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Numerical HPC codes

Building numerically robust simulations is a complex task

Real phenomena

Mathematical model

Numerical algorithm

Implementation

Computed solution

model errors

discretization error

numerical bugs

accuracy error

▶ Avoid numerical bugs
▶ Order of operations

matters (vectorization,
compiler, parallelisation)

▶ Explore trade-offs
between precision and
performance
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Floating-Point IEEE-754 representation

IEEE-754 defines a standardized FP representation

f = s × 2e × m

s e1 e2 . . . eq m1 m2 . . . mp

sign exponent p. mantissa

(1.1001 × 20)2 =(1 × 20 + 1 × 2−1 + 0 × 2−2 + 0 × 2−3 + 1 × 2−4)10

=(1 + 0.5 + 0.125)10 = 1.62510
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Context: Reducing precision

IEEE-754
▶ FP64 (double): 1 (sign) / 11 (exp.) / 52 (p.mantissa)
▶ FP32 (float): 1 (sign) / 8 (exp.) / 23 (p.mantissa)

▶ Shift from FP64-CPUs towards high throughput smaller datatypes
▶ Strong trend driven by AI workloads
▶ Neural network using lower-precision TF32, FP16 and BF16
▶ Gain in throughput performance and energy efficiency

0 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9FP16

s exponent pseudo-mantissa

0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6BF16

0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9TF32
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Floating-point: numerical errors

▶ Multiplication and division (away from 0) are usually safe
▶ Summation can produce large errors

▶ Absorption, a part of the significant digits cannot be represented in
the result format

▶ Cancellation, high-relative error when subtracting variables with close
values

▶ Floating-point summation is not associative

223 

+

1.625×

23 1.3×

absorbed itsb
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Floating-point arithmetic standard error model

▶ x = ±2e × m
IEEE-754 implementation guarantees for ◦ ∈ {+, −, ∗, /} that

ẑ = fl(x ◦ y) = (x ◦ y)(1 + δ) with |δ| ≤ u unit roundoff

(1 + δ) captures the relative error of an IEEE-754 operation

F

0

2−2

2−1

20

21

22

23
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Common sources of FP bugs in simulation

▶ Large summations: dot products, integral computations, reductions,
averages or deviations

▶ Accumulation of errors over time: explicit methods
▶ Gradient computation of near values: small variations in large

quantities, residual
▶ Non reproducibility

▶ Parallel computation: changes the order of operations and the
decomposition

▶ Aggressive loop vectorization
▶ Unstable branches

Some tricks to attenuate numerical bugs
▶ Rewrite faulty expression to remove cancellations or absorptions
▶ Replace faulty expression with a well-behaved approximation
▶ Use good scaling factors / format to avoid over/underflows
▶ Increase accuracy (mixed-precision, compensated algorithms)
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Objectives

Numerical Simulation
▶ Find numerical bugs
▶ FP portability across SW and HW
▶ Optimize and harness smaller FP formats

What methods and tools can help us in the process?
▶ Static analysis: formal assisted proof or interval arithmetic

▶ Coquelicot, Fluctuat, Gappa, FPTaylor ...
▶ Strong guarantees but costly and intractable on complex applications

▶ Dynamic analysis:
▶ Instability detection (Verificarlo, Verrou, Cadna, FPDEBUG,

Herbgrind)
▶ Automatic expression rewriting (Herbie)
▶ Mixed-precision exploration (Verificarlo, Precimonious, Promise,

CRAFT, fpPrecisionTuning)
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Verificarlo

github.com/verificarlo/verificarlo
▶ Based on the LLVM compiler
▶ Active open source project with 15 contributors
▶ Backends: debugging (MCA, Cancellation) + mixed-precision

(Vprec)
▶ MCA overhead from ×6 (binary32) to ×160 (binary64).

Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic.
Denis, de Oliveira Castro, Petit. IEEE Symposium on Computer Arithmetic 2016
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Monte Carlo Arithmetic [Stott Parker, 1999]

▶ Each FP operation may introduce a δ error

ẑ = fl(x ◦ y) = (x ◦ y)(1 + δ)

▶ Monte Carlo Arithmetic key principle
▶ Make δ a random variable (stochastic rounding)
▶ Monte Carlo sampling

▶ The values returned by n runs of the program using stochastic
arithmetic are seen as realizations of a random variable X.

▶ µ̂ and σ̂ are the empirical average and standard deviation.
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Why Monte Carlo Arithmetic?
▶ Compare computation against an exact reference is easier.
▶ Sometimes,

▶ hard to get an exact reference value (intermediate computations)
▶ different results are not necessarily wrong

Fragilized

Fragilized

a. Normal (IEEE) b. Fragilized (IEEE)

c. Normal (100 MCA samples) d. Fragilized (100 MCA samples)
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Figure: Buckling of a 1D beam with Europlexus collaboration with O. Jamond
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Monte Carlo Arithmetic: Random Rounding
▶ MCA simulates error with

inexact(x) = x + 2ex−tξ
▶ ex = ⌊log2 |x|⌋ + 1 is the order of magnitude of x;
▶ ξ is an uniform random variable in (− 1

2 , 1
2 ) ;

▶ t is the virtual precision, selects the magnitude of the simulated error.

absorption and rounding errors
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MCA Random Rounding at the ulp

▶ t=24 for float and t=53 for double is a special case: the virtual
precision corresponds to a one ulp ϵ error.

▶ The random error introduced is in
(
− ϵ

2 , ϵ
2
)
.

▶ MCA result is either the downwards or upwards roundoff, with a
probability proportional to the fractional part.

ℝ
𝔽 ⌊x⌋ ⌈x⌉

x

25% 75%

▶ MCA naturally preserves exact operations.
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Summation example: t=53

▶ 0.1 is not representable in F. The closest value is
0.10000000000000000555. . .

double a = 0;
for (int i=0; i < 10000; i++)

a += 0.1;

Sample MCA RR t=53
1 1000.0000000001186891
2 1000.0000000001174385
3 1000.0000000001175522

double a = 0;
for (int i=0; i < 10000; i++)

a += 0.25;

Sample MCA RR t=53
1 2500.0
2 2500.0
3 2500.0
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Example: Linear 2x2 System

▶ Ill-conditioned linear system (condition number 2.5 × 108).
▶ We solve it with the Cramer’s formula.

(
0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)

xreal =
(

2
−2

)
xieee =

(
1.9999999958366637

−1.9999999972244424

)
▶ The IEEE-754 binary64 result has 8 significant decimal digits or 28.8

significant bits.
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MCA 2x2 System: Stott Parker’s significant bits

σ̂ µ̂

0
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−1e−08 −5e−09 0e+00 5e−09 1e−08

X0 µ̂0 − 1
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un

t

Figure: Error distribution for 10000
samples FULL MCA (t = 53)

1.9999999850477848e + 00
1.9999999957687429e + 00
2.0000000024646973e + 00

▶ Stott Parker defines the
number of significant bits as

sPARKER = − log2
σ̂

|µ̂|
≈ 28.5.

(sieee ≈ 28.8)

▶ Magnitude of the signal to
noise ratio.

▶ But how confident are we that
it is a good estimate?
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Probabilistic definition of Significant bits

Significant bits
The number of significant bits with probability p can be defined as the
largest number s such that

P
(
|Z| ≤ 2−s) ≥ p where Z = X/Xref − 1

0 1 2 … s … 45 46 47 … c … 51 52

significant at p = .99

contributing

random noise

Confidence Intervals for Stochastic Arithmetic. Sohier, de Oliveira Castro, Févotte,
Lathuilière, Petit, Jamond. ACM Transactions Mathematical Software 2022.
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CNH: Significant bits lower bound

▶ Given a centered normal error distribution (CNH) and Xref = µ̂ we
show

s ⩾ − log2

(
σ̂

|µ̂|

)
︸ ︷︷ ︸

sPARKER

−

 1
2 log2

(
n − 1

χ2
1−α/2

)
︸ ︷︷ ︸

χ2 confidence interval on σ̂

+ log2

(
F−1

(
p + 1

2

))
︸ ︷︷ ︸

depends only on p


(1)

▶ F is the cumulative distribution function of N (0, 1).
▶ For n → ∞ samples and p = 0.68 s ≥ −log2σ̂/|µ̂| (Parker)
▶ For n = 30 samples and p = 0.99 s ≥ −log2σ̂/|µ̂| − 1.792
▶ For n = 15 samples and p = 0.99 s ≥ −log2σ̂/|µ̂| − 2.023

A Bernoulli estimator provides a probabilistic lower-bound s for general
distributions.
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Compiler optimizations are instrumented

▶ Instrumentation occurs just before code generation
▶ Enables analyzing precision loss due to compiler optimizations

for (int i=1;i<n;i++) {
y = f[i] - c;
t = sum + y;
c = (t - sum) - y;
sum = t;

}
return sum;

Figure: Analysis of the effect of compiler flags on a Kahan compensated sum
algorithm (binary32)
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Overhead

verificarlo backends
original IEEE MCA quad MCA integer

Kahan binary32 1.34s 2.36s (×1.7) 6.28s (×4.7) 7.76s (×5.8)
Kahan binary64 1.34s 2.34s (×1.7) 105s (×78) 64s (×48)
NAS CG A 0.80s 6.41s (×8) 173s (×216) 128s (×160)

Table: Execution time (and slowdown) for a Kahan sum of 100 millions
elements and for the NAS CG A using different Verificarlo backends.
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VPREC for mixed precision

▶ Estimate numerical effect of bfloat16, tensorflow32, fp24 on
standard IEEE-754 hardware (before paying the porting cost)

▶ VPREC emulates any range and precision fitting in original type
▶ Uses native types for storage and intermediate computations
▶ Handle overflows, underflows, denormals, NaN, ±∞
▶ Rounding to nearest (faithful)
▶ Fast: × 2.6 to × 16.8 overhead

r tbinary16

s exponent pseudo-mantissa

21 / 27



YALES2 application

▶ Computational Fluid Dynamics solver from Coria-CNRS

▶ Deflated Preconditioned Conjugate Gradient
▶ CG iterations alternate between a:

▶ Deflated coarse grid
▶ Fine grid

VPREC: Find minimal precision over iterations that
preserves convergence (dichotomic exploration)

Automatic exploration of reduced floating-point representations in iterative
methods. Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019
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Mixed-precision on Yales2

Entire application Only Deflated part
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Figure: Minimal precision that preserves convergence.

Energy 16% gain on the deflated part
Communication 28% gain on communication volume
Time 10% speedup on CRIANN cluster (560 nodes)
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Source-code localization
▶ Delta-Debug [Zeller 2001] in Verificarlo

▶ Configurations are the sets of floating-point instructions.
▶ A bug is a numerical instability.

▶ Find unstable instructions for rounding / cancellations.
▶ Find instructions that can be run in lower precision.

Step Instructions with MCA noise Numerically Stable
1 1 2 3 4 . . . . stable
2 . . . . 5 6 7 8 unstable
3 . . . . 5 6 . . stable
4 . . . . . . 7 8 unstable
5 . . . . . . 7 . unstable
Result (ddmin) . . . . . . 7 .

Table: Example of Delta-Debug localization. For ddmin of size 1, DD is
equivalent to binary search O(log(N)); but DD also handles efficiently bugs
that result of the combination of multiple faulty instructions.
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Hands-on Tutorial !

Retrieve tutorial sources

$ cp -r ~oliveira/verificarlo-tutorial ~
$ cd ~/verificarlo-tutorial/

Activate environment (must be done from turpanlogin)

$ source env.sh

Allocate compute node

$ salloc --nodes=1 --time=2:00:00
$ ssh <node-hostname>
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Stochastic rounding can mitigate error propagation

Let us consider the inner product y = a⊤b where a, b ∈ Rn. We consider
the forward error Z = |ŷ−y|

|y| .
▶ SR (MCA RR) errors bounds are asymptotically better

IEEE-754 in O(n)
Z ≤ K1γn(u/2)n

SR in O(
√n)

▶ Ipsen (AH):
Z ≤ K1

√
uγ2n(u)

√
ln 2

λ

▶ Ours (BC):
Z ≤ K1

√
γn(u2)

√
1
λ

where γn(u) = (1 + u)n − 1 and K1 is the condition number of y.

Stochastic Rounding Variance and Probabilistic Bounds: a new approach. El-Arar,
Sohier, de Oliveira Castro, Petit. SIAM CSE 202.
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Figure: SR vs. IEEE-754 for the inner product with inputs in (0, 1)

▶ SR mitigates the biased absorptions in the IEEE-754 RN summation.
▶ MCA is not always a good model for IEEE-754 RN. Control

divergence between MCA and RN behavior in Verificarlo studies.
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