
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles:

SCOREP_WRAPPER_INSTRUMENTER_FLAGS, SCOREP_WRAPPER_COMPILER_FLAGS

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

342ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

442ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE 5

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Enables users to install library wrappers for any C/C++ library

 Intercept calls to a library API
 no need to either build the library with Score-P or add manual instrumentation to the application

using the library

 no need to access the source code of the library, header and library files suffice

 Score-P needs to be executed with --libwrap=…

642ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

 Check scorep-info config-vars –full for a wide range of further options and default values

7

% export SCOREP_CUDA_ENABLE=runtime,kernel,idle

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

Idle is an artificial region
defined as outside of

kernel time

Adding options will
increase overhead to a

varying degree

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

842ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

9

% papi_avail

% papi_native_avail

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

1042ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

11

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

! Declarations

SCOREP_USER_REGION_DEFINE(solve)

! Some code…

SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)

do i=1,100

[...]

end do

SCOREP_USER_REGION_END(solve)

! Some more code…

end subroutine

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

12

#include "scorep/SCOREP_User.h"

void foo()

{

/* Declarations */

SCOREP_USER_REGION_DEFINE(solve)

/* Some code… */

SCOREP_USER_REGION_BEGIN(solve, “<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

SCOREP_USER_REGION_END(solve)

/* Some more code… */

}

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

13

#include "scorep/SCOREP_User.h"

void foo()

{

// Declarations

// Some code…

{

SCOREP_USER_REGION(“<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

}

// Some more code…

}

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

14

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

! Some code…

SCOREP_RECORDING_OFF()

! Loop will not be measured

do i=1,100

[...]

end do

SCOREP_RECORDING_ON()

! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

/* Some code… */

SCOREP_RECORDING_OFF()

/* Loop will not be measured */

for (i = 0; i < 100; i++) {

[...]

}

SCOREP_RECORDING_ON()

/* Some more code… */

}

Fortran (requires C preprocessor) C / C++

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods) and sampling

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under 3-clause BSD open-source license

 Documentation & Sources:

 http://www.score-p.org

 User guide also part of installation:

 <prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

1842ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

