
Nsight Compute
41TH VI-HPS TUNING WORKSHOP

Felix Schmitt

2

Nsight Systems - Analyze application algorithms system-wide

Nsight Compute - Analyze CUDA kernels

Nsight Graphics - Debug/analyze graphics workloads

Nsight Product Family

Workflow

Compute Graphics

You are
here

Systems

Start here

3

Overview

4

Overview

Interactive CUDA Kernel

profiler

Targeted metric sections for

various performance aspects

Customizable data collection
and presentation (tables,
charts, …)

UI and Command Line

Python-based API for guided
analysis and post-processing

Support for remote profiling

across machines and platforms

5

Profiling Activities

Interactive Profile (Non-interactive) Profile Command Line

6

Profiler Report

7

Profiler Report

Selected result

Expandable

Sections

Expert Analysis

(Rules)

Metric values

8

Profiler Report

Detailed memory workload

analysis chart and tables

Shows transferred data or

throughputs

Tooltips provide metric
names, calculation formulas
and detailed background info

9

Profiler Report

Comparison of results directly

within the tool with "Baselines"

Supported across kernels,

reports, and GPU architectures

10

Profiler Report

Source/PTX/SASS

analysis and
correlation

Source metrics per
instruction and

aggregated (e.g. PC
sampling data)

Metric heatmap

11

Occupancy Calculator

12

Hands-On with
TeaLeaf_Cuda

13

Get the application

Get the source code
$ git clone --depth 1 https://github.com/UK-MAC/TeaLeaf_CUDA

Get compiler, MPI and CUDA using modules
module load Stages/2022

module load NVHPC/22.1

module load OpenMPI/4.1.2

module load Nsight-Compute/2022.1.0

Update Makefile for the target architecture (e.g. AMPERE, SM 8.0) and compiler/libraries, as necessary

Build the application
$ make

Better, use the pre-compiled script and binary from /p/project/training2123/work/schmitt5
$ source load_modules.sh

$ TeaLeaf_CUDA/tea_leaf

14

Overview with Nsight Systems

Profile with Nsight Systems to identify best CUDA kernel optimization targets

Focus on device_tea_leaf_ppcg_solve_(calc|update).* kernels

15

Profiling with Nsight Compute

Collect 10 instances of those kernels with ncu, full set of metrics

Inspect the resulting report in the Nsight Compute UI (ncu-ui)

ncu --set full -k "regex:device_tea_leaf_ppcg_solve_(calc|update).*" -c 10 -f -o tea_leaf_%i

./tea_leaf

Summary page confirms that all instances of each respective kernel have similar performance

characteristics - focus on a single instance for each Live

16

Analyzing calc kernel

Switch to the Details page and select the second kernel (with slightly worse throughputs).

Memory units are over-utilized.
Roofline shows that floating point performance is memory-bound (left of ridge point)
Similar in Compute Workload chart: FP pipelines are less than 5% utilized.

17

Analyzing calc kernel

MWA table shows bandwidth 80% utilized, chart shows high Device-to-L2 utilization

18

Analyzing calc kernel

Scheduler stats show low

eligible/issued, need to
check stall reasons

Good achieved occupancy,
doesn't appear to be the issue

Stall reasons dominated by
long scoreboard, locate using

Source Counters section

19

Analyzing calc kernel

MWA found sub-optimal cache access

patterns, locate using Source Counters
section

Source Counters show uncoalesced
accesses and location of the stalls

Jump to Source page via this link

20

Analyzing calc kernel

Stalled at DMUL instruction, waiting for LDG (load global) in line 43 (via register R10)

LDG instructions are uncoalesced
Lots of excessive (non-ideal) L2 sector accesses

21

Analyzing calc kernel

Where is this in the code
(no CUDA-C source)
correlation?

Need to add -lineinfo flag

in Makefile during compilation
on line 145 (NV_FLAGS),
re-compile, re-run

Consider using

--import-source yes

22

Further CLI exercises

Check collected report on command line using ncu -i and --page for comparison with the UI.

Update tea_leaf_kernel_cuda.cu with a nvtxPush/Pop range around the two kernels
Name the range "update_and_calc"

Include <nvtx3/nvToolsExt.h>
Update Makefile with “-ldl” at line 134

Replace -k "…" ncu command line with "--nvtx --nvtx-include "update_and_calc/" and "--set full" with
"--metrics …“

ncu --metrics sm__throughput.avg.pct_of_peak_sustained_elapsed --nvtx --nvtx-include

"update_and_calc/" -c 1 -f -o tea_leaf_%i ./tea_leaf

ncu -i tea_leaf_3.ncu-rep

[10768] tea_leaf@127.0.0.1

device_tea_leaf_ppcg_solve_update_r(kernel_info_t, …), 2021-Aug-17 14:43:05, Context 1, Stream 7

NVTX Push/Pop Stack for Thread 10768:

<default domain>

<0,update_and_calc>

Section: Command line profiler metrics

sm__throughput.avg.pct_of_peak_sustained_elapsed % 86.51

23

More: Data Collection

24

Collecting Data

By default, CLI results are printed to stdout

Use --export/-o to save results to a report file, use -f to force overwrite
$ ncu -f -o $HOME/my_report <app>

$ my_report.ncu-rep

Use --log-file to pipe text output to a different stream (stdout/stderr/file)

Can use (env) variables available in your batch script or file macros to add report name placeholders

Full parity with nvprof filename placeholders/file macros
$ ncu -f -o $HOME/my_report_%h_${LSB_JOBID}_%p <app>

$ my_report_host01_951697_123.ncu-rep

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#command-line-options-file-
macros

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

25

What To Collect

Curated "sets" and "sections" with commonly-used, high-value metrics

$ ncu --list-sets

Identifier Sections Estimated Metrics

default LaunchStats, Occupancy, SpeedOfLight 35

detailed ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly 157

sis, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_

RooflineChart, WarpStateStats

full ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly 162

sis, MemoryWorkloadAnalysis_Chart, MemoryWorkloadAnalysis_Tables, Occupancy

, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_RooflineChart,

WarpStateStats

source SourceCounters 47

Use defaults, or combine as desired

$ ncu --set default --section SourceCounters --metrics sm__inst_executed_pipe_tensor.sum ./my-app

26

What To Collect

Query metrics for any targeted chip

$ ncu --query-metrics --chip ga100

smsp__warps_issue_stalled_not_selected cumulative # of warps waiting

for the microscheduler to select the warp to issue

smsp__warps_issue_stalled_selected cumulative # of warps selected

by the microscheduler to issue an instruction

smsp__warps_issue_stalled_short_scoreboard cumulative # of warps waiting

for a scoreboard dependency on MIO operation other than (local, global, surface, tex)

…

tpc__cycles_active # of cycles where TPC was active

tpc__cycles_elapsed # of cycles where TPC was active

==PROF== Note that these metrics must be appended with a valid suffix before profiling them. See --help for

more information on --query-metrics-mode.

Specify sub-metrics in section files, or on the command line

$ ncu --query-metrics-mode suffix --metrics sm__inst_executed_pipe_tensor ./my-app

sm__inst_executed_pipe_tensor.sum

sm__inst_executed_pipe_tensor.avg

sm__inst_executed_pipe_tensor.min

…

27

Source Analysis

SASS (assembly) is always available, embedded into the report

CUDA-C (Source) and PTX availability depends on compilation flags
Use -lineinfo to include source/SASS correlation data in the binary

Source is not embedded in the report by default, need local or remote access to the source file to
resolve in the UI. Import source during collection to (--import-source yes) to solve this.

Compiler optimizations can prevent exact source/SASS correlation

28

More: Data Analysis

29

Python Interfaces

ThroughputRule.py

ncu CLI/UI ncu-rep

Python
NvRules API

ncu_report module

import ncu_report

report = ncu_report.load_report(sys.argv[1])

for range_idx in range(report.num_ranges()):
current_range = report.range_by_idx(range_idx)
for action_idx in current_range.actions_by_nvtx(["BottomRange/*/TopRange"], []):

action = current_range.action_by_idx(action_idx)
print(action.name())
print(action.metric_by_name("gpc__cycles_elapsed.sum").as_uint64())

30

Command Line Output

$ ncu -i /tmp/report.ncu-rep -c 2 --page raw --csv --metrics \

gpc__cycles_elapsed.sum,sm__maximum_warps_per_active_cycle_pct

"ID","Process ID","Process Name","Host Name","Kernel Name","Kernel

Time","Context","Stream","sm__maximum_warps_per_active_cycle_pct"

"","","","","","","","","%"

"0","16301","tea_leaf","127.0.0.1","device_tea_leaf_ppcg_solve_update_r(kernel_info_t, double *, const

double *, const double *, const double *)","2021-Dec-14 14:37:22","1","7","100.000000"

"1","16301","tea_leaf","127.0.0.1","device_tea_leaf_ppcg_solve_calc_sd_new(kernel_info_t, const double

*, double *, const double *, const double *, double *, const double *, const double *, const double *,

const double *, const double *, const double *, const double *, int)","2021-Dec-14

14:37:22","1","7","100.000000"

31

Multi-Process Profiling

jsrun

rank 0

GPU

0

GPU

1

rank 1

GPU

2

GPU

3

Nsight Compute

node 0

gpu0-3

On a single-node submission, one Nsight

Compute instance can profile all
launched child processes

Data for all processes is stored in one
report file

ncu --target-processes all -o <single-

report-name> <app> <args>

32

Multi-Process Profiling

jsrun

rank 0

GPU

0

GPU

1

rank 1

GPU

2

GPU

3

Nsight

Compute

node 0
gpu0-1

On multi-node submissions, one tool

instance can be used per node

Ensure that instances don’t write to the

same report file on a shared disk

ncu -o report_%q{OMPI_COMM_WORLD_RANK}

<app> <args>Nsight

Compute

node 1

gpu2-3

33

Multi-Process Profiling

jsrun

rank

0

GPU

0

GPU

1

rank

2

GPU

2

GPU

3

NC

node 0

Multiple tool instances on the same node

are supported, but…

All kernels across all GPUs will be

serialized using system-wide file lock

NC

node 1

rank

1

rank

3

NC NC

34

Multi-Process Profiling

jsrun

rank

0

GPU

0

GPU

1

rank

2

GPU

2

GPU

3

NC

node 0

Consider profiling only a single rank, e.g. using a

wrapper script

#!/bin/bash

if [["$OMPI_COMM_WORLD_RANK" == "3"]] ; then

/sw/cluster/cuda/11.1/ nsight-compute/ncu -

o report_${OMPI_COMM_WORLD_RANK} --target-

processes all $*

else

$*

fi

node 1

rank

1

rank

3

gpu3

35

Conclusion

36

Conclusion

Nsight Compute enables detailed CUDA kernel analysis

Rules give guidance on optimization opportunities and help metric understanding

Limit metrics to what is required when overhead is a concern. Consider using application replay.

Still requires level of hardware understanding to fully utilize the tool - pay attention to rule results and
refer to https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Analyze results in the UI, or post-process with CSV output or python report interface

Check known issues: https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html

37

Further Reading

Download https://developer.nvidia.com/nsight-compute (can be newer than toolkit version)

Documentation https://docs.nvidia.com/nsight-compute (and local with the tool)

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Forums https://devtalk.nvidia.com

Further Reading https://developer.nvidia.com/nsight-compute-videos

https://developer.nvidia.com/nsight-compute-blogs

https://github.com/NVIDIA/nsight-training
Repository with interactive training material for multiple Nsight tools, including

Systems and Compute.

https://gitlab.com/NERSC/roofline-on-nvidia-gpus

https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://devtalk.nvidia.com/
https://developer.nvidia.com/nsight-compute-videos
https://developer.nvidia.com/nsight-compute-blogs
https://github.com/NVIDIA/nsight-training
https://gitlab.com/NERSC/roofline-on-nvidia-gpus

