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1 Veri�carlo Basics

To debug or optimize �oating-point computation with Veri�carlo, the �rst step is to compile your program with it.
Veri�carlo is built as a set of LLVM plugins; to compile a program with veri�carlo you should use the verificarlo

command instead of the usual clang, icc or gcc.

Once a program is compiled with Veri�carlo, you can load various backends to simulate round-o� noise or the e�ect
of lower �oating-point precisions. Backends are selected and con�gured by de�ning the VFC_BACKENDS environment
variable.

This tutorial will guide you through examples on how to use Veri�carlo. If necessary, you can access an online
documentation at https://github.com/verificarlo/verificarlo.

Ensure that you can run the verificarlo command,

$ verificarlo --help

Question 1

2 Monte Carlo Arithmetic: Polynomial evaluation

Polynomial evaluation is a common source of computational error. Polynomials are frequently used for function
interpolation in libraries or user codes. Di�erent evaluations of the same polynomial do not have the same behavior
in terms of performance or numerical accuracy.

This tutorial uses the Tchebychev polynomial from [1, pp.52-54]:
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T (x) =

10∑
i=0

ai × x2i

With: ai ∈ [1,−200, 6600,−84480, 549120,−2050048, 4659200,−6553600, 5570560,−2621440, 524288]

Due to catastrophic cancellations, the polynomial is di�cult to evaluate near 1 as discussed in [1, pp.52-54].

2.1 Evaluation of the naive expanded form

2.1.1 First steps with Veri�carlo

In this �rst approach, we will evaluate the polynomial in its expanded naive form and in single precision. This part of
the tutorial is located in the tchebychev/ folder.

(a) Open the tchebychev.c �le and observe the function REAL expanded(REAL x).

(b) Compile tchebychev.c with verificarlo using the following command:

verificarlo -D FLOAT tchebychev.c -o tchebychev

(c) Run the program.

Question 2

You should get an error as the VFC_BACKENDS environment variable is empty. The simplest backend is the one emulating
IEEE-754 arithmetic(libinterflop_ieee.so). It has a --debug option that trace each instrumented �oating-point
operations.

Run the program using the IEEE backend,

VFC_BACKENDS="libinterflop_ieee.so --debug" ./tchebychev 0.99 EXPANDED

Question 3

To estimate the numerical error, we will now use the Monte Carlo Arithmetic backend (libinterflop_mca.so) in
single precision by simulating round-o� errors that could occurs at 24 bits of precision.

(a) Run the program using the Monte Carlo Arithmetic backend with 24 bits precision for single precision
variables,

VFC_BACKENDS="libinterflop_mca.so --precision-binary32=24" ./tchebychev 0.99 EXPANDED

(b) Execute the program multiple times. What can you observe?

Question 4

The Monte Carlo Arithmetic backend de�ne precision (i.e. noise level) for single and double precision variable by
respectively using the --precision-binary32=<value> and --precision-binary64=<value>.

The Monte Carlo arithmetic backend supports di�erent modes,

� --mode=rr is the random round mode that adds noise on the result of an operation only when the operation is
not exactly representable at the chosen precision. This mode is useful to simulate the e�ect of round-o� errors.

� --mode=pb is the precision bound mode that adds noise on the operands before performing the operation. It is
useful to simulate the e�ect of cancellations errors.

� --mode=mca is the default mode that combines rr and pb modes.

2.1.2 Numerical quality analysis

In this section, we analyze the numerical quality of the computed results. The run.sh script available in the exercice
directory automates the veri�carlo runs. Visualization is done using the plot.py script. The plot.py output is a
.pdf �le that you can open in the host machine.
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Table 1: Evaluation of T(x) in Expanded form, compiled in single/double precision, with a virtual precision of 24/53
bits

(a) Open run.sh and understand how it works.

(b) Modify run.sh to evaluate the polynomial in the interval [0.5, 1] by 0.001 step (you can leave the number of
execution unchanged).

(c) Open plot.py and understand how it works, and what are the plotted data.

Question 5

Table 1 is generated with the plot.py script.

The lowest part of each plot shows the T (x) samples and their average in dotted line. The 20 Monte Carlo samples
T (x) are plotted for each x value (sometimes overlapping on the graphic). The central part is the empirical standard
deviation σ̂ for each value of x. The upper part of the �gure represents the number s of signi�cant digits of each

output de�ned as s = − log10

∣∣∣∣ σ̂µ̂
∣∣∣∣ with σ̂ the sample empirical standard deviation and µ̂ their average.

(a) To execute the EXPANDED version with float (binary32) types and a virtual precision of 24 bits, execute
the command: ./run.sh EXPANDED FLOAT 24 mca

This command's output is given in table 1 (Left).

(b) Now execute the benchmark with double (binary64) types and a virtual precision of 53. You can use the
command: ./run.sh EXPANDED DOUBLE 53 mca

This command's output is given in table 1 (Right).

(c) Compare the number s of signi�cant digits in both cases. What is the problem and is double precision a
solution?

Question 6

The polynomial evaluation done with 24 bits is subject to severe cancellations when the input value is close to 1. This
drasticaly reduces the accuracy of the result. Using evaluation in double precision on the contrary seems satisfactory.
But this solution forces the developer to use a larger and more expensive data type and it does not solve the problem,
it only delays it.

2.2 Factored form

We will now evaluate the evaluation precision of the following factored rewriting:

T (x) = 1 + 8x2 (x− 1) (x+ 1) (4x2 + 2x− 1)2 (4x2 − 2x− 1)2 (16x4 − 20x2 + 5)2
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T (x) = 8.0 ∗ x2 ∗ (x− 1.0) ∗ (x+ 1.0)

∗(4.0 ∗ x2 + 2.0 ∗ x− 1.0) ∗ (4.0 ∗ x2 + 2.0 ∗ x− 1.0)

∗(4.0 ∗ x2 − 2.0 ∗ x− 1.0) ∗ (4.0 ∗ x2 − 2.0 ∗ x− 1.0) ∗
∗(16.0 ∗ x4 − 20.0 ∗ x2 + 5.0) ∗ (16.0 ∗ x4 − 20.0 ∗ x2 + 5.0) + 1

(a) Open the �le tchebychev.c and have a look to the function REAL factored (REAL x)

(b) Execute the command ./run.sh FACTORED FLOAT 24 mca

The output of this command is given in �gure 1.

(c) Compare these results to those obtained with the EXPANDED version.

Question 7

Figure 1: Evaluation of T(x) in its factored form, compiled in single precision, with a virtual precision of 24

Explain what happens when T (x) = 1 for x ≃ 0.6, x ≃ 0.8 et x ≃ 0.95.

→ We evaluate T on one of the roots of the factored right-hand terms which become zero. It is an example
where the error is absorbed and the precision and accuracy of the results are improved.

Question 8

3 VPREC: Variable precision backend

The VPREC backend emulates reduced �oating-point formats without having to change the implementation. It can
emulate any format that �ts into the original type. Unlike the MCA backend, VPREC is deterministic. It mirrors
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what would happen with the selected reduced type. It correctly handles over�ow, under�ows, and rounding in the
target type.

To use VPREC one can either tune manually the range and precision of the target type. The option --precision-binary64
controls the pseudo-mantissa bit length of the new tested format for �oating-point operations in double precision. The
option --range-binary64 controls the exponent bit length of the target format.

One can also use one of the standard presets: binary16, binary32, b�oat16, tensor�oat, fp24, PXR24; which automat-
ically sets the corresponding range and precisions.

(a) Compile and run the benchmark using single precision without veri�carlo

clang-7 -D FLOAT -o reference tchebychev.c

./reference 0.75 FACTORED

7.5000000e-01 -3.1220961e-01

(b) Now compile it using double precision with veri�carlo

verificarlo -D DOUBLE -o tchebychev tchebychev.c

VFC_BACKENDS="libinterflop_vprec.so --preset=binary32" ./tchebychev 0.75 FACTORED

7.5000000000000000e-01 -3.1220960617065430e-01

(c) Compare the mantissas between the two previous runs. Observe that VPREC has accurately emulated
binary32 (FLOAT) format.

Question 9

(a) You can emulate the e�ect of b�oat16 using

VFC_BACKENDS="libinterflop_vprec.so --preset=bfloat16" ./tchebychev 0.75 FACTORED

7.5000000000000000e-01 -3.1250000000000000e-01

(b) You can also emulate a custom precision, such as 12 bits, with

VFC_BACKENDS="libinterflop_vprec.so --precision-binary64=12" ./tchebychev 0.75 FACTORED

7.5000000000000000e-01 -3.1225585937500000e-01

(c) Try di�erent precisions, at which threshold does the computation looses all signi�cance ?

Question 10

(a) Analyze the script run_vprec.sh. This script allows you to plot the result of VPREC runs in the interval
[0.5, 1].

(b) Use the script to simulate and plot the e�ect of running FACTORED and EXPANDED versions with b�oat16.

Question 11

4 Pinpointing bugs with Delta-Debug: Archimedes' method

Figure 2: Archimedes method to approximate π with a 6-sided circumscribed polygon.

In this section we demonstrate how we can use Veri�carlo to precisely localize a numerical bug in a program. The
localization method is based on the Zeller's Delta-Debug reduction method [2]. Veri�carlo uses the Inter�op's stochastic
Delta-Debug library [3, 4].
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In 200BC Archimedes proposed the �rst numerical method for computing π. Archimedes method uses a (6.n)-sided
circumscribed polygon to the unit circle whose area provides an upper bound for π and a (6.n)-sided inscribed polygon
whose area provides a lower bound for π.

Here we will use the circumscribed polygon to approximate π. Figure 2 shows a 6-sided circumscribed polygon to
the unit circle. Archimedes shows geometrically that the half-perimeter of the polygons (also converging to π) can be
computed with the following recursive sequence,

T1 =
1√
3

Ti+1 =

√
T 2
i + 1− 1

Ti

Pi

2
= 6× 2i−1 × Ti −−−→

i→∞
π

In this part of the tutorial we will work inside the archimedes/ folder.

(a) Open the �le archimedes.c and analyze the code.

(b) The provided make�le builds the program using Veri�carlo. Run the program with the IEEE backend
(libinterflop_ieee.so) and with the MCA backend (libinterflop_mca.so --precision 53).

(c) How many digits are signi�cant in the computed result?

Question 12

The previous experiment shows that computation becomes numerically unstable around iteration 15. Where is the
error in the code? To help pinpointing the error, we are going to use Delta-Debug.

Delta-Debug (DD) is a general bug reduction method that allows to e�ciently �nd a minimal set of conditions that
trigger a bug. In this case, we are going to consider the set of �oating-point instructions in the program. We are using
DD to �nd a minimal set of instructions responsible for the instability in the output.

Step Instructions with MCA noise Numerically Stable

1 1 2 3 4 . . . . stable
2 . . . . 5 6 7 8 unstable

3 . . . . 5 6 . . stable
4 . . . . . . 7 8 unstable

5 . . . . . . 7 . unstable
Result (ddmin) . . . . . . 7 .

Table 2: Example of Delta-Debug bug minimization

Table 2 shows a simple DD execution to �nd a reduced instruction set responsible for a numerical instability. By
testing instructions sub-sets and their complement, DD is able to �nd smaller failing sets step by step. DD stops when
it �nds a failing set where it cannot remove any instruction. In this case, DD is able to �nd a minimal failing set
(ddmin) of size 1 (which is therefore also minimum). However, there is no guarantee of unicity.

By default, Inter�op's Delta-Debug implementation iterates to �nd all the possible di�erent ddmin sets. At the end, it
produces the rddmin-cmp set which is the complement of the union of the ddmin sets. The rddmin-cmp set therefore
includes the "stable" instructions and excludes the "unstable" instructions.

To use Delta-Debug, we need to write two scripts:

� A �rst script ddRun <output_dir>, is responsible for running the program and writing its output inside the
<output_dir> folder.

� A second script ddCmp <reference_dir> <current_dir>, takes as parameter two folders including respectively
the outputs from a reference run and from the current run. The ddCmp script must return with a success when
the deviation between the two runs is acceptable, and fail if the deviation is unacceptable. To decide if a given set
is unstable, DD will run the program �ve times (the number of times can be changed by setting the environment
variable INTERFLOP_DD_NRUNS).
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(a) Open the �les ddRun and ddCmp and analyze how they work.

Question 13

ddRun and ddCmp depend on the user's application and the error tolerance of the application domain; therefore it is
hard to provide a generic script that �ts all cases. That is why we require the user to manually write these scripts.
Once the scripts are written, the Delta-Debug session is launched using the following command:

VFC_BACKENDS="libinterflop_mca.so --precision-binary64=53 -m mca" vfc_ddebug ddRun ddCmp

where VFC_BACKENDS speci�es the backend that will be used to capture numerical errors. Here we provide a simple
Make�le target that runs this command,

make dd

(a) Open the �le Makefile and analyze the make dd target.

(b) Run the make dd target.

Question 14

Now that you have run Delta-Debug, you can observe that it has found two minimal failing sets (ddmin0 and ddmin1).
The outputs sets are located in dd.line/ddmin0 and dd.line/ddmin1 directory. You can locate the "unstable"
instructions belonging to each set by browsing the content of the dd.line/ddmin{0,1}/dd.line.include �les. This
information is also present in the dd.line/rddmin-cmp/dd.line.exclude �le.

$ cat dd.line/ddmin0/dd.line.include

0x0000000000400e5c: archimedes at archimedes.c:16

$ cat dd.line/ddmin1/dd.line.include

0x0000000000400e89: archimedes at archimedes.c:17

# We can also get the union of culprit instructions with

$ cat dd.line/rddmin-cmp/dd.line.exclude

0x0000000000400e5c: archimedes at archimedes.c:16

0x0000000000400e89: archimedes at archimedes.c:17

We can notice that instructions at line 16 and 17 found by DD method are responsible for the observed numerical
instability. To ease the debugging process we include a script that transforms this output, into the error format used
by compilers. Therefore we can use a standard IDE to pinpoint culprit instructions inside the code.

(a) Run the make dderrors target. This should open a Vim session.

(b) Type :cw to open the error quick-�x window. Use :cn and :cp to move to the next and previous "unstable"
instructions.

Question 15

Line 17 points to a subtraction operation executed in double precision (doublesub) between s and 1. One can see
that as Ti+1 (tii) becomes smaller, s becomes closer to 1. Therefore it looks like line 17 could trigger a catastrophic
cancellation. Let us do some experiments to con�rm this hypothesis.

(a) Run Delta-Debug with a RR noise model at precision 53.

make dd VFC_BACKENDS="libinterflop_mca.so -m rr --precision-binary64=53"

Question 16

With RR 53, only line 16 is �agged. Indeed the operation T 2
i + 1 is inexact due to a round-o� error (Ti ≪ 1). The

error then propagates and is ampli�ed by the cancellation line 17.

Interestingly, with RR the line 17 is not �agged; that is because RR 53 mode does not perturb cancellations which
are exact operations. The fact that line 17 disappears with RR mode hints that there is indeed a cancellation
problem.
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(a) Run Delta-Debug with the cancellation backend to con�rm the analysis.

make dd VFC_BACKENDS="libinterflop_cancellation.so"

Question 17

With the cancellation backend we see that only line 17 is �agged. Therefore, we conclude that this program is a�ected
both by a round-o� error at line 16 and a cancellation error at line 17. The round-o� error by itself is not problematic
but is ampli�ed by the cancellation.

To �x this problem, we can try to rewrite the culprit expression in line 17. Observe that,

Ti+1 =

√
T 2
i + 1− 1

Ti
=

√
T 2
i + 1− 1

Ti
×

√
T 2
i + 1 + 1√

T 2
i + 1 + 1

=
(T 2

i + 1)− 1

Ti(
√
T 2
i + 1 + 1)

=
Ti√

T 2
i + 1 + 1

The new formula is interesting since it eliminates the subtraction that triggered the cancellation.

(a) Modify archimedes.c to use the previous expression rewriting.

(b) Study the numerical instability of the new version. Is the problem �xed?

Question 18

5 Bonus exercices

5.1 Polynomial evaluation using Horner's method

There exists multiple ways to evaluate polynomials, using associativity, commutativity and factorization. Each eval-
uation scheme has its own impact on precision and performance. One of them has already been the subject of many
studies: the Horner's method which for the considered polynomial takes the following form:

T (x) = (. . . ((an × x2 + an−1)× x2 + an−2) . . . )× x2 + a0

T (x) = (((((((((524288 ∗ x2 − 2621440) ∗ x2 + 5570560) ∗ x2 − 6553600)∗
x2 + 4659200) ∗ x2 − 2050048) ∗ x2 + 549120) ∗ x2 − 84480)∗

x2 + 6600) ∗ x2 − 200) ∗ x2 + 1

(a) Open the �le tchebychev.c and have a look to the function REAL horner(REAL x)

(b) While keeping previous execution parameters, execute the command ./run.sh HORNER DOUBLE 53 mca

The output of this command is given in table 3 (Left).

Question 19

Execute the command ./run.sh HORNER DOUBLE 24 mca

The output of this command is given in table 3 (Right). What do you observe?

Question 20

As shown in this experiment, the improvment brought by the Horner scheme is not signi�cant (≃ 1 additional signi�cant
bit in the result). However, it minimizes the number of operations and allows to use the FMA (Fused Multiply Add).
For a polynomial of degree n, it produces n− 1 FMA. Moreover, when doing multiple independent evaluations it can
be vectorized.

8



Table 3: Evaluation of T(x) with Horner's scheme, compiled in double precision, with a virtual precision of {24/53}
bits

5.2 Compensated Horner's method

Compensated algorithms belong to the class of algorithms that increase program precision without changing the
internal working format. The goal is to capture for each operation an estimation of the error term and to reinject it
into the result. For the Horner scheme, it is possible to retrieve at every step the error in x2 and the addition of the
next coe�cient by using respectively the V eltkamp − Dekker TWOPROD for the product and TWOSUM for the sum.
These algorithms are quali�ed as (Error Free Transform), EFT, in the literature. The algorithm for the compensated
horner scheme described in [5] is:

1: procedure compHorner(x,{a1, a2, . . . , an})
2: sn ← an
3: rn ← 0
4: for i ∈ [n− 1 : 0] do
5: [pi, pei]← TWOPROD(si+1, x

2)
6: [si, sei]← TWOSUM(pi, ai)
7: ri ← ri+1 × x2 + (pei + sei)
8: end for

9: return s0 + r0
10: end procedure

The lines 5 and 6, evaluate HORNER with EFT calls. Line 7 accumulates the error terms, which will be added to the
�nal result in line 9.

We provide implementations for EFT in the libeft.c and libeft.h �les.

(a) Implement comphorner algorithm in tchebychev.c using the EFT implementations in eft.h.

(b) Modify run.sh to also compile eft.c with veri�carlo.

(c) Run comphorner with the following command: ./run.sh COMPHORNER FLOAT 24 rr

(d) Run comphorner with the following command: ./run.sh COMPHORNER DOUBLE 53 rr

(e) What happens if you use a precision di�erent from 53 for program compiled in DOUBLE precision? ⇒
WARNING, TWOPROD and TWOSUM rely on exact operations; it is essential to use RR 53 (Random
Rounding with precision 53) mode of veri�carlo for double or RR 24 for float.

You should get results shown in �gure 4.

Question 21

The resulting precision of this approach is shown in table 4 with veri�carlo. Filled circles represent the real error value
(evaluating in rational arithmetic in Python); circles represent the quality of the result computed in Monte Carlo
Arithmetic with Veri�carlo [3].

We can notice on these �gures that CompHorner compensate precision losses in double and single precision. We retrieve
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Table 4: Evaluation of T(x) using Horner and compHorner in single/double (left/right) precision: error estimated by
veri�carlo (blue), compared to the real error (green)

a behavior similar to the factored form, in particularly for points T (x) = 1. However, knowing the polynomial's roots
for using the Horner scheme is not required.
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