

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Extrae & Paraver Hands-On

Judit Giménez, Germán Llort, Lau Mercadal, <u>Sandra Méndez</u>

<mark>⊠ tools@bsc.es</mark>

19/05/2022

POP Performance Analysis

Extrae features

- Platforms
 - Intel, Cray, BlueGene, MIC, ARM, Android, Fujitsu Sparc ...
- Parallel programming models
 - MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python ...
- Performance Counters
 - Using PAPI interface
- Link to source code
 - Callstack at MPI routines
 - OpenMP outlined routines
 - Selected user functions (Dyninst)
- Periodic sampling
- User events (Extrae API)

No need to recompile or relink!

How does Extrae work?

- Symbol substitution through LD_PRELOAD
 - Specific libraries for each combination of runtimes
 - MPI
 - OpenMP
 - OpenMP+MPI
 - ...

Recommended

- Dynamic instrumentation
 - Based on Dyninst (developed by U.Wisconsin / U.Maryland)
 - Instrumentation in memory
 - Binary rewriting
- Alternatives
 - Static link (i.e., PMPI, Extrae API)

Using Extrae in 3 steps

- **1.** Adapt your job submission scripts
- 2. Configure what to trace
 - XML configuration file
 - Example configurations at \$EXTRAE_HOME/share/example
- **3. Run** it!

- For further reference check the Extrae User Guide:
 - <u>https://tools.bsc.es/doc/html/extrae</u>
 - Also distributed with Extrae at \$EXTRAE_HOME/share/doc

Log in to Jusuf

laptop\$ ssh -Y <USER>@jusuf.fz-juelich.de

• The following directory contains all the examples:

```
jusuf$ cp -r /p/project/training2214/tools-material
$HOME
jusuf$ ls -l $HOME/tools-material
bin/
clustering/
extrae/
slides/
slides/
traces/
```


Step 1: Adapt the job script to load Extrae

jusuf\$ vi \$HOME/tools-material/extrae/job_27p.sh

Step 1: Adapt the job script to load Extrae

Step 1: Adapt the job script to load Extrae

Step 1: Which tracing library?

• Choose depending on the application type

Library	Serial	MPI	OpenMP	pthread	CUDA
libseqtrace	Х				
libmpitrace[f] ¹		Х			
libomptrace			Х		
libpttrace				Х	
libcudatrace					Х
libompitrace[f] ¹		Х	Х		
libptmpitrace[f] ¹		X		Х	
libcudampitrace[f] ¹		Х			Х

¹ include suffix "f" in Fortran codes

Step 2: Extrae XML configuration

jusuf\$ vim \$HOME/tools-material/extrae/extrae.xml

Step 2: Extrae XML configuration (II)

jusuf\$ vi \$HOME/tools-material/extrae/extrae.xml

```
<counters enabled="yes">
    <cpu enabled="yes" starting-set-distribution="1">
        <set enabled="yes" domain="all" changeat-time="0">
            PAPI_TOT_INS,PAPI_TOT_CYC
        </set>
        </cpu>
        <network enabled="no" />
        <network enabled="no" />
        <memory-usage enabled="no" />
        </counters>
```

Select which HW counters are measured (How's the machine doing?)

Step 2: Extrae XML configuration (III)

jusuf\$ vi \$HOME/tools-material/extrae/extrae.xml

Step 3: Run it!

• Submit your job

jusuf\$ cd \$HOME/tools-material/extrae
jusuf\$ sbatch job_27p.sh

• Easy!

All done! Check your resulting trace

• Once finished (check with "squeue") you will have the trace (3 files):

```
jusuf$ ls -l $HOME/tools-material/extrae
lulesh2.0_i_27p.pcf
lulesh2.0_i_27p.prv
lulesh2.0_i_27p.row
```

• Any trouble? Traces already generated here:

jusuf\$ ls \$HOME/tools-material/traces

• Now let's look into it !

Install Paraver

Download from https://tools.bsc.es/downloads

Pick your version

wxparaver-4.10.0-win.zip

wxparaver-4.10.0-mac.zip

wxparaver-4.10.0-Linux_i686.tar.gz (32-bits)
wxparaver-4.10.0-Linux_x86_64.tar.gz (64-bits)

Install Paraver (II)

• Start Paraver

laptop\$ paraver/bin/wxparaver

• Trouble installing locally? Remote open from Jusuf

jusuf\$ wxparaver

Install Paraver tutorials (I)

Tutorials

Follow these tutorials by clicking on the hyperlinks and reading the explanations. When you click on a link, multiple views will open.

Install Paraver tutorials – alternative methods(II)

- Download tutorials archive
 - https://tools.bsc.es/paraver-tutorials

These seven tuto and untar the pao	orials can ckage and	be opened with wxParaver ve d follow the instructions of the	versions newer than 4.3.0, and you'll be able to follow the steps within the tool. To install them, download ne Help/Tutorial option on the Paraver main window. Following there is a list of available tutorials:
	D Pa	raver introduction (MPI)	Start here to familiarice with Paraver basic commands and the first steps of a performance analysis.
	Dir	memas introduction	The basic steps to learn how to configure and run the Dimemas simulator and to start looking at the results.
	Dir	roduction to Paraver and memas methodology	This tutorial presents different ways to analyze a MPI application through well-known rules, their diagnosis and how they impact on your exploration (no traces included).
	С ме	ethodology	This tutorial shows some examples of the analysis that can be done using the provided configuration files.
	Tu (M	torial on HydroC analysis IPI, Dimemas, CUDA)	One example of performance analysis of the MPI application Hydro and further simulations with Dimemas.
	Tra	ace preparation	Look at this tutorial to select a representative region for a large trace that cannot be loaded into memory.
	Tra	ace alignment tutorial.	If you identify some unexpected unnalignement or backwards communications, use this tutorial to learn how to correct shifts between processors.
If you profer you	can down	aload all of them togheter in a	a single package.

paraver-tutorials-20150526.tar.gz

All tutorials

Install Paraver tutorials – alternative methods(III)

- Start Paraver:
 - Linux: Run the command:

laptop\$ paraver/bin/wxparaver

- Windows: Double-click on paraver/wxparaver.exe
- MAC: Double click on paraver/wxparaver.app

 Open File → Preferences
 Setup the "Tutorials root" pointing to your folder "tutorials"

Click Browse and select your folder "tutorials"

Trace		
Fill State gaps	with IDLE State	
View full path	in trace selector	
Maximum loadab	le trace size (MB) 500	- +
Default directorie	25	
Traces	/home/gllort	Browse
CFGs	/home/gllort/Apps/Paraver/4.8.2-devel2/cfgs	Browse
Filters XML	/home/gllort/Apps/Paraver/4.8.2/share/filters-config	Browse
Tutorials root	/home/gllort/Apps/Paraver/4.8.2-devel2/tutorials	Browse
Tmp dir	/home/gllort	Browse
Behaviour		
Allow only one	running instance	
Automatically sa	ve session every 1 - + minutes	
Show dialog fo	or crashed auto-saved sessions on startup	
Chauthala	tools on a beauser	

First steps of analysis

• Copy the trace to your laptop

laptop\$ scp <USER>@jusuf.fz-juelich.de: \
tools-material/extrae/lulesh2.0_i_27p.* \$HOME

• Load the trace with Paraver

Click on File → Load Trace → Browse to "lulesh2.0_i_27p.prv"

Parave	er			
File	Hints	Help		
Ŀ	oad Trac	e		Ctrl+O
Р	revious	Traces	26	•
U	nload Tr	aces		

First steps of analysis

- Follow Tutorial #3
 - Introduction to Paraver and Dimemas methodology

	lutorials
Paraver File Hints Help Image: Contents Help Contents Workspaces Tutorials None About	Internats Barceiona Supercomputing Center Centro Nacional de Supercomputación Index I. Introduction to Analysis with Paraver - MPI 2. Introduction to the Use of Dimemas
	3. Introduction to Paraver and Dimemas methodology 4. Analysis with Paraver & Dimemas - Methodology 5. HydroC Tutorial
Click on Help \rightarrow Tutorials	<u>6. Paraver trace preparation</u>
	E ← → Close

Measure the parallel efficiency

- Click on "mpi_stats.cfg"
 - Check the Average for the column labeled "Outside MPI"

Tutorials									
The first question to answer when analyzing a parallel code is "h run?". The efficiency of a parallel program can be defined based parallelization efficiency and the efficiency obtained in the execu regions. These two metrics would be the first checks on the prop	ow efficient does it on two as X × tion of th osed met	۹ 🕿 🔳	ныш	MPI call p	rofile @ lule:	sh2.0_i_27p.prv	-	-	~ ^ (>
• To measure the parallel eficiency load the configuration	n file								
<u>cfgs/mpi/mpi_stats.cfg</u> This configuration pops up a table v every thread spends in every MPI call. Look at the global si	vith %tim THREAD 1.18.1	94.41 %	0.06 %	0.05 %	0.09 %	0.30 %	0.01 %	0.00 %	4
bottom of the outside mpi column. Entry Average represen	ts the ap THREAD 1.19.1	94.77 %	0.05 %	0.04 %	0.05 %	0.46 %	0.02 %	0.00 %	4
parallel efficiency, entry Avg/Max represents the global loa	d balance f any of THREAD 1.20.1	87.72 %	0.06 %	0.05 %	0.17 %	3.97 %	0.01 %	0.00 %	7
values are lower than 85% is recommended to look at the	correspor THREAD 1.21.1	86.55 %	0.05 %	0.03 %	2.50 %	1.83 %	0.02 %	0.49 %	8
of the code.	THREAD 1.22.1	87.11 %	0.08 %	0.05 %	0.22 %	4.09 %	0.01 %	0.00 %	7
. To measure the computation time distribution load th	THREAD 1.23.1	91.30 %	0.09 %	0.06 %	0.59 %	3.63 %	0.01 %	0.00 %	3
 To measure the computation time distribution load the cfgs/general/2dh_usefulduration.cfg This configuration pop 	e configu s up a his THREAD 1.24.1	90.49 %	0.07 %	0.05 %	0.66 %	3.42 %	0.01 %	0.00 %	4
the duration for the computation regions. The computation delimited by the exit from an MPI call and the entry to the	regions THREAD 1.25.1	97.48 %	0.05 %	0.03 %	0.24 %	0.29 %	0.03 %	0.00 %	1
histogram does not show vertical lines, it indicates the con	nputation THREAD 1.26.1	96.21 %	0.08 %	0.04 %	0.06 %	0.35 %	0.01 %	0.00 %	2
distribution and visually correlate both views.	THREAD 1.27.1	95.49 %	0.05 %	0.04 %	0.04 %	0.58 %	0.01 %	0.00 %	3
. To measure the computational load (instructions) di	tributio								
 To measure the computational load (instructions) dis configuration file <u>cfgs/papi/2dh_useful_instructions.cfg</u> This 	configur Total	2,483.17 %	1.79 %	1.50 %	12.83 %	55.38 %	0.33 %	1.03 %	128
up a histogram of the instructions for the computation regi an MPI	call and Average	91.97 %	0.07 %	0.06 %	0.48 %	2.05 %	0.01 %	0.04 %	4
Parallel efficiency	the contr Maximu	98.92 %	0.13 %	0.11 %	3.42 %	4.13 %	0.03 %	0.49 %	8
iews.	minimum	86.55 %	0.03 %	0.03 %	0.04 %	0.22 %	0.00 %	0.00 %	0
	StDev	3.54 %	0.02 %	0.02 %	0.74 %	1.61 %	0.01 %	0.10 %	1
Comm efficiency	Avg/M-	0.93	0.52	0.50	0.14	0.50	0.43	0.08	
Load balance									

Focus on the iterative part

🐹 🖈			MPI call p	orofile @ lules	h2.0_i_27p.pi	v		~
ic id 30	9 🕿 🔳	H H I	Α Σ	🖌 🕨 Defa	ult 🗸 🕏			
THREAD 1.18	1 94.41 %	0.06 %	0.05 %	0.09 %	0.30 %	0.01 %	0.00 %	4
THREAD 1.19	1 94.77 %	0.05 %	0.04 %	0.05 %	0.46 %	0.02 %	0.00 %	4
THREAD 1.20	1 87.72 %	0.06 %	0.05 %	0.17 %	3.97 %	0.01 %	0.00 %	7
THREAD 1.21	1 86.55 %	0.05 %	0.03 %	2.50 %	1.83 %	0.02 %	0.49 %	8
THREAD 1.22	1 87.11 %	0.08 %	0.05 %	0.22 %	4.09 %	0.01 %	0.00 %	7
THREAD 1.23	1 91.30 %	0.09 %	0.06 %	0.59 %	3.63 %	0.01 %	0.00 %	3
THREAD 1.24	1 90.49 %	0.07 %	0.05 %	0.66 %	3.42 %	0.01 %	0.00 %	4
THREAD 1.25	1 97.48 %	0.05 %	0.03 %	0.24 %	0.29 %	0.03 %	0.00 %	1
THREAD 1.26	1 96.21 %	0.08 %	0.04 %	0.06 %	0.35 %	0.01 %	0.00 %	2
THREAD 1.27	1 95.49 %	0.05 %	0.04 %	0.04 %	0.58 %	0.01 %	0.00 %	3
Total	2,483.17 %	1.79 %	1.50 %	12.83 %	55.38 %	0.33 %	1.03 %	128
Average	91.97 %	0.07 %	0.06 %	0.48 %	2.05 %	0.01 %	0.04 %	4
Maximum	98.92 %	0.13 %	0.11 %	3.42 %	4.13 %	0.03 %	0.49 %	8
Minimum	86.55 %	0.03 %	0.03 %	0.04 %	0.22 %	0.00 %	0.00 %	0
StDev	3.54 %	0.02 %	0.02 %	0.74 %	1.61 %	0.01 %	0.10 %	1
Avg/Max	0.93	0.52	0.50	0.14	0.50	0.43	0.08	

Zoom iterative part

Click on "Open

Control Window"

		\rightarrow					
MPI call @ lulesh2.0_i_27p.prv							
THREAD 1.1.1						11.1	
THREAD 1.5.1							
THREAD 1.9.1							
THREAD 1 13 1							
THREAD 1.17.1							
THREAD 1.21.1							
THREAD 1.25.1							
0 us						4,315	,412 u

Recalculate efficiency of iterative region

🛛 🗶 🖉	MPI call @ lulesh2.0_i	_27p.prv			$\sim \sim$	8		
THREAD 1.1.1		4 4 4				i	Right of	click -> Cop
THREAD 1.5.1		4 44						
THREAD 1.9.1 THREAD 1.13.1		1 111						
THREAD 1.17.1								
THREAD 1.21.1			- 10 E					
THREAD 1.25.1 THREAD 1.27.1								
1,929,699 us		_	_		4,084,657	us		
	X X			MPI call pr	ofile @ lule:	sh2.0_i_27p.prv	1	~
Right click ->	IC ID 30	९ 🕿 🔳	ннШ	Υ Σ ½	í 🕨 Defa	ault 🗸 🕏		
Paste -> Time	THREAD 1.20.1	78.31 %	0.10 %	0.08 %	0.26 %	6.91 %	14.27 %	0.08 %
	THREAD 1.21.1	76.25 %	0.08 %	0.05 %	4.53 %	2.94 %	16.04 %	0.10 %
	THREAD 1.22.1	77.21 %	0.12 %	0.08 %	0.39 %	7.09 %	15.00 %	0.10 %
	THREAD 1.23.1	84.78 %	0.15 %	0.10 %	1.08 %	6.19 %	7.62 %	0.07 %
	THREAD 1.24.1	83.36 %	0.11 %	0.08 %	1.14 %	5.87 %	9.36 %	0.08 %
	THREAD 1.25.1	95.64 %	0.08 %	0.05 %	0.41 %	0.49 %	3.26 %	0.08 %
	THREAD 1.26.1	93.31 %	0.12 %	0.07 %	0.11 %	0.59 %	5.72 %	0.07 %
	THREAD 1.27.1	92.10 %	0.08 %	0.06 %	0.07 %	0.91 %	6.71 %	0.07 %
Parallel efficiency								
	Tota!	2,318.40 %	2.68 %	2.48 %	22.79 %	94.91 %	256.50 %	2.25 %
Comm efficiency	Average	85.87 %	0.10 %	0.09 %	0.84 %	3.52 %	9.50 %	0.08 %
	Maximum	98.23 %	0.19 %	0.19 %	6.12 %	7.16 %	16.04 %	0.11 %
	Minimum	76.25 %	0.05 %	0.05 %	0.07 %	0.38 %	0.02 %	0.06 %
	StDev	6.25 %	0.03 %	0.03 %	1.33 %	2.80 %	3.83 %	0.01 %
	Avg/Max	0.87	0.52	0.49	0.14	0.49	0.59	0.74

Supercomputing Center Centro Nacional de Supercomputación ~ 😣

Computation time distribution

• Click on "2dh_usefulduration.cfg" (2nd link) 🛛 Shows time computing

Centro Nacional de Supercomputación

Computation time distribution

• Click on "2dh_usefulduration.cfg" (2nd link) 🛛 Shows **time computing**

Zoom in															
	8	*		2DI	H usefu	ıl dura	tion c	orrela	ted wit	:h @ lu	ulesh2.0_i	_27p.prv		\sim	$\sim \otimes$
	IC	D	3D	Q 6		н	H	11 2	Aγr Σ	¥ _E	Defa	ault 🗸	*		_
	₽	Ħ	_	_	_	_	_	_	_	_			_	_	
		Ħ													
		Ħ													
		Ħ													

Barcelona [904,961.05..914,010.66) Supercomputing Center Centro Nacional de Supercomputación

Computation time distribution

• Click on "2dh_usefulduration.cfg" (2nd link) 🛛 Shows **time computing**

Computation load distribution

• Click on "2dh_useful_instructions.cfg" (3rd link) 🛛 Shows **amount of work**

Go from the table to the timeline

Center Centro Nacional de Supercomputación 29

• Go from the table to the timeline

Hints → Call stack references → Caller function

• Hints \rightarrow Call stack references \rightarrow Caller function

Save CFG's (2 methods)

CTRL+C

CTRL+U

CTRL+R

CTRL+T

Configuration...

Image Legend...

Image...

Text...

Save CFG's (2 methods)

CFG's distribution

• Paraver comes with many more included CFG's

araver				
ile Hints <u>H</u> elp				
Load <u>T</u> race				
Unload Traces	Load Configu	ration		
Load Configuration				
Previous Configurations	Look in:	∃ cfas	- 🔺 🎦	
Save Configuration				
Load Session CTRL+I	burst mode	- Elava	ampling and a second	+folding
Save Session CTRL+S	uuuuu	java	i samping	Troiding
Preferences	l clustering	i mpi	scripts	
Quit	counters P/	API 📄 OmpSs	📄 software	counters
2dh useful instructions	CUDA			_
Suseful instructions 2DZoom range [1.60154e+0]	CODA	OpenCL	spectral	
	folding 📄	DpenMP 📄		
	General	Inthread		
	General	princuu		
iles & Window Properties				
	· · · · · · · · · · · · · · · · · · ·			
± IIDDSCtools	File name:		-	Open
🕂 📄 src	_	1		open
Telegram	Files of type:	Deserves can figure tion	file (# ofer)	
	rifes of type.	Paraver configuration	nie (+.crg)	Cancel
🖻 🗁 paraver				
⊡· ⊡ 4.7.2				
E D burst mode				
araver files				

Paraver files

Hints: a good place to start!

• Paraver suggests CFG's based on the contents of the trace

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Takeaway: Analyse efficiencies and unbalances

Judit Giménez, Germán Llort, Lau Mercadal, Sandra Méndez

<u>X tools@bsc.es</u>

19/04/2021

POP Performance Analysis

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Clustering Hands-On

Judit Giménez, Germán Llort, Lau Mercadal, Sandra Méndez

<u>X tools@bsc.es</u>

19/04/2021

POP Performance Analysis

Cluster-based analysis (I)

• Run the clustering tool on the trace you generated

```
jusuf$ source /p/project/training2214/setup.sh
jusuf$ cd $HOME/tools-material/clustering
jusuf$ BurstClustering \
-d cluster.xml \
-i ../extrae/lulesh2.0_i_27p.prv \
-o lulesh2.0_i_27p-clustered.prv
```

If you didn't get your own trace, use a prepared one from:

Cluster-based analysis (II)

Check the clustering scatter plot

jusuf\$ gnuplot \
lulesh2.0_i_27p-clustered.IPC.PAPI_TOT_INS.gnuplot

- Identify main computing trends
- Work (Y) vs. Performance (X)
- Look at the clusters shape
 - Variability in both axes indicate **potential imbalances**

Cluster-based analysis (III)

- Check the clustered trace
 - Copy the trace to your laptop

jusuf\$ scp <USER>@jusuf.fz-juelich.de: \
tools-material/clustering/*.{pcf,prv,row} \$HOME

Load with Paraver

laptop\$ paraver/bin/wxparaver \
\$HOME/lulesh2.0_i_27p_clustered.prv

- Display the distribution of clusters over time
 - File 🛛 Load configuration 🖾 paraver/cfgs/clustering/clusterID_window.cfg

Cluster-based analysis (III)

• Correlate scatter plots & timelines to detect imbalances

Centro Nacional de Supercomputación

Barcelona Supercomputing Center Centro Nacional de Supercomputación

End Clustering Hands-On

Judit Giménez, Germán Llort, Lau Mercadal, Sandra Méndez

<mark>⊠ tools@bsc.es</mark>

19/04/2021

POP Performance Analysis