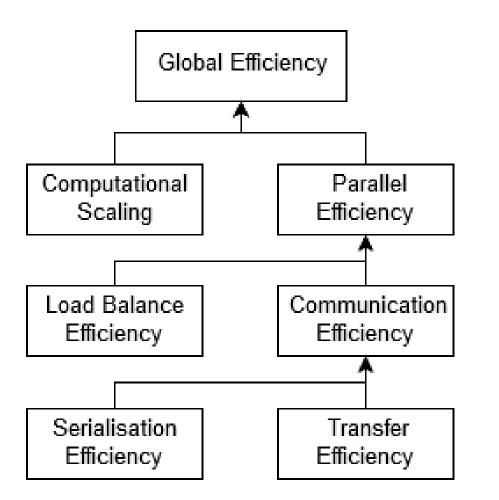


Calculating POP Metrics with Scalasca

Michael Knobloch Jülich Supercomputing Centre

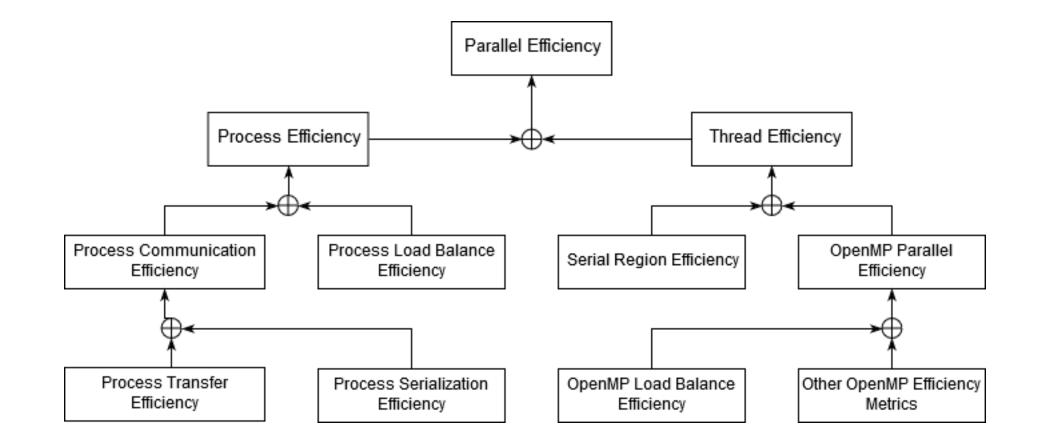
POP Metrics

https://pop-coe.eu/further-information/learning-material

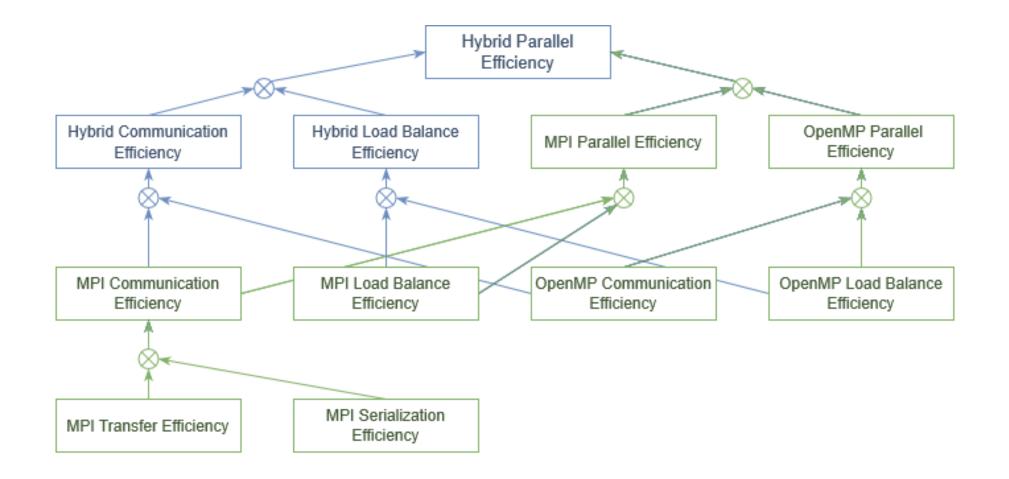

Original (POP1) Metrics

- Article explaining the POP Standard Metrics for Parallel Performance Analysis
- <u>Presentation</u> summarizing the POP Standard Metrics for Parallel Performance Analysis

New (POP2) Hybrid Metrics


- Introduction explaining the POP2 Standard Metrics for Performance Analysis of Hybrid Parallel Applications
- <u>Cheat sheet</u> for Additive Hybrid Metrics
- <u>Cheat sheet</u> for Multiplicative Hybrid Metrics
- In-depth explanation of the Additive Hybrid Metrics
- <u>Webinar</u> Identifying Performance Bottlenecks in Hybrid MPI + OpenMP Software

Original POP Metrics



- Parallel Efficiency (PE): reveals the inefficiency in splitting computation over processes and communicating data
 PE = I B * CE
- Load Balance (LB): ratio of average useful computation time (across all processes) and maximum comp. time
 - LB = avg. useful comp. time / max. comp. time
- **Communication Efficiency (CE):** ratio of maximum comp. time (across all processes) and total runtime
 - CE = SerE * TE = max. comp. time / tot. runtime
- Serialisation Efficiency (SerE): describes loss of efficiency due to dependencies between processes causing other processes to wait
 - SerE = max comp. time on ideal network / total runtime on ideal network
- Transfer Efficiency (TE): represents inefficiencies due to time in data transfer
 - TE = tot. Runtime on ideal network / tot runtime on real network

Additive Hybrid POP Metrics

Multiplicative Hybrid POP Metrics

POP Metrics + Scalasca

- 1. Instrument application and setup measurement parameters (e.g. filtering)
 - scorep <comp+link+cmds>
 - scan <exec+cmd> ...
- → 2. For parallel efficiency: perform trace measurement and analysis
 - 3. For computational scaling: perform profile measurement with suitable HW counters
 - scan -P pop <exec+cmd>
 - 4. Merge profile and trace measurement
 - 5. Post-process measurement
 - 6. Analyze POP metrics with Cube Advisor
 - square <measurement+archive>

Requires
Scalasca >= V2.6
Cube >= V4.6

Measurement Example

- Measurement of simple Jacobi solver
 - Solves Poisson equation on rectangular grid assuming
 - Uniform discretization in each direction
 - Dirichlect boundary conditions
- Available in multiple variants (Shipped with Score-P)
 - C, C++ or Fortran source code
 - MPI, OpenMP, or hybrid (MPI+OpenMP)

x x x x x x x x x x x x x

JÜLICH SUPERCOMPUTING CENTRE

POP Preset Measurement

Δ openSUSE-Leap-15-1 \times + \sim -	
<pre>Zm310:-/jacobi/hybrid/C [1] scan -P pop mpiexec -np 2 ./jacobi path:>/path</pre>	 Notes -P pop selects POP metrics measurement Automatically executes necessary trace and profile measurements

 $\times \times \times \times \times \times \times \times \times \times$

JÜLICH SUPERCOMPUTING CENTRE

POP Preset Measurement

▲ openSUSE-Leap-15-1 × + ∨	
<pre>Max. memory usage : 0.000MB Total processing time : 0.119s S=C=A=N: Tue May 25 16:35:07 2021: Analyze done (status=0) 1s Warning: 0.172MB of analyzed trace data retained in ./scorep_jacobi_2x2_preset_pop_c2/scorep_jacobi_2x2_c1/traces! S=C=A=N: ./scorep_jacobi_2x2_preset_pop_c2/scorep_jacobi_2x2_c1 complete.</pre>	Notes Square recognizes
<pre>S=C=A=N: RUN: 1 REPETITION: 0 Archive=./scorep_jacobi_2x2_preset_pop_c2/scorep_jacobi_2x2_c2 S=C=A=N: RUN: Profiling run with PAPI counters S=C=A=N: Scalasca 2.6 runtime summarization S=C=A=N: ./scorep_jacobi_2x2_preset_pop_c2/scorep_jacobi_2x2_c2 experiment archive S=C=A=N: Tue May 25 16:35:07 2021: Collect start</pre>	POP metrics measurement
<pre>/opt/local/easybuild-4.1.1/software/OpenMPI/3.1.4-GCC-system-2.31/bin/mpiexec -np 2 ./jacobi Jacobi 2 MPI-3.1#1 process(es) with 2 OpenMP-201511 thread(s)/process -> matrix size: 2000x2000 -> alpha: 0.800000 -> relax: 1.000000 -> tolerance: 0.000000 -> iterations: 100</pre>	Merges the two measurements before post-processing
Number of iterations : 100Residual: 5.955111e-10Solution Error: 0.000266483315Elapsed Time: 3.0536247MFlops: 1699.490183S=C=A=N: Tue May 25 16:35:10 2021: Collect done (status=0) 3sS=C=A=N: ./scorep_jacobi_2x2_preset_pop_c2/scorep_jacobi_2x2_c2 complete.zam310:~/jacobi/hybrid/C [2] square -s ./scorep_jacobi_2x2_preset_pop_c2	
<pre>INF0: Merging aggregated runtime summary and trace analysis reports INF0: Post-processing combined summary and trace analysis report (scout+profile.cubex) /opt/tocal/scoreP-7.0/bin/scorep-score -r ./scorep_jacobi_2x2_preset_pop_c2/scout+profile.cubex > ./scorep_jacobi_2x2_p reset_pop_c2/scorep.score INF0: Score report written to ./scorep_jacobi_2x2_preset_pop_c2/scorep.score zam310:~/jacobi/hybrid/C [3]</pre>	

Analysis Example

- TeaLeaf Reference V1.0
- HPC mini-app developed by the UK Mini-App Consortium
 - Solves the linear 2D heat conduction equation on a spatially decomposed regular grid using a 5 point stencil with implicit solvers
 - <u>https://github.com/UK-MAC/TeaLeaf_ref/archive/v1.0.tar.gz</u>
- Measurements performed on Jusuf cluster @ JSC
 - Run configuration
 - 32 MPI ranks with 8 OpenMP threads each
 - Distributed across 2 compute nodes (16 ranks per node)
 - Test problem "5": 4000 × 4000 cells, CG solver

VI-HPS

× × × × × × × × × × ×

POP Metrics + CUBE Advisor

JÜLICH SUPERCOMPUTING CENTRE

CubeGUI 4.6.0: scorep_tea_leaf_16p32x8_multi-run_c2\trace+: File Disply Plugins Help NAG POP Hybrid Assessment (Additive) Runtime thresho		t Region nterest	Find Advisor on General Tab
 ✓ □ 0.00 Time (sec) ▷ 2460.67 Execution □ 0.00 Overhead ▷ 1325.66 Idle threads ■ 3.64e8 Visits (occ) ▷ 288 MPI synchronizations (occ) ▷ 0 MPI pair-wise one-sided synchronizations (occ) ▷ 0 MPI pair-wise one-sided synchronizations (occ) ▷ 0 MPI file operations (occ) ▷ 0 MPI file operations (occ) ▷ 6.26e6 MPI communications (occ) ▷ 6.01e10 MPI bytes transferred (bytes) ▷ 1484.10 Delay costs (sec) ▷ 6.21 MPI point-to-point wait states (propagating vs. terminal) (sec ▷ 6.21 MPI point-to-point wait states (direct vs. indirect) (sec) ▷ 14.86 Critical path (sec) ○ 3804.82 Performance impact (sec) ○ 0.00 Minimum Inclusive Time (sec) □ 8.88 Maximum Inclusive Time (sec) □ 0 io_bytes_read (bytes) □ 0 io_bytes_written (bytes) ■ 6.08e12 PAPI_TOT_INS (#) ■ 6.59e12 PAPI_TOT_CYC (#) 	 0.02 tea_leaf.inst 0.00 tea_leaf 73.59 tea_init_comm 0.57 !\$omp parallel@tea_leaf.f90:45 5.21 initialise 0.00 timer 0.00 set_field 0.03 timestep 1.82 tea_leaf 1.00 timer 540.69 update_halo 3.96 tea_leaf_kernel_init_cg_fortran 58.70 tea_allsum 0.93 tea_leaf_kernel_solve_cg_fortran_calc_w 645.25 tea_leaf_kernel_solve_cg_fortran_calc_ur 347.08 tea_leaf_kernel_finalise 0.30 field_summary 0.02 tea_allgather 0.01 tea_finalize 	+ + + Serialisation Efficiency 0.91 Ver + + + Transfer Efficiency 0.98 Ver + Thread Efficiency 0.94 Ver + + + Amdahl Efficiency 0.96 Ver	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.00 2460.67 (64.99%) 3786.33	0.00 1.82 (0.07%) 2460.67		

Hands-on: NPB-MZ-MPI / BT

