call graph Accoseos || cEvert o H
= Simulator extensions v A
= More control [ 2-level $ Simulator J

= Measurement

= Profiling via machine simulation (simple cache model)

» Instruments memory accesses to feed cache simulator

= Hook into call/return instructions, thread switches, signal handlers
» Instruments (conditional) jumps for CFG inside of functions

= Presentation of results: callgrind_annotate / {Q,K}Cachegrind
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Pro & Contra (i.e. Simulation vs. Real Measurement)

Usage of Valgrind
= Driven only by user-level instructions of one process

= Slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)
= “fast-forward mode”: 2-3x

= Serializes threads
= Detailed observation
= Does not need root access / can not crash machine

Cache model

= “"Not reality”: synchronous 2-level inclusive cache hierarchy
(size/associativity taken from real machine, always including LLC)

= Reproducible results independent on real machine load

= Derived optimizations applicable for most architectures
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Callgrinds Cache Model vs. Xeon

= Parameters: size, line size, associativity

=1 / LLC, inclusive, LRU, shared among threads

= Write back vs. write through does not matter for hit/miss counts
= Optional stream prefetcher

CoolMUC2 node: 2x Intel Xeon (Haswell, each 14 cores, 35 MB L3)

= private L1 (D/I a 32kB) + L2 (256 kB) per core
= |L1/L2 strictly inclusive to L3, L3 shared (SNC2: 17.5 MB L3 per core visible)

Callgrind only simulates 2 levels (L1+LLC) = LLC hit count higher
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Callgrind: Advanced Features

= Interactive control (backtrace, dump command, ...)
= “Fast forward”-mode to quickly get at interesting code phases
= Application control via “client requests” (start/stop, dump)

Optional

» Best-case simulation of simple stream prefetcher

» Byte-wise usage of cache lines before eviction

= Branch prediction

= Dynamic context in function names (call chain/recursion depth)
= Wallclock time spent in system calls (useful for MPI)
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Callgrind Cheat-Sheet

= “valgrind —-tool=callgrind [callgrind options] <yourprogram> [args]”
= Cache simulator: “--cache-sim=yes”

» Specify cache sizes: “--L1/I1/LL=<size>,<assoc>,<linesize>"

= Branch prediction simulation: “--branch-sim=yes”

= Enable for machine code annotation: “--dump-instr=yes”

= Start in “fast-forward”: “--instr-atstart=yes”
= Switch on event collection: “callgrind_control —-i on”

= Spontaneous dump: “callgrind_control —d [dump identification]”
= Current backtrace of threads (interactive): “callgrind_control -b”
= Separate output per thread: "“--separate-threads=yes”

= Jump-profiling in functions (CFG): “--collect-jumps=yes”

= Time in system calls: “--collect-systime=yes”

= Byte-wise usage within cache lines: “--cacheuse=yes”
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{Q,K}Cachegrind
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Features

Open source, GPL, kcachegrind.github.io
= https://github.com/KDE/kcachegrind
= includes pure Qt version, able to run on Linux / OS-X / Windows

Visualization of
= Call relationship of functions (callers, callees, call graph)

= Exclusive/Inclusive cost metrics of functions
= Grouping according to ELF object / source file / C++ class

= Source/assembly annotation: costs + CFG
= Arbitrary events counts + specification of derived events

Callgrind support: file format, events of cache model

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 10, 2024

26



VIRTYUALANSTITYTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

Usage

gcachegrind callgrind.out.<pid>

callgrind.out. 13505 [Is] - KCachegrind BEB

Eile View Go Settings Help
O~ OQ % ||« [mnstruction Fetch [
/| #xo8049c80
» | eft: “Dockables” = Y :
. self | ELF Object d |
B 63.85 Mlibc-2.5.50
= = M 30.50 MId-2.5.50
= list of function groups
0.20 Mlibpthread-2.5.s0
0.01 "librt-2.5.50
1 0.01 Mlibattr.s0.1.1.0
groups according to
Called | Function
. . VU L= UAUOUTILOU
» library (ELF object) e
2.31 3.05 1 Mprint_dir
1.22 154 1 Mprint_current_files
u SO u rce 0.810 21.78 3 Mquote_name
0.52 3.25 1 Mcalculate_columns
042 051 1M close_stdout
» class (C++)
0.42 1.40 2 Mclose_stream
042 056 1 Mprint_name_with_quoting
0.39 1.05 2 Mlength_of_file_name_and_]
0.39 1.93 3 Mquotearg_buffer
- - - 0.38 1.94 2 Mclone_guoting_options
n | |St Of f un Ct ions Wi th 033M4092  3mquotsarg buffer restyled 5040 %
0.36 0.86 2 Mxstrdup 4
035 0.64 1M queue_directory
H - 0.34 0.82 1Msort_files
» inclusive
021 091 1 Mhuman_options
H 020 115 1M gobble_file 89.41 %
= exclusive costs :
0.19 0.9 2 Mxmemdup
0.18 049 1M atexit
0.17 0.47 1Mfree_pending_ent
0.07 043 1M default_block_size
0.04 101 2 mxnmalloc . 10.14 % 62.57 %
0.01 045 1M __libc_csu_init (2]
000 1.09  28MO0x0805114F -
000 0093 2 Mclear_files z L J <> L
T - - T ICaIIezMap ‘ ‘CE" Graph lcallees ‘All Callees | Assembler I

- Total Instruction Fetch Cost: 1 197 857

= Right: visualization panes
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isualization panes for selected function

« List of event types  Treemap visualization + Source annotation

 List of callers/callees

main

Types | Callers

All Callers ‘Sgurce ‘calleemap

| Event Type

Data Read Access EM7231  0.02 Dr

Data Write Access EM73.02  0.07 Dw

L1 Instr. Fetch Miss Bl 58.47 2.43  Iimr

L1 Data Read Miss M 51.17 0.22 Dimr

L1 Data Write Miss B 46.20 1,19 Dimw

L2 Instr, Fetch Miss B 54.75 253 I2mr

L2 Data Read Miss @ 38.61 0.00 D2mr

L2 Data Write Miss M 42,25 1,02 D2mw

L1 Miss Sum 55265 097 Lim = Ilmr + D1imr + D1mw
L2 Miss Sum W 4493 1.06 L2m = I2mr + D2mr + D2mw
Cycle Estimation ~ EM67.05 030 CEst= Ir+ 10L1m + 100 L2m

| Ir | count | callee [l
1 Hsetlocale (libc-2.5.50: setlocale.c)
1 Mprint_dir (Is: Is.c)

1 Mexit (libc-2.5.50: exit.c)

1.78 88 _dI_runtime_resolve (Id-2.5.s0)

051 2 Hclone_quoting_options (Is: quotearg.c)
0.47 5Mgetenv (libc-2.5.50: getenv.c)

0.46 1 Mqueue_directory (Is: Is.c)

0.28 1Mhuman_options (Is: human.c)

25 1 Matexit (Is)

0.23 1 mfree_pending_ent (Is: Is.c)

0.11 1Mgetopt_long (libc-2.5.50: getoptl.c)

0.06 1 Mbindtextdomain (libc-2.5.s0: bindtextdom.c)

0.05 1 in (libc-2.5.50: 1.c)

0.04 1 mxnmalloc (Is: xmalloc.c)

0.01 1 Misatty (libc-2.5.50: isatty.c) L

0.00 1 Hset_char_guoting (Is: quotearg.c)

0.00 1 8clear_files (Is: Is.c) E

0.00 18 get_quoting_style (Is: quoteara.c) 3
Caller Map Call Graph | Callees | All Callees | Assembler

« Call Graph

All Callers | Source | Callee Map

i

—
|

=8 i
| =T

= P

« Assemly annotation

Types \gauers \Au callers ‘Sgurce | Callee Map [

# ‘ Ir ‘ l Source ('/usr/src/debug/coreutils-6.4/src/ls.c') [:J
1119

1120 #if | SA_NOCLDSTOP D
1121 bool caught_sig[nsigs];

1122 #endif

1123

1124 initialize_main (&argc, &argv);

1125 2 program_name = argv[0];

1126 8 setlocale (LC_ALL, ™);

B 814979 M 1 callto 'setlocale’ (libc-2.5.s0: setlocale.c)
2155 M 1callto'_dl_runtime_resolve' (Id-2.5.50)
1127 8 bindtextdomain (PACKAGE, LOCALEDIR);
2263 o 1 call to'_dl_runtime_resolve' (Id-2.5.s0)
565 M 1 callto 'bindtextdomain’ (libc-2.5.s0: bindtextdom.c)
1128 7 textdomain (PACKAGE);
1935 M 1 call to '_dI_runtime_resolve' (Id-2.5.s0)
456 M 1 call to ‘textdomain’ (libc-2.5.s0: textdomain.c)

_nl_find_locale

189.69 %

[ 110.17 %

[

129 [ﬂ
1130 initializa_svit_failure (1 §_FATI1IRE): )
# Ir | ‘ J Assembler ]

7 =
804 DFSE 1 sub $0x1,%eax
804 DF91 1 je 804508 <acl_set_fd@plt+0x49683 |
[r—— Jump 1of 1times to 0x804ESD8
804 DF97 call 8049650 <abort@plt>
804 DF9C movl  $0x2,0x805e328
804 DFA3
B804 DFAG movl  $0x4,0x4(%esp)

4 D]

804 DFAE movl  $0x0,(%esp)

804 DFBS call 8054630 <adl_set_fd@plt+0xa9cO>

B804 DFBA 1 | pre—-m0v|  $0x0,0x805e32¢

804 DFC1

804 DFC4 1 movl  $0x0,0x805e330

804 DFCB

804 DFCE 1 movb  $0x0,0x805e334

804 DFDS 1 movb  $0x0,0x805e336 @
04 nen, 1 b E£0yn AvenEA327

< J (D]

Caller Map Call Graph | callees | All Callees | Assembler

Caller Map ‘

| callraph | callees | allcallees | Assembler
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Hands-on
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Getting started (see /Irz/sys/courses/vihps/material/kcg)

= Setup
= "ssh -X hpckursXX@lIxloginl.lrz.de”
= “cp -r /lrz/sys/courses/vihps/2024/material/kcg ."
= *module use /Irz/sys/courses/vihps/2024/modulefiles”
= “module load qcachegrind” ]- “source kcg/kcg.env”
= “module load valgrind”

= Test: What happens in ,/bin/Is"™ ?
= run “valgrind --tool=callgrind Is /usr/bin”
= run “gcachegrind”
= function with highest instruction execution count? Purpose?
= where is the main function?

= run with cache simulation: “--cache-sim=yes”
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Detailed analysis of matrix multiplication

= Kernel forC=A*B
= Side length N = N3 multiplications + N3 additions

C =| A *| B

LI
i j i

clk][il = a[k][3] * b[3][4i]

= 3 nested loops (i,j,k): Best index order?
= Optimization for large matrixes: Blocking
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Cacheline Usage

Usage 16/ 64 24 / 64 48 / 64 \ | _

| \ | | / " time
loaded at new access new access evicte_d _from L1
src.c:42 src.c:50 src.c:52 (still in LL)
into L1
SpLoss1 a

incremented by 16
Why maintain “Loss” events? Higher Numbers should point at larger bottlenecks (here: 16B lost)

Why attribution to line loading the cacheline? No variable to attach “Loss” to, still understandable
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Detailed analysis of matrix multiplication

= To try out...
= “cd ~/kcg; make”
= timing of orderings (e.g. size 512): “./mm 800"
= cache behavior for small matrix (fits into cache):
“valgrind --tool=callgrind --cache-sim=yes ./mm 300"
= How good is L1/L2 exploitation of the MM versions?
= Warning: Login node has 17.5 MB LLC visible by cores (also used in simulation)

Cache Line Usage

= “valgrind --tool=callgrind --cacheuse=yes ./mm”

= Right-click in list on Types tab, "New Event Type”, double click formula column: 64 L1m”
= “How much data is loaded into L1”

= compare with "SpLoss1” : "How much data was never accessed but loaded into L1”

Other example: 2d Jacobi solver: jc / jc.c
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How to run with MPI (here: interactive session)

= Optional: reduce iterations in BT_MZ / use class A

» sys/setparams.c, write_bt_info, class A: set niter = 5
* “make clean; make bt-mz CLASS=A NPROCS=2"

= “salloc --nodes=1 --reservation=hhps1s24"
= ,module load valgrind®
= “export OMP_NUM_THREADS=2"
= “mpiexec —n 2 valgrind --tool=callgrind --cache-sim=yes \
--separate-threads=yes bin/bt-mz_A.2"
(verification with fail as it assumes 200 iterations)

= load all profile dumps at once:
» in directory you started mpiexec: “qcachegrind callgrind.out.*”
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