Verificarlo: Numerical debugger and optimizer

Pablo de Oliveira Castro, pablo.oliveira@uvsq.fr

VI-HPS TW43, CALMIP, January 2024

LI-PaRAD, UVSQ, Université Paris-Saclay

UNIVERSITE PARIS-SACLAY

Numerical HPC codes

Building numerically robust simulations is a complex task

- Avoid numerical bugs
- Order of operations matters (vectorization, compiler, parallelisation)
- Explore trade-offs between precision and performance

Outline

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

Floating-Point IEEE-754 representation

IEEE-754 defines a standardized FP representation

$$f = s \times 2^{e} \times m$$

$$s = e_1 + e_2 + \cdots + e_q + m_1 + m_2 + \cdots + m_p$$
sign exponent p. mantissa

~ ~

$$\begin{split} (1.1001\times 2^0)_2 = & (1\times 2^0+1\times 2^{-1}+0\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4})_{10} \\ = & (1+0.5+0.125)_{10} = 1.625_{10} \end{split}$$

Context: Reducing precision

IEEE-754

- ▶ FP64 (double): 1 (sign) / 11 (exp.) / 52 (p.mantissa)
- FP32 (float): 1 (sign) / 8 (exp.) / 23 (p.mantissa)
- Shift from FP64-CPUs towards high throughput smaller datatypes
 - Strong trend driven by AI workloads
 - Neural network using lower-precision TF32, FP16 and BF16
 - Gain in throughput performance and energy efficiency

Floating-point: numerical errors

- Multiplication and division (away from 0) are usually safe
- Summation can produce large errors
 - Absorption, a part of the significant digits cannot be represented in the result format
 - Cancellation, high-relative error when subtracting variables with close values
- Floating-point summation is not associative

Floating-point arithmetic standard error model

 $\blacktriangleright x = \pm 2^e \times m$

IEEE-754 implementation guarantees for $\circ \in \{+,-,*,/\}$ that

 $\widehat{z} = f(x \circ y) = (x \circ y)(1 + \delta)$ with $|\delta| \le u$ unit roundoff

 $(1 + \delta)$ captures the relative error of an IEEE-754 operation

Common sources of FP bugs in simulation

- Large summations: dot products, integral computations, reductions, averages or deviations
- Accumulation of errors over time: explicit methods
- Gradient computation of near values: small variations in large quantities, residual
- Non reproducibility
 - Parallel computation: changes the order of operations and the decomposition
 - Aggressive loop vectorization
 - Unstable branches

Some tricks to attenuate numerical bugs

- Rewrite faulty expression to remove cancellations or absorptions
- Replace faulty expression with a well-behaved approximation
- Use good scaling factors / format to avoid over/underflows
- Increase accuracy (mixed-precision, compensated algorithms)

Objectives

Numerical Simulation

- Find numerical bugs
- ► FP portability across SW and HW
- Optimize and harness smaller FP formats

What methods and tools can help us in the process?

Static analysis: formal assisted proof or interval arithmetic

- Coquelicot, Fluctuat, Gappa, FPTaylor ...
- Strong guarantees but costly and intractable on complex applications

Dynamic analysis:

- Instability detection (Verificarlo, Verrou, Cadna, FPDEBUG, Herbgrind)
- Automatic expression rewriting (Herbie)
- Mixed-precision exploration (Verificarlo, Precimonious, Promise, CRAFT, fpPrecisionTuning)

Verificarlo

github.com/verificarlo/verificarlo

- Based on the LLVM compiler
- Active open source project with 15 contributors
- Backends: debugging (MCA, Cancellation) + mixed-precision (Vprec)
- ▶ MCA overhead from ×6 (binary32) to ×160 (binary64).

Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic. Denis, de Oliveira Castro, Petit. IEEE Symposium on Computer Arithmetic 2016

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

Monte Carlo Arithmetic [Stott Parker, 1999]

• Each FP operation may introduce a δ error

$$\widehat{z} = fl(x \circ y) = (x \circ y)(1 + \delta)$$

Monte Carlo Arithmetic key principle

- Make δ a random variable (stochastic rounding)
- Monte Carlo sampling
- The values returned by n runs of the program using stochastic arithmetic are seen as realizations of a random variable X.
- $\hat{\mu}$ and $\hat{\sigma}$ are the empirical average and standard deviation.

Why Monte Carlo Arithmetic?

- Compare computation against an exact reference is easier.
- Sometimes,
 - hard to get an exact reference value (intermediate computations)
 - different results are not necessarily wrong

Figure: Buckling of a 1D beam with Europlexus collaboration with O. Jamond

Monte Carlo Arithmetic: Random Rounding

MCA simulates error with

$$inexact(x) = x + 2^{e_x - t}\xi$$

- $e_x = \lfloor \log_2 |x| \rfloor + 1$ is the order of magnitude of x;
- ξ is an uniform random variable in $\left(-\frac{1}{2}, \frac{1}{2}\right)$;
- t is the virtual precision, selects the magnitude of the simulated error.

MCA Random Rounding at the ulp

- t=24 for float and t=53 for double is a special case: the virtual precision corresponds to a one ulp € error.
- The random error introduced is in $\left(-\frac{\epsilon}{2}, \frac{\epsilon}{2}\right)$.
- MCA result is either the downwards or upwards roundoff, with a probability proportional to the fractional part.

MCA naturally preserves exact operations.

Summation example: t=53

▶ 0.1 is not representable in F. The closest value is 0.10000000000000555...

Sample	MCA RR t=53	Sample	MCA RR t=53
1	1000.0000000011 <mark>86891</mark>	1	2500.0
2	1000.0000000011 74385	2	2500.0
3	1000.000000001175522	3	2500.0

Example: Linear 2x2 System

- ▶ Ill-conditioned linear system (condition number 2.5×10^8).
- We solve it with the Cramer's formula.

$$\left(\begin{array}{ccc} 0.2161 & 0.1441 \\ 1.2969 & 0.8648 \end{array}\right) x = \left(\begin{array}{c} 0.1440 \\ 0.8642 \end{array}\right)$$

$$x_{\text{real}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$
 $x_{\text{IEEE}} = \begin{pmatrix} 1.9999999958366637 \\ -1.9999999972244424 \end{pmatrix}$

The IEEE-754 binary64 result has 8 significant decimal digits or 28.8 significant bits.

MCA 2x2 System: Stott Parker's significant bits

Figure: Error distribution for 10000 samples FULL MCA (t = 53)

 $\begin{array}{l} 1.9999999850477848e+00\\ 1.9999999957687429e+00\\ 2.000000024646973e+00 \end{array}$

 Stott Parker defines the number of significant bits as

$$s_{\mathrm{PARKER}} = -\log_2 \frac{\hat{\sigma}}{|\hat{\mu}|} pprox 28.5.$$

$$(s_{\text{ieee}} \approx 28.8)$$

- Magnitude of the signal to noise ratio.
- But how confident are we that it is a good estimate?

Probabilistic definition of Significant bits

Significant bits

The number of significant bits with probability p can be defined as the largest number s such that

Confidence Intervals for Stochastic Arithmetic. Sohier, de Oliveira Castro, Févotte, Lathuilière, Petit, Jamond. ACM Transactions Mathematical Software 2022.

CNH: Significant bits lower bound

• Given a centered normal error distribution (CNH) and $X_{ref} = \hat{\mu}$ we show

$$s \ge \underbrace{-\log_2\left(\frac{\hat{\sigma}}{|\hat{\mu}|}\right)}_{s_{\text{PARKER}}} - \left[\underbrace{\frac{1}{2}\log_2\left(\frac{n-1}{\chi_{1-\alpha/2}^2}\right)}_{\chi^2 \text{ confidence interval on } \hat{\sigma}} + \underbrace{\log_2\left(F^{-1}\left(\frac{p+1}{2}\right)\right)}_{\text{depends only on } p}\right]$$
(1)

- *F* is the cumulative distribution function of $\mathcal{N}(0, 1)$.
- For $n \to \infty$ samples and $p = 0.68 \ s \ge -log_2 \hat{\sigma}/|\hat{\mu}|$ (Parker)
- For n = 30 samples and p = 0.99 $s \ge -\log_2 \hat{\sigma}/|\hat{\mu}| 1.792$
- For n = 15 samples and p = 0.99 $s \ge -\log_2 \hat{\sigma}/|\hat{\mu}| 2.023$

A Bernoulli estimator provides a probabilistic lower-bound *s* for general distributions.

Compiler optimizations are instrumented

- Instrumentation occurs just before code generation
- Enables analyzing precision loss due to compiler optimizations

Figure: Analysis of the effect of compiler flags on a Kahan compensated sum algorithm (binary32)

		verificarlo backends		
	original	IEEE	MCA quad	MCA integer
Kahan binary32	1.34s	2.36s (×1.7)	6.28s (×4.7)	7.76s (×5.8)
Kahan binary64	1.34s	2.34s (×1.7)	105s (×78)	64s (×48)
NAS CG A	0.80s	6.41s (×8)	173s (×216)	128s (×160)

Table: Execution time (and slowdown) for a Kahan sum of 100 millions elements and for the NAS CG A using different Verificarlo backends.

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

VPREC for mixed precision

- Estimate numerical effect of bfloat16, tensorflow32, fp24 on standard IEEE-754 hardware (before paying the porting cost)
- VPREC emulates any range and precision fitting in original type
 - Uses native types for storage and intermediate computations
 - Handle overflows, underflows, denormals, NaN, $\pm\infty$
 - Rounding to nearest (faithful)
 - Fast: × 2.6 to × 16.8 overhead

YALES2 application

Computational Fluid Dynamics solver from Coria-CNRS

- Deflated Preconditioned Conjugate Gradient
- CG iterations alternate between a:
 - Deflated coarse grid
 - Fine grid

VPREC: Find minimal precision over iterations that preserves convergence (dichotomic exploration)

Automatic exploration of reduced floating-point representations in iterative methods. Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019

Mixed-precision on Yales2

Energy	16% gain on the deflated part
Communication	28% gain on communication volume
Time	10% speedup on CRIANN cluster (560 nodes)

Source-code localization

- Delta-Debug [Zeller 2001] in Verificarlo
 - Configurations are the sets of floating-point instructions.
 - A bug is a numerical instability.
- Find unstable instructions for rounding / cancellations.
- Find instructions that can be run in lower precision.

Step	Instructions with MCA noise	Numerically Stable
1	1234	stable
2	5 6 7 8	unstable
3	5 6	stable
4	7 8	unstable
5	7 .	unstable
Result (ddmin)	7 .	

Table: Example of Delta-Debug localization. For ddmin of size 1, DD is equivalent to binary search O(log(N)); but DD also handles efficiently bugs that result of the combination of multiple faulty instructions.

Hands-on Tutorial !

Retrieve tutorial sources

```
$ cp -r ~oliveira/verificarlo-tutorial ~
$ cd ~/verificarlo-tutorial/
```

Activate environment (must be done from turpanlogin)

\$ source env.sh

Allocate compute node

- \$ salloc --nodes=1 --time=2:00:00
- \$ ssh <node-hostname>

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

Stochastic rounding can mitigate error propagation

Let us consider the inner product $y = a^{\top} b$ where $a, b \in \mathbb{R}^n$. We consider the forward error $Z = \frac{|\hat{y} - y|}{|y|}$.

SR (MCA RR) errors bounds are asymptotically better

IEEE-754 in O(n) $Z \le \mathcal{K}_1 \gamma_n (u/2)^n$ SR in $O(\sqrt{n})$ Ipsen (AH): $Z \le \mathcal{K}_1 \sqrt{u \gamma_{2n}(u)} \sqrt{\ln \frac{2}{\lambda}}$ Ours (BC): $Z \le \mathcal{K}_1 \sqrt{\gamma_n(u^2)} \sqrt{\frac{1}{\lambda}}$ where $\gamma_n(u) = (1+u)^n - 1$ and K_1 is the condition number of y.

Stochastic Rounding Variance and Probabilistic Bounds: a new approach. El-Arar, Sohier, de Oliveira Castro, Petit. SIAM CSE 202.

Figure: SR vs. IEEE-754 for the inner product with inputs in (0, 1)

SR mitigates the biased absorptions in the IEEE-754 RN summation.
 MCA is not always a good model for IEEE-754 RN. Control divergence between MCA and RN behavior in Verificarlo studies.