
© Atos

Turpan Architecture

Okba Hamitou

Turpan Architecture
General

• Compute nodes
• 15 Arm and Nvidia compute nodes, 1200 CPU cores, 30 GPU units

• 1 Arm Ampere Q80-30 processor, 80 CPU cores, 3,0 GHz, RAM (8 x 64GB) 512GB

• 2 NVIDIA A100-80GB GPU cards, 6912 CUDA cores, 80GB

• Login nodes
• 2 Arm login nodes

• 1 Arm Ampere Q80-30 processor, 80 CPU cores, 3,0GHz, RAM (8 x 32GB) 256GB

• Visualization nodes
• 2 Intel x86 Visual Nodes

• 2 Intel Icelake 6326 processors, 16 cores, 2.8GHz, RAM (16 x 32GB) 512GB

• 2 NVIDIA A40-48GB GPU cards

• Storage
• 1 NetApp E5760 + DE224C storage, 25TB with SSD, 350TB with HDD

• 10 x 3.8 TB SSD, 3GB/s write, 8GB/s read

• 60 x 8 TB HDD, 8GB/s write, 10GB/s read

• Network
• Mellanox Infiniband HDR, 2 x 200 Gb/s

Turpan Architecture
General

• Development platform for HPC and AI
• Applications porting from x86 to Arm with NVIDIA HPC and AI SDKs
• Enables experimentation and characterization of high-performance, NVIDIA-accelerated, Arm

server-based system architectures

Turpan Architecture
Processor : NVIDIA Arm HPC Developer kit

Turpan Architecture
Processor design

• 1 Arm Ampere Q80-30 80c
• 8 channels DDR4 with 3200 MHz
• 512 GB (8 x 64 GB)

• 2 Infiniband cards HDR
• 2 NVIDIA A100-80GB GPUs

• 1 local storage
• HDD or SSD – 6000 GB

Turpan Architecture
Core description & features

• The Altra Processor Complex consists of 80 Processor Modules (PMDs)
• Each PMD contains a high-performance Altra core, each of which has
• Neoverse N1

• 3,0 GHz

• Arm v8,2 architecture

• Private 64 KB L1 I-cache,

• Private 64 KB L1 D-cache,

• Private 1 MB L2 cache.

• Shared 32 MB System Level Cache (SLC) by all 80 PMDs,

• The Altra Processor Complex features include:
• 128-bit double precision FPU

• 2x full-width (128-bit wide) SIMD execution pipes

• Coherent Mesh Interconnect (CMI)

Turpan Architecture
NVIDIA GPU A100

• Since years ~2000, frequency scaling is over… We are now scaling cores !
• GPU is a massively multi-threaded many-cores architecture
• Thousands of threads executed in parallel
• Kepler (K80) able to run 2048*13=26 624 threads

• Pascal (P100) 2048*56=114 688 threads

• Volta (V100) 2048*80=163 840 threads

• Ampere (A100) 2048*108= 221 184 threads

• Infiniband HDR based technology
• All equipments (login, visu, storage, service, etc…) are connected by one switch
• Compute nodes are connected to each other using two HDR links

• The topology is equivalent to Fat-Tree without blocking factor

Turpan Architecture
Network

• NFS type storage
• 25 TB SSD type

• 350 TB HDD type

• Hybrid storage type which enables fast response time with the
SSD
• SSD disks are used as cache to accelerate I/O operations

Turpan Architecture
Storage

Turpan Architecture
Core diagram

• The execution pipeline includes:
• Integer execute unit that performs arithmetic and logical data processing

operations.

• Vector execute unit that performs Advanced SIMD and floating-point
operations.

Turpan Architecture
Core diagram

• The Back End of the CPU handles the execution of the micro-operations which are dispatched to the relevant execution units for
processing.

• Neoverse N1 supports multiple execution units including the Branch unit, Load/Store unit and Arithmetic units including the advanced
vector engines.

• The number of execution units and cycles taken for the execution of an instruction can vary per micro-architecture; therefore,
instruction execution latency and throughput are implementation dependent.

• Once instruction execution is complete, the results are stored and committed in-order when dependencies are resolved.

• Neoverse N1 has
• 4 integer execution units,

• 2 Floating point/SIMD pipelines,

• 2 load/store pipelines, which allows up to 8 micro-operations to be dispatched into the execution pipeline every cycle.

© Atos

Turpan Supercomputer
Software environment

Okba Hamitou

• You must have a Mesonet account
• Please refer to CALMIP Université de Toulouse for request

• Connect to Turpan
• ssh your_login@turpanlogin[1,2].calmip.univ-toulouse.fr

• Data transfers (rsync [options] ORIGIN DESTINATION)
• Always from outside the cluster

• Get data from Turpan:

rsync -avP -e "ssh -p XXX" user@turpanlogin[1,2].calmip.univ-toulouse.fr:/path/to/data.tgz local_copy.tgz

• Get data to Turpan:

rsync -avP -e "ssh -p XXX" /path/to/data.tgz user@turpanlogin[1,2].calmip.univ-toulouse.fr:/path/to/directory/
local_copy.tgz

• Data Visualization
• No need to transfer large data to your computer

• Use the visualization node (refer to Turpan webpage for more information about it)

Access and data transfers
How to access, transfert, view data

mailto:your_login@turpanlogin[1,2].calmip.univ-toulouse.fr

• Home directory:
• Dedicated to the installation of software and binaries,

• Located in /users/${GROUPE}/${USER}" directory

• Shortcut in environment variable $HOME

• Work directory:
• Dedicated to inputs and outputs,

• Located in /work/${PROJET}/${USER}" directory

• Shortcut in environment variable $WORK

• Quotas on the different spaces

• Temporary space
• Dedicated to temporary files

• Located in /tmpdir/${USER}" directory

• Shortcut in environment variable $SCRATCH}

• 200TB shared by all users and accelerated by an
8.5TB SSD cache.

• Files not accessed for more than 100 days are
automatically deleted.

Disk spaces
home/, work/, tmpdir/

Quota Groupe User File group File user

home 10 Go 100 K

work 1 To 5 M

tmpdir 5 M

• small:
• exclusive,

• 2 jobs max,

• no more than 6 nodes per job,

• max walltime per job 4 hours

• big:
• exclusive,

• 1 job max,

• no more than 13 nodes per job,

• max walltime per job 2 hours

• full:
• exclusive,

• 1 jobs max,

• at least 14 nodes per job,

• max walltime per job 20 hours

• shared:
• non-exclusive,

• 2 jobs max,

• no more than 1 GPU, 40 cpu and 256G ram per job,

• max walltime per job 4 hours

• visu:
• non-exclusive,

• 1 job max,

• max 50GB RAM

• max 8 cpu per job,

• max walltime per job 4 hours

Partitions
Full, big, small, shared, visu

• What is a module ?
• a convenient way to use software/library/compiler which are available on the cluster

• Usage
• display all available software installed on the cluster

• load/unload a module

• switch between 2 modules

• unload all modules

• list all loaded modules

• Strong recommendation to use module show to have details

Software environment
Modules

hamitouo@turpanlogin1:~> module avail

hamitouo@turpanlogin1:~> module load nvhpc/22.9

hamitouo@turpanlogin1:~> module unload nvhpc/22.9

hamitouo@turpanlogin1:~> module purge

hamitouo@turpanlogin1:~> module list

Currently Loaded Modulefiles:

1) binutils/11.2.0 2) gnu/11.2.0 3) openmpi/gnu/4.1.4-gpu

hamitouo@turpanlogin1:~> module swap nvhpc/22.9 nvhpc/22.11

• Compilers
• nvc pour C

• nvc++ pour C++

• nvfortran pour Fortran

• Without OpenMPI, with cuda

• With OpenMPI, for CPU computing only

• With OpenMPI for GPU

Software environment
NVIDIA compiler collection

hamitouo@turpanlogin1:~> module load nvidia

hamitouo@turpanlogin1:~> module load nvhpc-nompi/22.9

hamitouo@turpanlogin1:~> module load openmpi/nvidia/4.1.4-cpu

hamitouo@turpanlogin1:~> module load openmpi/nvidia/4.1.4-gpu

• Compilers
• armclang pour C

• armclang++ pour C++

• armflang pour Fortran

• Without OpenMPI

• With OpenMPI, for CPU computing only

• With OpenMPI for GPU

Software environment
Arm compiler collection

hamitouo@turpanlogin1:~> module load arm

hamitouo@turpanlogin1:~> module load acfl/22.1

hamitouo@turpanlogin1:~> module load openmpi/arm/4.1.4-cpu

hamitouo@turpanlogin1:~> module load openmpi/arm/4.1.4-gpu

• Compilers
• gcc pour C

• g++ pour C++

• gfortran pour Fortran

• Without OpenMPI

• With OpenMPI, for CPU computing only

• With OpenMPI for GPU

Software environment
GNU compiler collection

hamitouo@turpanlogin1:~> module load gnu/11.2.0

hamitouo@turpanlogin1:~> module load openmpi/gnu/4.1.4-cpu

hamitouo@turpanlogin1:~> module load openmpi/gnu/4.1.4-gpu

• Communication libraries :
• OpenMPI

• HPC-X (can be found in nvhpc)

• Math librairies/application :
• Julia

• Blas, cuBlas, Lapack, Scalapack, cuSparse, AMGX,

• FFT, CuFFT,

• PetSC, AMGX,

• I/O libraries
• HDF5

• NetCDF

• pNetCDF

• Scientific applications :
• OpenFoam,

• Magma,

• CGAL

• Debug & profile :
• Arm MAP (CPU / GPU),

• NVIDIA Nsight (GPU)

Software environment
Available software

Software environment
Available software

© Atos

Turpan Supercomputer
Fast Start

Okba Hamitou

Slurm
Batch system

23

• The Simple Linux Utility for Resource Management (SLURM) is used for submission, scheduling, execution, and
monitoring of jobs

• Main Slurm commands :
• sinfo show information about all partitions and nodes managed by SLURM as well as about general system state

• squeue query the list of pending and running jobs

• sbatch submit a batch script

• scancel cancel a pending or running job or job step

• salloc request interactive jobs/allocations

• srun initiate parallel job steps within a job or start an interactive job

• scontrol provides some functionality for the users to manage jobs or get some information about the system configuration such as
nodes, partitions, jobs, and configurations

• sacct retrieve accounting information about jobs and job steps. For completed jobs sacct queries the accounting database

Slurm
In a nutshell

Slurm
Batch system

25

Advantages of a batch system are:

• It allows to run MANY jobs at the same time.

The system takes care that they are run efficiently on the available resources.

• Multiusers, queue system.

A batch system allows users to always submit jobs, even if a lot of people are using the system at the
same time. In addition, take care of budgeting and fair resource usage.

• System load balance.

The system takes care of balancing the load across nodes and during time. In a batch system, most jobs
may be submitted during office hours, but the scheduler will continue to start jobs at night as nodes
become available.

• There are 5 partitions :
• Small (default)

• Big

• Full

• Shared

• Visu

• A partition request is done using the flag
• -p

• --partition=

Slurm
Partitions

26

• Every job submission starts with a resource allocation (nodes, cores, memory).

• An allocation is valid for a specific amount of time, and can be created using the salloc, sbatch or

srun commands.

• salloc and sbatch only create resource allocations, srun launches parallel tasks within such a

resource allocation, or implicitly creates an allocation if not started within one.

• The usual procedure is to combine resource requests and task execution (job steps) in a single

batch script (job script) and then submit the script using the sbatch command.

Slurm
Resource allocation

27

Syntax

• sbatch [options] script [args...]

Job Script

• Usually, a job script consists of two parts. The first part is optional but highly recommended:

• Slurm-specific options used by the scheduler to manage the resources (e.g. memory) and configure the job

environment

• Job-specific shell commands

The job script acts as a wrapper for your actual job. Command-line options can still be used to

overwrite embedded options.

I strongly recommend to get familiar with sbatch options on Slurm website or using the man

command.

Slurm
sbatch

28

• Allocating Resources with SLURM : the salloc and sbatch commands make resource allocations only. The
srun/mpirun command launches parallel tasks.

• The usual way to allocate resources and execute a job is to write a batch script and submit them to SLURM with the
sbatch command.

Slurm
Submitting jobs

29

#!/bin/bash

#SBATCH --job-name=test_mpi

#SBATCH --partition=compute

#SBATCH --ntasks=96

#SBATCH --time=01:30:00

#SBATCH --output=job_%x_%j.out

#SBATCH --err=job_%x_%j.err

#SBATCH --exclusive

setup environment

module load applications

#launch executable with or without inputs

srun ./mybinary input1 input2

Specify the name of the partition

Specify the names of your output files.
%x : environment variable referencing the job
name
%j : environment variable referencing the job ID

Specify a reasonable time limit. It may allow your
job to start quickly

• Running serial, OpenMP, MPI jobs

30

#!/bin/bash

#SBATCH --job-name=test_serial

#SBATCH --partition=compute

#SBATCH --ntasks=1

#SBATCH --time=00:30:00

#SBATCH --output=job_%x_%j.out

#SBATCH --err=job_%x_%j.err

#SBATCH --exclusive

setup environment

module load app1 app2 ..appN

#launch executable with or without inputs

./mybinary input1 input2

Sequential job

#!/bin/bash

#SBATCH --job-name=test_omp

#SBATCH --partition=compute

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=28

#SBATCH --time=00:30:00

#SBATCH --output=job_%x_%j.out

#SBATCH --err=job_%x_%j.err

#SBATCH --exclusive

setup environment

module load app1 app2 ..appN

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

#launch executable with or without inputs

./mybinary input1 input2

OMP job

#!/bin/bash

#SBATCH --job-name=test_mpi

#SBATCH --partition=compute

#SBATCH --ntasks=240

or

#SBATCH --nodes=3

#SBATCH --time=00:30:00

#SBATCH --output=job_%x_%j.out

#SBATCH --err=job_%x_%j.err

#SBATCH --exclusive

setup environment

module load app1 app2 ..appN

#launch executable with or without inputs

srun ./mybinary input1 input2

MPI job

Slurm
Submitting jobs

• Running hybrid jobs (OpenMP + MPI)

31

Slurm
Submitting jobs

#!/bin/bash

#SBATCH --job-name=test_hybride

#SBATCH --partition=compute

#SBATCH --ntasks=4

#SBATCH --cpus-per-task=40

#SBATCH --tasks-per-node=2

#SBATCH --gres=gpu:2

#SBATCH --time=00:30:00

#SBATCH --output=job_%x_%j.out

#SBATCH --err=job_%x_%j.err

#SBATCH --exclusive

setup environment

module load app1 app2 ..appN

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

#launch executable with or without inputs

srun ./mybinary input1 input2

Hybrid job

• Environment Variables
• Slurm sets various environment variables available in the context of the job script. Some are set based on the requested resources for

the job.

• For the full list, see man sbatch

32

Slurm
Submitting jobs

• Different Slurm commands provide information about jobs/job steps on different levels.

• The command squeue provides high-level information about jobs in the Slurm scheduling queue

(state information, allocated resources, runtime, …).

• The command sstat provides detailed usage information about running jobs, and sacct provides

accounting information about active and completed (past) jobs.

• The command scontrol provides even more detailed information about jobs and job steps.

Slurm
Monitoring jobs

33

• squeue

• Use the squeue command to get a high-level overview of all active (running and pending) jobs in the cluster.

• The default output format is as follows:

• JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

• Job States

• During its lifetime, a job passes through several states.

• The most common states are PENDING, RUNNING, SUSPENDED, COMPLETING, and COMPLETED.

• PD Pending. Job is waiting for resource allocation

• R Running. Job has an allocation and is running

• S Suspended. Execution has been suspended and resources have been released for other jobs

• CA Cancelled. Job was explicitly cancelled by the user or the system administrator

• CG Completing. Job is in the process of completing. Some processes on some nodes may still be active

• CD Completed. Job has terminated all processes on all nodes with an exit code of zero

• F Failed. Job has terminated with non-zero exit code or other failure condition

Slurm
Monitoring jobs

34

• List all currently running jobs of user foo:
• squeue --user=foo --states=PD,R

• List all currently running jobs of user foo in partition bar:
• squeue --user=foo --partition=bar --states=R

• scontrol
• Use the scontrol command to show more detailed information about a job

• Syntax : scontrol [options] [command]

• Examples
• Show detailed information about job with ID 354684: scontrol show jobid 354684

• Show even more detailed information about job with ID 35464 (including the jobscript): scontrol -dd show jobid 3546

• sacct
• Use the sacct command to query information about past jobs

• Syntax: sacct [options]

• See man sacct

Slurm
Monitoring jobs

35

• scancel
• Use the scancel command to delete active jobs

• Syntax : scancel [options] <jobid> ...
• scancel can be restricted to a subset of jobs, using the following options with the related value, e.g:
• -u, --user $USER jobs of current user

• -A, --account jobs under this charge account

• -n, --jobname jobs with this job name

• -p, --partition jobs in this partition

• -t, --state jobs in this state

• Delete specific job: scancel 12345678
• Delete all running jobs: scancel --state=R
• Delete all of your jobs: scancel --user $USER

Slurm
Deleting jobs

36

© Atos

Turpan Supercomputer
Fast Start

Okba Hamitou

• All popular build systems are supported and performant on Arm

• GCC, Arm, NVIDIA are excellent Arm compilers
• Auto-vectorizing, auto-parallelizing, tested, in production

• Arm & partners are the majority of GCC contributors

• All major build systems and tools work on Arm
• CMake, Make, GNUMake, EasyBuild, Spack etc…

Compiling on Arm Ampere Altra
Compilers and Build Systems

• Arm Neon technology implements SIMD

• Enabled through :
• Arm Performance Libraries, FFTW

• Auto-vectorization features of compilers

• Neon intrinsic functions

• Hand-coded Neon assembler (for experienced programmers)

Compiling on Arm Ampere Altra
Neon for Armv8-A

• Single Instruction Single Data (SISD)
• Each instruction performs its specified operation on a

single piece of data

• Performing four addition operations requires four
instructions to add values from four pairs of registers

ADD x0, x0, x5

ADD x1, x1, x6

ADD x2, x2, x7

ADD x3, x3, x8

• Single Instruction Multiple Data
• The same operation is executed simultaneously for

multiple items

• The following instruction adds four pairs of single-
precision (32-bit) values together

• This operation adds two 128-bit (quadword) registers,
Q8 and Q9, and stores the result in Q10. Each of the
four 32-bit lanes in each register is added separately

ADD Q10.4S, Q8.4S, Q9.4S

Compiling on Arm Ampere Altra
Neon for Armv8-A

• A 128-bit Neon vector can contain the following element sizes:
• Sixteen 8-bit elements (operand suffix .16B, where B indicates byte)

• Eight 16-bit elements (operand suffix .8H, where H indicates halfword)

• Four 32-bit elements (operand suffix .4S, where S indicates word)

• Two 64-bit elements (operand suffix .2D, where D indicates doubleword)

Compiling on Arm Ampere Altra
Neon for Armv8-A

• Free to use, no licence required
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Linux

Compiling on Arm Ampere Altra
Arm compiler & Arm performance libraries Now free to use – No license required

Compiling on Arm Ampere Altra
Arm compiler with Neon for Armv8-A

• Optimization options
• -Ox with x in {0, 1, 2, 3, fast}

• Auto-vectorization is enabled by default at optimization level -O2 and higher. The -fno-vectorize option lets you
disable auto-vectorization.

• At optimization level -O1, auto-vectorization is disabled by default. The -fvectorize option lets you enable auto-
vectorization.

• At optimization level -O0, auto-vectorization is always disabled. If you specify the -fvectorize option, the compiler
ignores it.

• Specifying the -Rpass=loop and -Rpass-analysis=loop compiler options displays useful diagnostic and analysis
information.

• Specify Neon target
• -mcpu=native option is a combination of -march and -mtune. It simultaneously specifies

the target architecture and optimizes for a given microarchitecture.

• More information here Porting and Optimizing HPC Applications for Arm Documentation

https://developer.arm.com/documentation/101725/0300/Coding-for-Neon

Compiling on Arm Ampere Altra
NVHPC compiler with Neon for Armv8-A

• Optimization options
• -Ox with x in {0, 1, 2, 3, 4} and -fast

• SIMD code generation is enabled by default at optimization level -O2 and higher.

• At optimization level -O1, local optimizations are performed (register allocations)

• At optimization level -O0, no optimizations are performed.

• Specifying the –Minfo compiler options displays useful diagnostic and analysis information.

• Specify Neon target
• -tp=native|neoverse-n1 is used to specify a CPU target.

• More information here : NVIDIA HPC SDK Version 22.11 Documentation

https://docs.nvidia.com/hpc-sdk/compilers/index.html

Compiling on Arm Ampere Altra
GNU compiler with Neon for Armv8-A

• Optimization options
• -Ox with x in {0, 1, 2, 3, fast}

• SIMD code generation is enabled by default at optimization level -O2 and higher.

• At optimization level -O1, reduce code size and execution time.

• At optimization level -O0, no optimizations are performed. Reduce compilation time and make debugging produce
the expected results. This is the default.

• -fopt-info-optimized -fopt-info-missed -fopt-info-all -fopt-info-vec-optimized -fopt-info-vec-missed to print
information about performed or missed optimizations.

• Specify Neon target
• -mcpu=native|neoverse-n1 to target Arm Ampere Altra.

• More information here Optimize Options (Using the GNU Compiler Collection (GCC))

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

© Atos

Turpan Supercomputer
Fast Start

Okba Hamitou

• armclang -Ofast -mcpu=native -mcmodel=large -fopenmp -ffast-math -ffp-contract=on -
DSTREAM_ARRAY_SIZE=1000000000 -DNTIMES=20 stream.c -o stream.armclang

• Theoretical peak performance : 204 GB/s

• Measured peak performance : 175 GB/s

Stream

• HPL
• CCFLAGS = $(HPL_DEFS) -Ofast -mcpu=neoverse-n1

• Theoretical peak performance : 1,92 TFlops

• Measured peak performance : 1,18 TFlops (61,4% efficiency)

• HPCG
• CXXFLAGS = $(HPCG_DEFS) -O3 -mcpu=native -ffp-contract=fast -fvectorize –funroll-loops -std=c++11 -

ffast-math

• Measured peak performance : 24,22 GFlops

HPL & HPCG
With Arm Performance Libraries

• Compilation with GNU (CPU) and NVCC (GPU)

• Libraries : OpenMPI and UCX with CUDA and GDRCopy support

• Important environment variables :
• export UCX_TLS=cma,rc,mm,cuda_copy,cuda_ipc,gdr_copy

• export UCX_RNDV_THRESH=16384

• export UCX_RNDV_SCHEME=put_zcopy

• export UCX_IB_GPU_DIRECT_RDMA=yes

• export UCX_NET_DEVICES=all

• Important environment variables :
• export UCX_RNDV_THRESH=16384

• This option set the message size rendezvous threshold (the UCX will switch from eager algorithm to rendezvous).

OSU bandwidth & latency

• Device to Device latency and bandwidth
• Influence of the UCX_RNDV_THRESH variable
• UCX_RNDV_THRESH = 16 KB

• UCX_RNDV_THRESH = 4 MB

OSU bandwidth & latency

• Host to Host latency and bandwidth
• Influence of the UCX_RNDV_THRESH variable
• UCX_RNDV_THRESH = 16 KB

• UCX_RNDV_THRESH = 4 MB

OSU bandwidth & latency

• Device to Device latency and bandwidth
• Influence of GDRCopy
• Bandwidth x7

• Latency x3

OSU bandwidth & latency

Atos is a registered trademark of Atos SE. February 2022. © 2022 Atos. Confidential
information owned by Atos, to be used by the recipient only. This document, or any
part of it, may not be reproduced, copied, circulated and/or distributed nor quoted
without prior written approval from Atos.

© Atos

Okba-nafie.hamitou@atos.net

	Diapositive 1
	Diapositive 2 Turpan Architecture
	Diapositive 3 Turpan Architecture
	Diapositive 4 Turpan Architecture
	Diapositive 5 Turpan Architecture
	Diapositive 6 Turpan Architecture
	Diapositive 7 Turpan Architecture
	Diapositive 8 Turpan Architecture
	Diapositive 9 Turpan Architecture
	Diapositive 10 Turpan Architecture
	Diapositive 11 Turpan Architecture
	Diapositive 12
	Diapositive 13 Access and data transfers
	Diapositive 14 Disk spaces
	Diapositive 15 Partitions
	Diapositive 16 Software environment
	Diapositive 17 Software environment
	Diapositive 18 Software environment
	Diapositive 19 Software environment
	Diapositive 20 Software environment
	Diapositive 21 Software environment
	Diapositive 22
	Diapositive 23 Slurm
	Diapositive 24 Slurm
	Diapositive 25 Slurm
	Diapositive 26 Slurm
	Diapositive 27 Slurm
	Diapositive 28 Slurm
	Diapositive 29 Slurm
	Diapositive 30 Slurm
	Diapositive 31 Slurm
	Diapositive 32 Slurm
	Diapositive 33 Slurm
	Diapositive 34 Slurm
	Diapositive 35 Slurm
	Diapositive 36 Slurm
	Diapositive 37
	Diapositive 38 Compiling on Arm Ampere Altra
	Diapositive 39 Compiling on Arm Ampere Altra
	Diapositive 40 Compiling on Arm Ampere Altra
	Diapositive 41 Compiling on Arm Ampere Altra
	Diapositive 42 Compiling on Arm Ampere Altra
	Diapositive 43 Compiling on Arm Ampere Altra
	Diapositive 44 Compiling on Arm Ampere Altra
	Diapositive 45 Compiling on Arm Ampere Altra
	Diapositive 46
	Diapositive 47 Stream
	Diapositive 48 HPL & HPCG
	Diapositive 49 OSU bandwidth & latency
	Diapositive 50 OSU bandwidth & latency
	Diapositive 51 OSU bandwidth & latency
	Diapositive 52 OSU bandwidth & latency
	Diapositive 53

