
Verificarlo: Numerical debugger and optimizer

Pablo de Oliveira Castro, pablo.oliveira@uvsq.fr

VI-HPS TW43, CALMIP, January 2024

LI-PaRAD, UVSQ, Université Paris-Saclay

1 / 27

Numerical HPC codes

Building numerically robust simulations is a complex task

Real phenomena

Mathematical model

Numerical algorithm

Implementation

Computed solution

model errors

discretization error

numerical bugs

accuracy error

▶ Avoid numerical bugs
▶ Order of operations

matters (vectorization,
compiler, parallelisation)

▶ Explore trade-offs
between precision and
performance

2 / 27

Outline

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

Floating-Point IEEE-754 representation

IEEE-754 defines a standardized FP representation

f = s × 2e × m

s e1 e2 . . . eq m1 m2 . . . mp

sign exponent p. mantissa

(1.1001 × 20)2 =(1 × 20 + 1 × 2−1 + 0 × 2−2 + 0 × 2−3 + 1 × 2−4)10

=(1 + 0.5 + 0.125)10 = 1.62510

3 / 27

Context: Reducing precision

IEEE-754
▶ FP64 (double): 1 (sign) / 11 (exp.) / 52 (p.mantissa)
▶ FP32 (float): 1 (sign) / 8 (exp.) / 23 (p.mantissa)

▶ Shift from FP64-CPUs towards high throughput smaller datatypes
▶ Strong trend driven by AI workloads
▶ Neural network using lower-precision TF32, FP16 and BF16
▶ Gain in throughput performance and energy efficiency

0 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9FP16

s exponent pseudo-mantissa

0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6BF16

0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9TF32

4 / 27

Floating-point: numerical errors

▶ Multiplication and division (away from 0) are usually safe
▶ Summation can produce large errors

▶ Absorption, a part of the significant digits cannot be represented in
the result format

▶ Cancellation, high-relative error when subtracting variables with close
values

▶ Floating-point summation is not associative

223

+

1.625×

23 1.3×

absorbed itsb

5 / 27

Floating-point arithmetic standard error model

▶ x = ±2e × m
IEEE-754 implementation guarantees for ◦ ∈ {+, −, ∗, /} that

ẑ = fl(x ◦ y) = (x ◦ y)(1 + δ) with |δ| ≤ u unit roundoff

(1 + δ) captures the relative error of an IEEE-754 operation

F

0

2−2

2−1

20

21

22

23

6 / 27

Common sources of FP bugs in simulation

▶ Large summations: dot products, integral computations, reductions,
averages or deviations

▶ Accumulation of errors over time: explicit methods
▶ Gradient computation of near values: small variations in large

quantities, residual
▶ Non reproducibility

▶ Parallel computation: changes the order of operations and the
decomposition

▶ Aggressive loop vectorization
▶ Unstable branches

Some tricks to attenuate numerical bugs
▶ Rewrite faulty expression to remove cancellations or absorptions
▶ Replace faulty expression with a well-behaved approximation
▶ Use good scaling factors / format to avoid over/underflows
▶ Increase accuracy (mixed-precision, compensated algorithms)

7 / 27

Objectives

Numerical Simulation
▶ Find numerical bugs
▶ FP portability across SW and HW
▶ Optimize and harness smaller FP formats

What methods and tools can help us in the process?
▶ Static analysis: formal assisted proof or interval arithmetic

▶ Coquelicot, Fluctuat, Gappa, FPTaylor ...
▶ Strong guarantees but costly and intractable on complex applications

▶ Dynamic analysis:
▶ Instability detection (Verificarlo, Verrou, Cadna, FPDEBUG,

Herbgrind)
▶ Automatic expression rewriting (Herbie)
▶ Mixed-precision exploration (Verificarlo, Precimonious, Promise,

CRAFT, fpPrecisionTuning)

8 / 27

Verificarlo

github.com/verificarlo/verificarlo
▶ Based on the LLVM compiler
▶ Active open source project with 15 contributors
▶ Backends: debugging (MCA, Cancellation) + mixed-precision

(Vprec)
▶ MCA overhead from ×6 (binary32) to ×160 (binary64).

Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic.
Denis, de Oliveira Castro, Petit. IEEE Symposium on Computer Arithmetic 2016

9 / 27

github.com/verificarlo/verificarlo

Outline

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

Monte Carlo Arithmetic [Stott Parker, 1999]

▶ Each FP operation may introduce a δ error

ẑ = fl(x ◦ y) = (x ◦ y)(1 + δ)

▶ Monte Carlo Arithmetic key principle
▶ Make δ a random variable (stochastic rounding)
▶ Monte Carlo sampling

▶ The values returned by n runs of the program using stochastic
arithmetic are seen as realizations of a random variable X.

▶ µ̂ and σ̂ are the empirical average and standard deviation.

10 / 27

Why Monte Carlo Arithmetic?
▶ Compare computation against an exact reference is easier.
▶ Sometimes,

▶ hard to get an exact reference value (intermediate computations)
▶ different results are not necessarily wrong

Fragilized

Fragilized

a. Normal (IEEE) b. Fragilized (IEEE)

c. Normal (100 MCA samples) d. Fragilized (100 MCA samples)

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2
x

z

Figure: Buckling of a 1D beam with Europlexus collaboration with O. Jamond
11 / 27

Monte Carlo Arithmetic: Random Rounding
▶ MCA simulates error with

inexact(x) = x + 2ex−tξ
▶ ex = ⌊log2 |x|⌋ + 1 is the order of magnitude of x;
▶ ξ is an uniform random variable in (− 1

2 , 1
2) ;

▶ t is the virtual precision, selects the magnitude of the simulated error.

absorption and rounding errors

12 / 27

MCA Random Rounding at the ulp

▶ t=24 for float and t=53 for double is a special case: the virtual
precision corresponds to a one ulp ϵ error.

▶ The random error introduced is in
(
− ϵ

2 , ϵ
2
)
.

▶ MCA result is either the downwards or upwards roundoff, with a
probability proportional to the fractional part.

ℝ
𝔽 ⌊x⌋ ⌈x⌉

x

25% 75%

▶ MCA naturally preserves exact operations.

13 / 27

Summation example: t=53

▶ 0.1 is not representable in F. The closest value is
0.10000000000000000555. . .

double a = 0;
for (int i=0; i < 10000; i++)

a += 0.1;

Sample MCA RR t=53
1 1000.0000000001186891
2 1000.0000000001174385
3 1000.0000000001175522

double a = 0;
for (int i=0; i < 10000; i++)

a += 0.25;

Sample MCA RR t=53
1 2500.0
2 2500.0
3 2500.0

14 / 27

Example: Linear 2x2 System

▶ Ill-conditioned linear system (condition number 2.5 × 108).
▶ We solve it with the Cramer’s formula.

(
0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)

xreal =
(

2
−2

)
xieee =

(
1.9999999958366637

−1.9999999972244424

)
▶ The IEEE-754 binary64 result has 8 significant decimal digits or 28.8

significant bits.

15 / 27

MCA 2x2 System: Stott Parker’s significant bits

σ̂ µ̂

0

250

500

750

−1e−08 −5e−09 0e+00 5e−09 1e−08

X0 µ̂0 − 1

co
un

t

Figure: Error distribution for 10000
samples FULL MCA (t = 53)

1.9999999850477848e + 00
1.9999999957687429e + 00
2.0000000024646973e + 00

▶ Stott Parker defines the
number of significant bits as

sPARKER = − log2
σ̂

|µ̂|
≈ 28.5.

(sieee ≈ 28.8)

▶ Magnitude of the signal to
noise ratio.

▶ But how confident are we that
it is a good estimate?

16 / 27

Probabilistic definition of Significant bits

Significant bits
The number of significant bits with probability p can be defined as the
largest number s such that

P
(
|Z| ≤ 2−s) ≥ p where Z = X/Xref − 1

0 1 2 … s … 45 46 47 … c … 51 52

significant at p = .99

contributing

random noise

Confidence Intervals for Stochastic Arithmetic. Sohier, de Oliveira Castro, Févotte,
Lathuilière, Petit, Jamond. ACM Transactions Mathematical Software 2022.

17 / 27

CNH: Significant bits lower bound

▶ Given a centered normal error distribution (CNH) and Xref = µ̂ we
show

s ⩾ − log2

(
σ̂

|µ̂|

)
︸ ︷︷ ︸

sPARKER

−

 1
2 log2

(
n − 1

χ2
1−α/2

)
︸ ︷︷ ︸

χ2 confidence interval on σ̂

+ log2

(
F−1

(
p + 1

2

))
︸ ︷︷ ︸

depends only on p

(1)

▶ F is the cumulative distribution function of N (0, 1).
▶ For n → ∞ samples and p = 0.68 s ≥ −log2σ̂/|µ̂| (Parker)
▶ For n = 30 samples and p = 0.99 s ≥ −log2σ̂/|µ̂| − 1.792
▶ For n = 15 samples and p = 0.99 s ≥ −log2σ̂/|µ̂| − 2.023

A Bernoulli estimator provides a probabilistic lower-bound s for general
distributions.

18 / 27

Compiler optimizations are instrumented

▶ Instrumentation occurs just before code generation
▶ Enables analyzing precision loss due to compiler optimizations

for (int i=1;i<n;i++) {
y = f[i] - c;
t = sum + y;
c = (t - sum) - y;
sum = t;

}
return sum;

Figure: Analysis of the effect of compiler flags on a Kahan compensated sum
algorithm (binary32)

19 / 27

Overhead

verificarlo backends
original IEEE MCA quad MCA integer

Kahan binary32 1.34s 2.36s (×1.7) 6.28s (×4.7) 7.76s (×5.8)
Kahan binary64 1.34s 2.34s (×1.7) 105s (×78) 64s (×48)
NAS CG A 0.80s 6.41s (×8) 173s (×216) 128s (×160)

Table: Execution time (and slowdown) for a Kahan sum of 100 millions
elements and for the NAS CG A using different Verificarlo backends.

20 / 27

Outline

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

VPREC for mixed precision

▶ Estimate numerical effect of bfloat16, tensorflow32, fp24 on
standard IEEE-754 hardware (before paying the porting cost)

▶ VPREC emulates any range and precision fitting in original type
▶ Uses native types for storage and intermediate computations
▶ Handle overflows, underflows, denormals, NaN, ±∞
▶ Rounding to nearest (faithful)
▶ Fast: × 2.6 to × 16.8 overhead

r tbinary16

s exponent pseudo-mantissa

21 / 27

YALES2 application

▶ Computational Fluid Dynamics solver from Coria-CNRS

▶ Deflated Preconditioned Conjugate Gradient
▶ CG iterations alternate between a:

▶ Deflated coarse grid
▶ Fine grid

VPREC: Find minimal precision over iterations that
preserves convergence (dichotomic exploration)

Automatic exploration of reduced floating-point representations in iterative
methods. Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019

22 / 27

Mixed-precision on Yales2

Entire application Only Deflated part

0 20 40 60
Iteration

0

10

20

30

pr
ec
is
io
n

0 20 40 60
Iteration

Figure: Minimal precision that preserves convergence.

Energy 16% gain on the deflated part
Communication 28% gain on communication volume
Time 10% speedup on CRIANN cluster (560 nodes)

23 / 27

Source-code localization
▶ Delta-Debug [Zeller 2001] in Verificarlo

▶ Configurations are the sets of floating-point instructions.
▶ A bug is a numerical instability.

▶ Find unstable instructions for rounding / cancellations.
▶ Find instructions that can be run in lower precision.

Step Instructions with MCA noise Numerically Stable
1 1 2 3 4 stable
2 5 6 7 8 unstable
3 5 6 . . stable
4 7 8 unstable
5 7 . unstable
Result (ddmin) 7 .

Table: Example of Delta-Debug localization. For ddmin of size 1, DD is
equivalent to binary search O(log(N)); but DD also handles efficiently bugs
that result of the combination of multiple faulty instructions.

24 / 27

Hands-on Tutorial !

Retrieve tutorial sources

$ cp -r ~oliveira/verificarlo-tutorial ~
$ cd ~/verificarlo-tutorial/

Activate environment (must be done from turpanlogin)

$ source env.sh

Allocate compute node

$ salloc --nodes=1 --time=2:00:00
$ ssh <node-hostname>

25 / 27

Outline

IEEE-754 Floating-Point arithmetic

Finding numerical bugs with MCA

Optimizing precision

Perspectives

Stochastic rounding can mitigate error propagation

Let us consider the inner product y = a⊤b where a, b ∈ Rn. We consider
the forward error Z = |ŷ−y|

|y| .
▶ SR (MCA RR) errors bounds are asymptotically better

IEEE-754 in O(n)
Z ≤ K1γn(u/2)n

SR in O(
√n)

▶ Ipsen (AH):
Z ≤ K1

√
uγ2n(u)

√
ln 2

λ

▶ Ours (BC):
Z ≤ K1

√
γn(u2)

√
1
λ

where γn(u) = (1 + u)n − 1 and K1 is the condition number of y.

Stochastic Rounding Variance and Probabilistic Bounds: a new approach. El-Arar,
Sohier, de Oliveira Castro, Petit. SIAM CSE 202.

26 / 27

105 106 107

n

10 6

10 4

10 2

100

102

104

E
rr

o
r

SR-nearness

Deterministic bound

AH bound

BC bound

RN-binary32

1 = 0.9

Figure: SR vs. IEEE-754 for the inner product with inputs in (0, 1)

▶ SR mitigates the biased absorptions in the IEEE-754 RN summation.
▶ MCA is not always a good model for IEEE-754 RN. Control

divergence between MCA and RN behavior in Verificarlo studies.
27 / 27

	IEEE-754 Floating-Point arithmetic
	Finding numerical bugs with MCA
	Optimizing precision
	Perspectives

