
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic trace analysis with the

Scalasca Trace Tools

Radita Liem

RWTH Aachen University

(with content used with permission from tutorials by Markus Geimer & Brian Wylie, JSC)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic trace analysis

 Idea
 Automatic search for patterns of inefficient behaviour

 Classification of behaviour & quantification of significance

 Identification of delays as root causes of inefficiencies

 Guaranteed to cover the entire event trace

 Quicker than manual/visual trace analysis

 Parallel replay analysis exploits available memory & processors to deliver scalability

2

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca Trace Tools: Objective

 Development of a scalable trace-based performance analysis toolset

for the most popular parallel programming paradigms
 Current focus: MPI, OpenMP, and (to a limited extend) POSIX threads

 Specifically targeting large-scale parallel applications
 Demonstrated scalability up to 1.8 million parallel threads

 Of course also works at small/medium scale

 Latest release:
 Scalasca v2.5 coordinated with Score-P v5.0 (March 2019), also works with later versions

 Pre-release version used for the workshop, v2.5 also available as fallback

342ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca Trace Tools: Features

 Open source, 3-clause BSD license

 Fairly portable
 IBM Blue Gene, Cray XT/XE/XK/XC, SGI Altix, Fujitsu FX systems,

Linux clusters (x86, Power, ARM), Intel Xeon Phi, ...

 Uses Score-P instrumenter & measurement libraries
 Scalasca v2 core package focuses on trace-based analyses

 Supports common data formats
 Reads event traces in OTF2 format

 Writes analysis reports in CUBE4 format

 Current limitations:
 Unable to handle traces

 with MPI thread level exceeding MPI_THREAD_FUNNELED

 containing Memory events, CUDA/OpenCL device events (kernel, memcpy), SHMEM, or OpenMP nested parallelism

 PAPI/rusage metrics for trace events are ignored

442ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

S
c
o
re

-P
S
c
o
re

-P Scalasca trace analysis

5

Scalasca workflow

Instr.

target

application

Measurement

library

HWC
Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler / linker

Instrumented
executable

Source
modules

R
e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Which problem?
Where in the

program?
Which

process?

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

 Waiting time caused by a blocking receive operation posted earlier than the

corresponding send

 Applies to blocking as well as non-blocking communication

time

lo
c
a

tio
n

MPI_Recv

MPI_Send

time

lo
c
a

tio
n MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

lo
c
a

tio
n MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_IsendMPI_Wait MPI_Wait

Example: “Late Sender” wait state

642ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Critical path

 Shows call paths and processes/threads that are responsible for the program’s

wall-clock runtime

 Identifies good optimization candidates and parallelization bottlenecks

7

time

Recv

Recv

lo
c
a

tio
n

foo

foo

foo

bar

Send

bar

bar

Send foobar

foobar

foobar

Recv

Recv

Computation Communication Wait state Critical path

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Root-cause analysis

 Classifies wait states into direct and indirect (i.e., caused by other wait states)

 Identifies delays (excess computation/communication) as root causes of wait states

 Attributes wait states as delay costs

8

time

Recv

Recv

lo
c
a

tio
n

foo

foo

foo

Send

SendRecv

Recv

Computation

Communication

Wait state

Delay

Direct

DirectIndirect

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on:

NPB-MZ-MPI / BT

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Loading Scalasca into the Environment

 Welcome to the 2nd day! You need to reload the necessary modules to the environment

10

load dependency modules to the environment
% module load Stages/2022 # if you are in Jupyter Xpra
% module load GCC ParaStationMPI

load scalasca
% module load Scalasca/2.6

% module list

Currently Loaded Modules:

1) Stages/2022 (S) 21) bzip2/.1.0.8 (H) 41) libunwind/.1.5.0 (H)

2) GCCcore/.11.2.0 (H) 22) PCRE/.8.45 (H) 42) OpenGL/2021b (g)

3) zlib/.1.2.11 (H) 23) util-linux/.2.37 (H) 43) NASM/.2.15.05 (H)

[...]

14) libxml2/.2.9.10 (H) 34) DBus/.1.13.18 (H) 54) OTF2/.2.3 (H)

15) mpi-settings/UCX 35) OpenSSL/1.1 55) OPARI2/.2.0.6 (H)

16) ParaStationMPI/5.5.0-1 (g) 36) libevent/.2.1.12 (H) 56) PAPI/6.0.0.1

17) double-conversion/3.1.6 37) GMP/6.2.1 57) PDT/.3.25.1 (H)

18) libffi/.3.4.2 (H) 38) nettle/.3.7.3 (H) 58) Score-P/7.1

19) ncurses/.6.2 (H) 39) libdrm/.2.4.108 (H) 59) Scalasca/2.6

20) gettext/.0.21 (H) 40) LLVM/13.0.0

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca command – One command for (almost) everything

 The ‘scalasca -instrument’ command is deprecated and only provided for backwards

compatibility with Scalasca 1.x., recommended: use Score-P instrumenter directly

11

% scalasca

Scalasca 2.6

Toolset for scalable performance analysis of large-scale parallel applications

usage: scalasca [OPTION]... ACTION <argument>...

1. prepare application objects and executable for measurement:

scalasca -instrument <compile-or-link-command> # skin (using scorep)

2. run application under control of measurement system:

scalasca -analyze <application-launch-command> # scan

3. interactively explore measurement analysis report:

scalasca -examine <experiment-archive|report> # square

Options:

-c, --show-config show configuration summary and exit

-h, --help show this help and exit

-n, --dry-run show actions without taking them

--quickref show quick reference guide and exit

--remap-specfile show path to remapper specification file and exit

-v, --verbose enable verbose commentary

-V, --version show version information and exit

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca convenience command: scan / scalasca -analyze

 Scalasca measurement collection & analysis nexus

12

% scan

Scalasca 2.6: measurement collection & analysis nexus

usage: scan {options} [launchcmd [launchargs]] target [targetargs]

where {options} may include:

-h Help : show this brief usage message and exit.

-v Verbose : increase verbosity.

-n Preview : show command(s) to be launched but don't execute.

-q Quiescent : execution with neither summarization nor tracing.

-s Summary : enable runtime summarization. [Default]

-t Tracing : enable trace collection and analysis.

-a Analyze : skip measurement to (re-)analyze an existing trace.

-e exptdir : Experiment archive to generate and/or analyze.

(overrides default experiment archive title)

-f filtfile : File specifying measurement filter.

-l lockfile : File that blocks start of measurement.

-R #runs : Specify the number of measurement runs per config.

-M cfgfile : Specify a config file for a multi-run measurement.

-P preset : Specify a preset for a multi-run measurement, e.g., 'pop'.

-L : List available multi-run presets.

-D cfgfile : Check a multi-run config file for validity and dump

: the processed configuration for comparison.

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic measurement configuration

 scan configures Score-P measurement by automatically setting some environment

variables and exporting them
 E.g., experiment title, profiling/tracing mode, filter file, …

 Precedence order:
 Command-line arguments

 Environment variables already set

 Automatically determined values

 Also, scan includes consistency checks and prevents corrupting existing experiment

directories

 For tracing experiments, after trace collection completes then automatic parallel trace

analysis is initiated
 Uses identical launch configuration to that used for measurement (i.e., the same allocated compute

resources)

1342ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca advanced command:
scout - Scalasca automatic trace analyzer

 Provided in serial (.ser), OpenMP (.omp), MPI (.mpi) and MPI+OpenMP (.hyb) variants

14

% scout.hyb --help

SCOUT (Scalasca 2.6)

Copyright (c) 1998-2021 Forschungszentrum Juelich GmbH

Copyright (c) 2014-2021 RWTH Aachen University

Copyright (c) 2009-2014 German Research School for Simulation Sciences GmbH

Usage: <launchcmd> scout.hyb [OPTION]... <ANCHORFILE | EPIK DIRECTORY>

Options:

--statistics Enables instance tracking and statistics [default]

--no-statistics Disables instance tracking and statistics

--critical-path Enables critical-path analysis [default]

--no-critical-path Disables critical-path analysis

--rootcause Enables root-cause analysis [default]

--no-rootcause Disables root-cause analysis

--single-pass Single-pass forward analysis only

--time-correct Enables enhanced timestamp correction

--no-time-correct Disables enhanced timestamp correction [default]

--verbose, -v Increase verbosity

--help Display this information and exit

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca convenience command: square / scalasca -examine

 Scalasca analysis report explorer (Cube)

16

% square

Scalasca 2.6: analysis report explorer

usage: square [OPTIONS] <experiment archive | cube file>

-C <none | quick | full> : Level of sanity checks for newly created reports

-c <number> : Consider number of counters when doing scoring (-s)

-F : Force remapping of already existing reports

-f filtfile : Use specified filter file when doing scoring (-s)

-s : Skip display and output textual score report

-v : Enable verbose mode

-n : Do not include idle thread metric

-S <mean | merge> : Aggregation method for summarization results of

each configuration (default: merge)

-T <mean | merge> : Aggregation method for trace analysis results of

each configuration (default: merge)

-A : Post-process every step of a multi-run experiment

-I : Ignore structural sanity checks and force aggregation

of measurements in a multi-run experiment

-x <scorep-score opt> : Pass option(s) to scorep-score

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Recap: Local installation (JUSUF)

 Load the Scalasca module

 If you haven’t done this in the day 1, copy the BT-MZ to your own work directory

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE 17

load dependency modules to the environment
% module load Stages/2022 # if you are in Jupyter Xpra
% module load GCC ParaStationMPI

load scalasca
% module load Scalasca/2.6

% cd work/[your_JUSUF_username] #created from ‘source setup.sh

% cp /p/project/training2214/NPB3.3-MZ-MPI.tar.gz .

% tar -zxvf NPB3.3-MZ-MPI.tar.gz

% cd NPB3.3-MZ-MPI

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary measurement collection...

 Change to

directory with the

Score-P

instrumented

executable and

edit the job script

 Submit the job

18

% cd bin.scorep

% cp ../jobscript/jusuf/scalasca.sbatch .

% cat scalasca.sbatch

Benchmark configuration (disable load balancing with threads)

export NPB_MZ_BLOAD=0

PROCS=8

CLASS=C

Measurement configuration

export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_TOTAL_MEMORY=80M

#export SCAN_ANALYZE_OPTS="--time-correct"

Run the application

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

scalasca -analyze srun ./bt-mz_$CLASS.$PROCS

% sbatch scalasca.sbatch

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Hint:
scan = scalasca –analyze

-s = profile/summary (def)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary measurement

 Run the application

using the Scalasca

measurement

collection &

analysis nexus

prefixed to launch

command

 Creates

experiment

directory:

scorep_bt-

mz_C_8x6_sum

19

S=C=A=N: Scalasca 2.6 runtime summarization

S=C=A=N: ./scorep_bt-mz_C_8x6_sum experiment archive

S=C=A=N: Wed May 18 11:19:04 2022: Collect start

/usr/bin/srun ./bt-mz_C.8

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP

Benchmark

Number of zones: 16 x 16

Iterations: 200 dt: 0.000100

Number of active processes: 8

[... More application output ...]

S=C=A=N: Wed May 18 11:19:19 2022: Collect done (status=0) 15s

S=C=A=N: ./scorep_bt-mz_C_8x6_sum complete.

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report examination

 Score summary analysis report

 Post-processing and interactive exploration with Cube

 The post-processing derives additional metrics and generates a structured

metric hierarchy

20

% square scorep_bt-mz_C_8x6_sum

INFO: Post-processing runtime summarization report (profile.cubex)...

[GUI showing summary analysis report]

% square -s scorep_bt-mz_C_8x6_sum

INFO: Post-processing runtime summarization report (profile.cubex)...

/p/software/jusuf/stages/2022/software/Score-P/7.1-gpsmpi-2021b/bin/

scorep-score -r ./scorep_bt-mz_C_8x6_sum/profile.cubex > ./scorep_bt-mz_C_8x6_sum/scorep.score

INFO: Score report written to ./scorep_bt-mz_C_8x6_sum/scorep.score

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-processed summary analysis report

2142ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Split base metrics into

more specific metrics

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

2242ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace measurement collection...

 Change to

directory with the

Score-P

instrumented

executable and

edit the job script

 Add “-t” to the

scan command

 Submit the job

23

% vi scalasca.sbatch

Benchmark configuration (disable load balancing with threads)

export NPB_MZ_BLOAD=0

PROCS=8

CLASS=C

Measurement configuration

export SCOREP_FILTERING_FILE=../config/scorep.filt

export SCOREP_TOTAL_MEMORY=80M

#export SCAN_ANALYZE_OPTS="--time-correct"

Run the application

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

scalasca –analyze -t srun ./bt-mz_$CLASS.$PROCS

% sbatch scalasca.sbatch

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace measurement ... collection

 Starts measurement with

collection of trace files …

24

S=C=A=N: Scalasca 2.6 trace collection and analysis

S=C=A=N: ./scorep_bt-mz_C_8x6_trace experiment archive

S=C=A=N: Wed May 18 11:34:36 2022: Collect start

/usr/bin/srun ./bt-mz_C.8

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Number of zones: 16 x 16

Iterations: 200 dt: 0.000100

Number of active processes: 8

Use the default load factors with threads

Total number of threads: 48 (6.0 threads/process)

Calculated speedup = 47.97

[... More application output ...]

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace measurement ... analysis

 Continues with

automatic (parallel)

analysis of trace files

25

S=C=A=N: Wed May 18 11:34:56 2022: Collect done (status=0) 20s

S=C=A=N: Wed May 18 11:34:56 2022: Analyze start

/usr/bin/srun /p/software/jusuf/stages/2022/software/Scalasca/2.6-gpsmpi-

2021b/bin/scout.hyb ./scorep_bt-mz_C_8x6_trace/traces.otf2

SCOUT (Scalasca 2.6)

[..]

Analyzing experiment archive ./scorep_bt-mz_C_8x6_trace/traces.otf2

Opening experiment archive ... done (0.007s).

Reading definition data ... done (0.009s).

Reading event trace data ... done (0.207s).

Preprocessing ... done (0.322s).

Analyzing trace data ... done (7.428s).

Writing analysis report ... done (0.309s).

Max. memory usage : 869.758MB

Total processing time : 8.443s

S=C=A=N: Wed May 18 11:35:05 2022: Analyze done (status=0) 9s

S=C=A=N: ./scorep_bt-mz_C_8x6_trace complete.

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace analysis report exploration

 Produces trace analysis report in the experiment directory containing trace-based

wait-state metrics

26

% square scorep_bt-mz_C_8x6_trace

INFO: Post-processing runtime summarization report (profile.cubex)...

INFO: Post-processing trace analysis report (scout.cubex)...

INFO: Displaying ./scorep_bt-mz_C_8x6_trace/trace.cubex...

[GUI showing trace analysis report]

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-processed trace analysis report

2742ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Additional trace-based

metrics in metric hierarchy

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Online metric description

2842ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Documentation on

the metrics will be

displayed on the right

hand side

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical-path analysis

29

Critical-path profile shows

wall-clock time impact

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Critical-path imbalance

highlights inefficient

parallelism

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Pattern instance statistics

3042ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE

Statistics of is available on

the right hand side

Click to get

statistics details

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Exercises

(if you don’t have your own code)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Warm-up

 Build the BT-MZ example code for class (i.e., problem size) “D”
 Perform a baseline measurement w/o instrumentation

 Re-build the executable with Score-P instrumentation

 Repeat the hands-on exercise with the new executable
 Perform a summary measurement

 Score the summary measurement result

 Adjust the measurement configuration appropriately

 Perform a trace measurement and analysis

39TH VI-HPS TUNING WORKSHOP (POP COE, 19-21 APRIL 2021) - ONLINE 51

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Trace analysis report examination

 What is the poportion of computation time vs. parallelization overheads?

 Which code regions are mostly responsible for the overall execution time?

 Are there any load balancing issues?

 If so, in which routines?

 What are the most significant wait states/parallelization overheads?

 What are their root causes?

42ND VI-HPS TUNING WORKSHOP (POP COE, 17-19 MAY 2022) - ONLINE 52

