
Node-Level Analysis using lo2s

VI-HPS, March 2024

Slide 2

Lo2s Advantages in the Performance Engineering Workflow

• Leverage
existing
visualization

• Lightweight
• Nonintrusive
• Versatile

• Configuration only
• No rebuilding

Preparation Measurement

AnalysisOptimization

Slide 3

Technology

Based centrally around Linux perf_event_open system call
— Requires kernel 4.3 or newer

— Required features are backported often times

Scalable parallel recording
— Separate independent monitoring threads

— No explicit runtime synchronization

Writes OTF2 (Open Trace Format 2) Traces
— Parallel output and file format

— Leverage Vampir for visualization

Slide 4

Reminder: Sampling

Running program is periodically interrupted
to take measurement
 Timer interrupt, OS signal, or HWC overflow
 Service routine examines return-address stack
 Addresses are mapped to routines using

symbol table information

Statistical inference of program behaviour
 Not very detailed information on highly

volatile metrics
 Requires long-running applications

Works with unmodified executables

int main()

{

int i;

for (i=0; i < 3; i++)

foo(i);

return 0;

}

void foo(int i)

{

if (i > 0)

foo(i – 1);

}

Time

main foo(0) foo(1) foo(2) Measurement

t9t7t6t5t4t1 t2 t3 t8

Slide 5

Instruction Sampling

int main()

{

int i;

for (i=0; i < 3; i++)

foo(i);

return 0;

}

void foo(int i)

{

if (i > 0)

foo(i – 1);

}

Compile

Compiler Explorer: https://godbolt.org/

https://godbolt.org/

Slide 6

Instruction Sampling

int main()

{

int i;

for (i=0; i < 3; i++)

foo(i);

return 0;

}

void foo(int i)

{

if (i > 0)

foo(i – 1);

}

Compile

Compiler Explorer: https://godbolt.org/

https://godbolt.org/

Slide 7

Instruction Sampling

Sampling based on perf event
— Instructions, cycles, …

Record instruction pointer in kernel
— Call stack if available

Buffers are read on demand
— Readout triggered by watermark

— Readout interval can be set for fine-tuning

Slide 8

Basic Usage

— Can be used as prefix command to any command

— Gives a summary at the end

— Recording can be interrupted at any point using ctrl-C

lo2s … -- /path/to/executable arg0 arg1

lo2s -- sleep 10

[lo2s: Child exited. Stopping measurements and closing trace.]

[lo2s: sleep 10 (0), 1 threads, 0.014507s CPU, 10.0118s total]

[lo2s: 5 wakeups, wrote 2.94 KiB lo2s_trace_2022-03-28T17-27-51]

lo2s -- sleep 10

^C[lo2s: Child exited. Stopping measurements and closing trace.]

[lo2s: sleep 10 (0), 1 threads, 0.018307s CPU, 2.7757s total]

[lo2s: 6 wakeups, wrote 2.98 KiB lo2s_trace_2022-03-28T17-28-05]

All argument after -- belong to the application

Slide 9

Required permissions

— Check sysctl setting:

— Update sysctl setting:

— Where XXX allows you:
 2: Sample your own application w/o kernel
 1: Sample what own application with kernel
 0: Allow system-wide measurements (no tracepoints!)
 -1: Allow system-wide measurements (with tracepoints!)

sudo sysctl kernel.perf_event_paranoid

kernel.perf_event_paranoid = 3

cat /proc/sys/kernel/perf_event_paranoid

3

sudo sysctl kernel.perf_event_paranoid=XXX

kernel.perf_event_paranoid = XXX

Slide 10

Additional requirements

For tracepoints:
— Mount debugfs:

For BPF based measurements (POSIX I/O)

— root is required!

— No perf_event_paranoid equivalent for BPF yet

sudo mount -t debugfs none /sys/kernel/debug

sudo chmod -R og+rX /sys/kernel/debug

Slide 11

Process-mode and System-mode

— lo2s can operate in two basic modes: per-process recording and system-wide mode
Per-process mode

System-wide monitoring

System-wide monitoring with function samples

— Some of the things shown later will only be available in one of the modes

Will record per-process information for /path/to/executable

lo2s … -- /path/to/executable arg0 arg1

Will run until Ctrl-C is pressed

lo2s -a …

Will run until /path/to/executable is finished

lo2s -a … -- /path/to/executable

lo2s -A …

Slide 12

Perf Metrics

— Large list of hardware metrics, such as L1-Cache misses etc.

— Use –E to record the specified metric

— Use –-standard-metrics to record a set of default metrics

lo2s --list-events

List of predefined events:

...

cache-misses

...

lo2s –E cache-misses ...

lo2s –-standard-metrics ...

Slide 13

Userspace perf Metric events

13

— Uses a more compatible but slower/higher overhead read-out mode

— Try to use this option if opening a metric the standard way fails

lo2s –userspace-metric-event power/energy-pkg

Slide 14

Reducing Measurement Overhead of perf Metrics

— Grouping performance events

— Group leader determines readout rate

— Kernel collects counter in ring buffer

— Flush buffer when it reaches watermark

 Reduces overall overhead

 No overhead for additional hardware
events

Slide 15

Tracepoints
Linux tracepoints
— Leverage large amount of kernel instrumentation
— Records all fields with a numerical value
— Requires read access to debugfs at /sys/kernel/debug/tracing

— Use –t to record the specified tracepoint

lo2s --list-tracepoints

List of Kernel tracepoint events:

...

sched:sched_switch

...

lo2s –t sched:sched_switch ...

Slide 16

Additional Metrics

Available in both monitoring modes

— x86_energy
 Access to RAPL power metrics
 https://github.com/tud-zih-energy/x86_energy

— x86_adapt
 Generic access to hardware specific information (MSRs)
 https://github.com/tud-zih-energy/x86_adapt

https://github.com/tud-zih-energy/x86_energy
https://github.com/tud-zih-energy/x86_adapt

Slide 17

Additional Metrics

Available in both monitoring modes

— Plugins
 Compatible with Score-P plugins (asynchronous, per-host)
 Leverage existing plugins (e.g. PAPI, CPU energy counter) https://github.com/score-p

Using with lo2s specific environment variables
— LO2S_METRIC_PLUGINS and LO2S_${METRIC}_PLUGIN

… or compatible to Score-P environment variables
— SCOREP_METRIC_PLUGINS and SCOREP_${METRIC}_PLUGIN

https://github.com/score-p

Slide 18

Additional Metrics

Available in both monitoring modes

— Sensors read-out with lm_sensors
 Data from common hardware sensors such as fan-speed, cpu and mainboard temperature sensors etc.

Read Sensors

lo2s –S ...

Slide 19

Additional Metrics for I/O

POSIX I/O:
— Track POSIX I/O calls (read, open, write etc.) without instrumentation

— Based on BPF, so requires root

Block I/O:
— Records I/O per-block-device on the bio_queue layer

— Allows for interesting differential diagnosis of I/O problems

lo2s –posix-io …

lo2s –block-io …

Slide 20

Example: NPB BT-OMP Class C # lo2s –E cache-misses -- ./BT.C.x

Slide 21

Example: NPB BT-OMP Class C # lo2s –A –userspace-metric-event -- ./BT.C.x

Slide 22

Example: Block I/O

Btrfs related

lo2s –A –-block-o

Slide 23

— Lightweight node-level monitoring for Linux

— Versatile through leveraging perf

— Visualization with Vampir

— Deep insight into node via perf metrics, tracepoints, and I/O recording

— Available at https://github.com/tud-zih-energy/lo2s

Summary

https://github.com/tud-zih-energy/lo2s

