<ANVIDIA. *

Nsight Compute
41TH VI-HPS TUNING WORKSHOP

Felix Schmitt’

.

Nsight Product Family

Workflow

Nsight Systems - Analyze application algorithms system-wide
®) Start here
Nsight Compute - Analyze CUDA kernels

Nsight Graphics - Debug/analyze graphics workloads

You are
here

Compute Graphics

2 A NWIDA.

Overview

Overview

Interactive CUDA Kernel
profiler

Targeted metric sections for
various performance aspects

Customizable data collection
and presentation (tables,
charts, ...)

Ul and Command Line

Python-based API for guided
analysis and post-processing

Support for remote profiling
across machines and platforms

4 MDA

Profiling Activities

Interactive Profile (Non-interactive) Profile Command Line

API Stream

15341 > device tea_leaf_ppcg solve update s ~ Export fo CSY

Next Trigger: »vice tea_leaf_ppcg_solve_{calclupdate)* %

APIName Details FuncReturn Func Parameter
cudaMalioc cudaSuccess(0) (0x555d75b64830{(
MemAll CUDA_SUCCESS(0) (0x555d75b64830{(
5 cudaMalloc cudaS

ccess(0) (0x555d75b64838{(
Memal CUDA_SUCCESS(0) (0x555d75b64838{(C o ing/gi 2 mp,/var,/target/1inux-d ktup-vlibc 211 3-x64/ncy -c
cudaMemepy coessi) Activity jice g
CuMemcpyHtoD vz ¥ 00, I, (e %o process 15827 (/home/fschnitt work mg]g)t’lg_gh;aj_ - CUDA/te
oy o " (Ox7rebBStecaon, o n Profile an application using the command line profiler. All GPU workloads are serialized. Note: Attach
cuMemcpyHtoD_vz CUDA_SUCGESS(0) (0x77ebB31ed00, 0y £ i S Tl S iy (%}:“:: ::if
cudalaunchKernel cudaSuccess(0) (0x555d75b0fbEO, { [E Occupancy Calculator = Supported APIs: CUDA ¢
cuLaunchKernel CUDA_SUCCESS(0) (0x555d76ef9710, 1: % - .
device_tea_lea_ppog_solve_init e_tea leaf_ppeg_solve_init cudaSuccess(0) ommon © ° Step G R EL imestep 4.80E-03
cudalaunchkemel cudaSuccess(0) (0x555d75arcadD, {¢ Switching after 990 CG its 2.9911110E+88
cuLaunchKernel CUDA_SUCCESS(0) (0x555d76ec82a0,9 Output File: report_%i . Eigen min 0.106142E+01 Eigen max @.537593E+@5 Condition number 58648.483204 Error 0.995546E+00
reduction reduction cudaSuccess(0) Profiling "device tea leaf pocg solve update r": @
cudalaunchKernel cudaSuccess(0) (0x555d75afcad0, {f Force Overwrite: Yes Profiling "device tea leaf pocg solve calc s new': ex.
culaunchKemel CUDA_SUCCESS(0) (0%555476ec82a0, €
u:;t‘]ﬂinﬁ L TR (0) 0 (Target Processes: Application Only [15\)27] tea_leaf@l27.0.@.1
udal aunchKernel 0 O

device t “»:“mpp‘N‘J‘?‘lx‘eﬂ‘u‘pdat:—“r:(lgg‘r:p‘:‘lmj“qu“g doub: const double *, const double *, const double =), 2821-Dec-
O ROl Replay Mode: Kemel 414:02:35
culaunchKernel GUDA SUCCESS(0) (0x555d76ecB2al, 1

reduction reduction)
cudaMemcpy ccess(0) (0x7ffe2e710ce8, Ox DRAM Frequency cycle/nsecond
cuMemcpyDtoH_vZ CUDA_SUCCESS(0) (0x7ffe2e7100e8, Ox Application Replay Buffer: SM Freguency
5 cudalaunchKemel ss(0) (0x55507500f140, { Command Line: . Elapsed Cycles cycle 1,457,762
cuLaunchKernel CUDA_SUCCESS(0) (0x555d76f0b610, 1 b=wy (1) 2 o1.
device_tea_leaf_ppcg_sols e_tea_leaf_ppeg_solve_init_sd_new cudaSuccess(0) gw:tlz:"“gr‘p”t msemn:'
cudaLaunchKemel (0x555475b01020, { e

4 OF Lignt Throughput
Application Replay Match:

cycle/nsecond

L1/TEX Cache Throughput

cuLaunchiermel (0x555d76106b50, 1) e ek T oisheai 39,

v SM Active Cycles 1,451,446,

F—— @i (@) [86.
CUDA: Memory Allocations

1
23,

i (el i e i 470 S0 0 i ST @ A (e FET o o (s dahem, T
further inprove performance, work will likely need to be shifted from the most utilized to ancther unit.

Cancel Reset Activity [Start by analyzing workloads in the Memory Workload Analysis section.

~ APICallID Allocation type Address Size Requested Context
Total aliocations: 41 Total size: 2.63 Gbytes
603 UNIFIED MEMORY ALLOC 32000000 32 bytes
655 DEVICE MEMORY ALLOC 2000000 122.19 Mbytes
666 DEVICE MEMORY ALLOC 22000000 122.19 Mbytes
677 DEVICE MEMORY ALLOC 122.19 Mbytes
688 DEVICE MEMORY ALLOC 122.19 Mbytes

Device ID

‘

Sections/RulesInfo ~ APIStatistics =~ NVTX | Resources CPU Call Stack

Page: Summary = Launch: 0-43843-device_tea_leaf_ppcg_sol = W ~ Add Baseline ~ Apply Rules f& Occupancy Calculator Copy as Image -

Launch Time Cycles Regs GPU SM Frequency CC Process
U Current 43843 - device_tea_leaf_ppcg_solve_init (126, 1001, 1)x(32,4,1) 217.63 usecond 297,114 40 0 - NVIDIA GeForce RTX 2080 Ti 1.36 cycle/nsecond 7.5 [15958] tea_leaf

~ Time APICall ID Function Name Demangled Ni Process Device Name Grid Size Block Size Cycles [cycle] Duration [msecond] Compute Throughput [%] Memc
0 2021-Dec_ 43843 device_tea_leaf_ppcg_ device_te_ [15958] tea_leaf NVIDIA GeForce_ 126, 1001, 297,114 0.22 77.89
1 2021-Dec1.. 43857 device_tea_leaf_ppcg_sol.. device tea_l.. [15958] tea_leaf NVIDIA GeForce RT... 126, 1001, 1,264,921 0.94 54.78
2 2021-Dec1.. 43860 device_tea_leaf_ppcg_sol.. device tea_l.. [15958] tea_leaf NVIDIA GeForce RT... 126, 1001, 1462446 1.07 86.22
3 2021-Dec1.. 43863 device_tea_leaf_ppcg_sol.. device_tea_l.. [15958] tea_leaf NVIDIA GeForce RT... 126, 1001, 1443836 1.06 2381

Page: Details = Launch: 0-43843- device tea_leaf_ppcg_sol = W =~ Add Baseline = Apply Rules [E Occupancy Calculator Copy as Image =

Launch Time Cycles Regs GPU SM Frequency CC Process ® e o lo
I Current 43843 - device_tea_leaf_ppcg_solve_init (126, 1001, 1)x(32,4,1) 217.63 usecond 297,114 40 0- NVIDIA GeForce RTX 2080 Ti 1.36 cycle/nsecond 7.5 [15958] tea_leaf

» GPU Speed Of Light Throughput (@]
Compute (SM) Throughput [%] Duration [usecond] 217.63
Memory Throughput [%] Elapsed Cycles [cycle] 207114
L1/TEX Cache Throughput [%] SM Active Cycles [cycle] 293,385.19
L2 Cache Throughput [%] SM Frequency [cycle/nsecond] 1.36
DRAM Throughput [%] DRAM Frequency [cycle/nsecond] 6.79

. Compute is more heavily utilized than Memory: Look at the report section to see what the compute pipelines are spending their time doing. Also, consider
A High Compute Throughput whether any computation is redundant and could be reduced or moved to look-up tables. @

The ratio of peak float (fp32) to double (fp64) performance on this device is 32:1. The kernel achieved 0% of this device's fp32 peak performance and 19% of its fp64 peak performance. If
A FP64/32 Utilization determines that this kernel is fp64 bound, consider using 32-bit precision floating point operations to improve its performance. See the for mode details on roofling
analysis.

~ Compute Workload Analysis

Executed Ipc Elapsed [inst/cycle] 125 SM Busy [%]
Executed Ipc Active [inst/cycle] 1.27 |Issue Slots Busy [%]
Issued Ipc Active [inst/cycle] 127

Profiler Report

Selected result Metric values

~ | AddBaseline = ApplyRules 5 ¥ { Copy as |
Time Cycles Regs GPU SM Frequency CC Process
nd 14 40 0 - N\ i d [1

A} Throughput
Throughput [%]
C Throughput [
e Throughput [%]

of it§ fp64 peak perforr

Expandable Expert Analysis
Sections (Rules)

7 MDA

Profiler Repor

524.80K Inst

0.00 Inst

0.00 Inst

0.00 Inst

98.30 K Inst

Instructions
Shared Load 49,152
Shared Load Matrix 0
Shared Store 49,152
Shared Atomic 0
Other

524.29 KReq

512.00 Req

0.00 Req

0.00 Req

0.00 Req

0.00Req

0.00 Req

49.15K Req

49.15K Req

Requests
49,152
0
49,152

L1/TEX
Cache

Hit Rate
0.00%

Shared
Memory

64.00 MB
L2 Cache
16.00K8 Hit Rate
016%

Shared Memory

Wavefronts
49,152
1]
57,347
1]
26,621

% Peak Bank Conflicts

Total 98,304

Instructions

Local Load

Global Load

Surface Load

Texture Load

Global Store

Local Store

Surface Store

Requests

red memory is located on chip, so it has much higher band

nory can be share

across a compute CTA.

100%

System Memory

64.02 MB

2.26 MB

Device Memory

Peer Memory

and much lower latency than either local or global rf

Detailed memory workload
analysis chart and tables

Shows transferred data or
throughputs

Tooltips provide metric
names, calculation formulas

and detailed background info

Profiler Report

Current 655 - reduceFinal (1,1, 1)x(512,1,1)

Baseline 654 - reduce (512, 1, 1)x(512,1,1)

~ GPU Speed Of Light Throughput
Compute (SM) Throughput [%]
Memory Throughput [%]

L1/TEX Cache Throughput [%]

L2 Cache Throughput [%]

DRAM Throughput [%]

A smallGrid This kernel grid is too small to fill the available resources on this device, resulting in only 0.0 ful

5.98 usecond 4807
23472 usecond 318,783

16 NVIDIA GeForce RTX 2080 Ti 801.61 cyclefusecond
16 NVIDIA GeForce RTX 2080 Ti 1.35 cycle/nsecond

0.33 (-99.58%) | Duration [usecond]
8.25%) | Elapsed Cycles [cycle]
11.66 (+12.76%) | SM Active Cycles [cycle]
0.80 (-94.49%) | SM Frequency [cycle/usecond]
0.48 (-98.94%) | DRAM Frequency [cycle/nsecond]

ves across all SMs. Look at

7.5 [4969] simpleCudaGraphs
7.5 [4969] simpleCudaGraphs

for more details.

GPU Throughput Chart | O

5.98 (-97.45%)
4807 (98.49%)
46,09 (-99.98%)

801.61 (40.80%)

3.98 (-41.14%)

@

@ Roofline Analysls The ratio of peak float (fp32) to double (fp64) performance on this device is 32:1. The kemel achieved 0% of this device's fp32 peak performance and close to 0% of its fp64 peak performance

GPU Throughput

Compute (SM) [%]

Memory [%]

0.0

» Compute Workload Analysis
Executed Ipc Elapsed [inst/cycle]
Executed Ipc Active [ins

Issued Ipc Active [inst/cycle]

(@ Balanced Mo pipeline is over-utilized

* Memory Workload Analysis
Memory Throughput [Gbyte/second]
L1/TEX Hit Rate [%]

L2 Hit Rate [%]

17.00 Inst
(-100.00%)

0.00 Inst
(+0.00%)

16.00 Req
(-100.00%)

1.00 Req
(-99.80%)
0.00 Regq
(+0.00%)

0.00 Req
(+0.00%)

50.0
Speed Of Light (SOL) [%]

SM Busy [%]
Issue Slots Busy [%]

1.84 (-99.38%) | Mem Busy [%]
0(-100.00%) | Max Bandwidth [%]
71.25 (+43,797.06%) | Mem Pipes Busy [%]

Memory Chart

4.00 KB
(-99.99%)
L2 Cache

0.008
(+0.00%)

0008
(+0.00%)

System Memary

0.80
0.57

011 (99.15%)

Comparison of results directly
within the tool with "Baselines”

Supported across kernels,
reports, and GPU architectures

rofiler Report

Source: cuda_fp16.hpp Source: _half2

Navigation: ' Sampling Data (All) § 2B S Navigation: Sampling Data (All) T RIEL Source/PTX/SASS

Sampling SamplingData Instructions Prec = Sampling SamplingData Instructions Predicated-On Threi =
Source Data(All) (NotIssued) Executed Insti # Address Source ua(a(mﬁ (Mot Issued) Executed Instructions Executs

86807f25 cef9ed7e NOP analysis and

__half x;
__half y;

0
0 _halfz .
0 0887725 cefa2den MOV [s l t
0 2 0BBATF25 cefa2d1o MoV . man Corre a lon
0 3 BRBATF25 cefa2d2e MOV [s
0 0886725 cefa2d3p MoV s
0 5 BBBATF25 cefa2d4d MOV 3 Y55 .
0 0 98887F25 cefa2d5e MoV [oman Source metr]cs per
__CUDA_HOSTDEVICE (__half2 &&src) 7,010] o13) ([eoozes [0 7 00007F25 cefa2d6d Hov [e . .
__CUDA_HOSTDEVICE__ __half2 & =(¢ 1,056] 951|[eea73s) (0 2 BBBO7FIS cefa2d7e MOV [s]nst ruct]on and
0 0 9 BOBO7F25 cefa2dse MoV . man
—_CUDA_HOSTDEVICE { 0 0 BBBA7F25 cefa2d9n MOV 3 [gg g t d (g PC
if f* de _cPP _AT_) 0 0 1 0886725 cefa2dap MoV s a re a e e’ *
__CUDA_HOSTDEVICE 6] 5 19,456| 2 BOBO7F25 cefa2dhd MoV Y Sam p l-ing d ata)
__CUDA_HOSTDEVICE__ __half2(const __half2 &sre) { | 1371 1287) [698:880] 5 BBBATF25 cefa2dce MOV [s
__CUDA_HOSTDEVICE_ __half2 & =i _he : Praa 72 704 cefa2dde MOV F3, ozt
S . cefa2ded E.S¥S [
- ; . (24)
Convert hal y h R 89) 6 cefa2dfo MOV Re, (1,081,21
__CUDA_HDSTDEVICE__ (__half2_raw &h: = £ d(491) 7 cefazed MOV R7, Y55 Metr]c heatmap
__CUDA_HOSTDEVICE__ __half2 & =(_h cefaze1d -E.S¥s [Ro], [sz
__CUDA_HOSTDEVICE 0 9 cefaze2e ot
cefa2e38 .ABS . NODEC [s

1 00007f25 cefa2e4d

8888725 cefa2e58 NOP
5 0000725 cefa2etd NOP

800807f25 cefa2e78 NOP

_half2fioat

0088087f25 cefb6fon IADD3

2 BEBATF25 cefb6fle S2R .
device _ forceinline__ _ half2 5 00807f25 cefb6f20 ISETP.GE.U32.AND

—device__ _ forceinline__ __half2 B88807f25 cefbsf3e

_device__ _ forceinline__ __half2 6) 5 8080725 cefh6fan BPT.TRAP
»

Occupancy Calculator

Compute Capability: 75 ~ Threads Per Block: 128

Shared Memory Size Config (bytes): 65536 -
CUDA version:

Global Load Cache Mode:

Tables

Occupancy Data
Property
Active Threads per Multiprocessor

Active Warps per Multiprocessor
Active Thread Blocks per Multiprocessor

Occupancy of each Multiprocessor

Allocated Resources:
Resources

Warps (Threads Per Block / Threads Per Warp)

Registers (Warp limit per SM due to per-warp reg count)

Shared Memory (Bytes)

Occupancy Limiters:
Limited By

Max Warps or Max Blocks per Multiprocessor
Registers per Multiprocessor

Shared Memory per Multiprocessor

Per Block ~ Limit Per SM

Blocks per SM Warps Per Block

Registers Per Thread: 40

Shared Memory Per Block (bytes): 3072

Allocatable Blocks Per SM
4 32

4 48

65536

Warps Per SM

Physical Limit of GPU (7.5):
Property
Threads per Warp

Max Warps per Multiprocessor

Max Thread Blocks per Multiprocessor
Max Threads per Multiprocessor
Maximum Thread Block Size
Registers per Multiprocessor

Max Registers per Thread Block

Max Registers per Thread

Shared Memory per Multiprocessor (bytes)
Max Shared Memory per Block
Register Allocation Unit Size

Register Allocation Granularity

Shared Memory Allocation Unit Size
Warp Allocation Granularity

Shared Memory Per Block (bytes) (CUDA runtime use)

Hands-On with
TeaLeaf Cuda

Get the application

Get the source code
$ git clone --depth 1 https://github.com/UK-MAC/TeaLeaf CUDA

Get compiler, MPl and CUDA using modules
module load Stages/2022

module load NVHPC/22.1

module load OpenMPI/4.1.2

module load Nsight-Compute/2022.1.0

Update Makefile for the target architecture (e.g. AMPERE, SM 8.0) and compiler/libraries, as necessary

Build the application

S make

Better, use the pre-compiled script and binary from /p/project/training2123/work/schmitt5

S source load modules.sh
$ Tealeaf CUDA/tea leaf

13 CANVIDIA.

Overview with Nsight Systems

Profile with Nsight Systems to identify best CUDA kernel optimization targets
Focus on device_tea_leaf_ppcg_solve_(calc|update).* kernels

Project 1 % tea_leaf

| = Timeline View - | B QX Cr—j——————f

» CPU (96)

- ‘Os 45 8s 125 168 20s . 215 .

/i\ 1 wamning. 12 messages

28s
. -

~ CUDA HW (0000:03:00.0 - NVIDIA A100-SXM4-40GB) e

» 47.7% device_tea_leaf_ppcg_solve_calc_sd_new
» 46.7% device_tea_leal ppeg_solve_update_r

v <0.1% Memory
» Threads (10)

= | [6202] tea_leal -

- w095 K e K A

23 kernel groups hidden... -+ .

Profiler overhead
N

9 threads hidden... -+

L]
CUDA API (MR | 4 00D RO R e e e e e et e e e i i e

[]

-

ce ... H

CANVIDIA.

Collect 10 instances of those kernels with ncu, full set of metrics
Inspect the resulting report in the Nsight Compute Ul (ncu-ui)

ncu --set full -k "regex:device tea leaf ppcg solve (calc|update).*" -c 10 -f -o tea leaf %i

./tea leaf

Summary page confirms that all instances of each respective kernel have similar performance

characteristics - focus on a single instance for each

Page: Summary ¥ Result: 0-32940 - device_tea_leaf_ppcg_sol =

Result

Y-

Current 32940 - device_tea_leaf_ppcg_solve_update_r (126, 1001, 1)x(32, 4,1)

Add Baseline -

Time
475.90 usecond

13 @ uUse the column headers to sort the results in this report. Double-click a result to see detailed metrics.

1D ~ Function Name
0 device_tea_leaf_ppcg_solve_update_r
1 device_tea_leaf_ppcg_solve_calc_sd_new
2 device_tea_leaf_ppcyg_solve_update_r
3 device_tea_leaf_ppcg_solve_calc_sd_new
4 device_tea_leaf_ppcg_solve_update_r
5 device_tea_leaf_ppcg_solve_calc_sd_new
6 device_tea_leaf_ppcg_solve_update_r
7 device_tea_leaf_ppcg_solve_calc_sd_new
8 device_tea_leaf_ppcg_solve_update_r
9 device_tea_leaf_ppcg_solve_calc_sd_new

Demangled Na Process

device_tea ..
device_tea_|..
device_tea_l..
device_tea_|...
device_tea_|.

device_tea_l.

device_tea_l.

device_tea_l..
device_tea_l..
device_tea_|..

[0073] ...
[0073] 1.
[0073]t..
[0073] 1.
[9073] 1...
[9073] 1.
[9073] 1.

[9073] ...
[0073] 1.
[0073] 1.

Device Name
NVIDIA A100-...
NVIDIA A100-.
NVIDIA A100-...
NVIDIA A100-...
NVIDIA A100-...
NVIDIA A100-.
NVIDIA A100-.
NVIDIA A100-..
NVIDIA A100-..
NVIDIA A100-..

Grid Size

126, 1001,
126, 1001,
126, 1001,
126, 1001,
126, 1001,
126, 1001,
126, 1001,
126, 1001,
126, 1001,
126, 1001,

Apply Rules
Cycles Regs GPU
512011 32

32,
32,

32,

(%]
=]

w
MR RRRNP]

W oW

W oW

Block Size

]

4,
4,
4,
4,
4,
4,
4,
4,
4,

Occupancy Calculator

Cycles [cycle]

512,011
548244
512,359
546,152
511,999
545,719
513311
548,179
513,820
547,310

SM Frequency
0 - NVIDIA A100-SXM4-40GB 1.08 cycle/nsecond 8.0 [9073] tea_leaf

Duration [usecond] Compute Throughput [%]

475.90
502.24
474,69
500.74
470.53
500.48
471.68
498.98
469.86
503.71

12.94
11.05
12.93
11.10
12.94
11.10
12.90
11.06
12.89
11.07

CC Process

Memory Throughp

Analyzing calc kernel

Switch to the Details page and select the second kernel (with slightly worse throughputs).
Memory units are over-utilized.

Roofline shows that floating point performance is memory-bound (left of ridge point)
Similar in Compute Workload chart: FP pipelines are less than 5% utilized.

Comp! Throughput [%]
Memo hput [%]
L1/TEX Cache Throughput [%]
L2 Cache Throughput [%]

1 SM Frequency |
DRAM Throughput [%]

5 DRAM Frequency [cycle/nsecond]

Me: heavily utilized than Compute: Look at the section to identify the DRAM bottleneck. Check memory replay (coalescing) metrics to

A High Memory Throughput ma efficiently utilizing the bytes transferred. Also consider whether it is possible to do more work per memary access (kernel fusion) or whether there are values
yoL ute

0] The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and 2% of its fp64 peak performance. See the
© Roofine Analysis for mode details on roofline analysis.

Floating Point Operations Roofline

Performance [FLOP/s]
(1=1e+12)

1 10
Arithmetic Intensity [FLOP/byte]

Analyzing calc kernel

MWA table shows bandwidth 80% utilized, chart shows high Device-to-L2 utilization

Memory Throughput [Tbyte/second]
L1/TEX Hit Rate [%]

L2 Hit Rate [%]

L2 Compression Success Rate [%]

3.50 M Inst

0.00 Inst

0.00 Inst Load Global
Store Shared

0.00 Inst

2.50 M Regq

1.00 M Reg

0.00 Req

0.00 Req

0.00 Req

0.00 Req

0.00 Req

0.00 Req

0.00 Req

1.24 Mem Busy [%]

39.03 Max Bandwidth [%]
55.53 Mem Pipes pum -
T — gpu__compute_memory_request_throughput.avg.pct_of_peak_sustained_elapsed
0 L2 Compr Compute Memory Pipeline : throughput of interconnects between SM<->Caches<->DRAM

(Y TR d o 1y gl Opu: The entire Graphics Processing Unit.

request: A command into a HW unit to perform some action, e.q. load data from some memory location.
Eallh fEI]LIE‘i(accesses one or more sectors.

Value: 79.9486

858.64 GB/s

L2 Cache
572.84 GB/s 35.00 GB/s
572.84 GB/s Hit Rate 35.00 GB/s

55.53 % ea s

Shared
Memory

Scheduler stats show low
eligible/issued, need to
check stall reasons

Good achieved occupancy,
doesn't appear to be the issue

Stall reasons dominated by
long scoreboard, locate using

Source Counters section

Analyzing calc kernel

w Scheduler Statistics
Acti Scheduler [warp]
Warps Per Scheduler [warp]

Narp Per Scheduler

15.19 No Eligible [%]
0.15 One or More Eligible [%]
0.1
Warps Per Scheduler

GPU Maximum Warps Per Scheduler

Theoretical Warps Per Scheduler

Active Warps Per Scheduler

Current

Eligible Warps Per Scheduler D

GPU Maximum Warps Per Scheduler 16.00
Theoretical Warps Per Scheduler 16.00
Active Warps Per Scheduler 1519

Issued Warp Per Scheduler D

Eligible Warps Per Scheduler 0.15
Issued Warp Per Scheduler 0.11

0.0

8.0

- War‘p State Statistics
Warp Cycles Per Issued Instruction [cycle]
Warp Cycles Per Executed Instruction [cycle]

0.0

6.02 Avg. Active Threads Per Warp
136.21 Avg. Not Predicated Off Threads Per Warp
Warp State (All Cycles)
100.0

Stall Long Scoreboard

I

Stall Wait

Stall Drain

Selected

stall short Scoreboard

Analyzing calc kernel

s er thread per memory request; but the address
pattem, ibly y 1 Je b D or 9.0% bytes of cache data transfers per req

MWA found sub-optimal cache access
patterns, locate us-ing Source Counters A LITEX Blobel Stare Acoess Pattem i}:;[l]dL \rn:zpallc—lsnef;‘r;f;‘cm o csd-qlvna -:O_reswnaw:'fli’,, Y cache data transfers per request, to maximize L1TEX cache

.
Sectlon The memory at s pattern for stores from L1TEX to L2 is not of al /| of an L1TEX request to L2 is a 128 byte cache line. That is 4 consecutive 32-byte sectors
A L2 Store Access Pattem per L2 request. Hov his kerel only accesses an ave ut of the possible 4 sectors per cache line. Check the section for uncoalesced
stores and try to minimize how many cache lines need to sed per memory request

The memory access pattern for loads from L1TEX to

Source Counters show uncoalesced 8 (2Londrcoms e (3T ety e m g £ ol
accesses and location of the stalls

w Source Counters
Branch Instruct st 2518016 Branch Efficiency [%]

Branch Instruci o [%] 0.10 Avg. Diverg ches

This kernel has uncoalesced global esulting in a total of 2500000 excessive sectors (1 f the total 235000 s). Check the L2 Tl etical Sectors Global
A Uncoslesced Global Accesses .oy tabie for the primary sour ons. The had additional information on reducing esced device memo ;

Jump to Source page via this link

L2 Theoretical Sectors Global Excessive
Value Value (%)
500,000] | 20
500,000] (20)
500,000] (70)
500,000 (20)
500,000]

Location

Warp Stall Sampling (All Cycles)
Value Value (%)
26,623
26,144)

Location

Analyzing calc kernel

Stalled at DMUL instruction, waiting for LDG (load global) in line 43 (via register R10)
LDG instructions are uncoalesced
Lots of excessive (non-ideal) L2 sector accesses

W SASS

device_tea_leaf_ppcg_solve_calc_sd_new * B Navigation: 'Warp Stall Sampling (All Cycles) v viallg B2 O v v A

Live Warp Stall Sampling Warp Stall Sampling Instructions L2 Theoretical Sectors L2 Theoretical “ Register
Address Source Registers (Al Cyclesg (Not-issued Cycles) Executed Global Excessive Sectors Global Dependencles

800014FF 32fbfcdo ISETP.GT.OR 56 24 so4504)
ff 32fbfced 135 ss(_ 504,504
48 20 so0,000)
6 o[500009
2 [s00000
60 500,000)
9 soo,000)
26 500000 0

8 500,000]

24 500,000 [500,000] [4,500,000/

48 500,000 [500,000) [4,500,000

52 8OO ff 32fbfcfo
32fbfdoo
32fbfdlo
32fbfdz0
32fbfd30
000014Ff 32fbfd40
000014ff 32fbfd50 f '
000014Ff 32fbfds0 5 .CONSTANT
B008014ff 32fbfd70 IMAD.WIDE
000014ff 32fbfdso .E .CONSTANT
000014Ff 32fbfdo0 IMAD.WIDE 5 5
008014ff 32fbfdad 5 .CONSTANT

QQ‘;M!Q@M&IEHE

4

B08814Ff 32fbfdbo
000014Ff 32fbfdco
000014ff 32fbfdd0

25,553\\ 23471 500,000) AR ARLRRER
664 soq] 500,000

)

13 500,000;

32FbFdf0 75 60 500,000] | 500,000] 4,500,000]
B00014FF 32fbfe00 K 43 3 500,000) [500,000] | 4,500,000]

BO0014FF 32fbfeld . Ré, 3 26,144 23,172 500,000

000014ff 32fbfded

oolk

~

Analyzing calc kernel

Where is this in the code o s
Source: tea_leaf_ppeg.cukn * 8 Source: device_tea_leaf_ppcg so d_new =
(no CUDA-C Source) Navigation Wa'pISmHSamp‘mg (All Cycles) - ‘ =] [(] 2] (1) (4 [

Navigation: 'Warp Stall Sampling (All Cycles)
(e(0) rrelat]on? e Warp Sla("AﬁﬂCmP‘ings = » S Warp Stall Sampling ~
e yeles) 4 # Address Source (All Cycles)
([/} 00001476 ebéfcaféd IHAD 5 a a 44
00001476 e6fc4fse IMAD.WIDE R2, Mz [36
39 00001476 eofcafod E .CONSTANT 81

Need to add -lineinfo flag ' ; e e TETE e
'in Makefile dur'ing Compilation (PRECONDITIONER = TL_PREC_NONE) 'j "

00001476 ebfcafde -3 .CONSTANT
00001476 ebéfcafoo IMAD.WIDE

On l.ine 145 (NV_FLAGS)’ . (WITHIN_BOUNDS) 4‘]2' 80801476 eéfcéfab i 'CC‘TST[AI”

00001476 ebfcafbe

re-com p.ile, re-run) . 8, 0) ::L aklaha:‘s“‘D]‘S(‘: ([80801476 e6foifch DHUL

80801476 eéfcéfdl DFMA

26351) | 00801476 ebfcafed IMAD . WIDE
0 -I5 [

00001476 e6fcaffe

Consider using
--import-source yes

—global__ device_tea_leaf

(kernel_info_t kernel_info,

Further CLI exercises

Check collected report on command line using ncu -i and --page for comparison with the Ul.

Update tea_leaf_kernel_cuda.cu with a nvtxPush/Pop range around the two kernels
Name the range "update_and_calc"

Include <nvtx3/nvToolsExt.h>
Update Makefile with “-ldl” at line 134

Replace -k “..." ncu command line with "--nvtx --nvtx-include "update_and_calc/" and "--set full” with
"--metrics ...“

ncu --metrics sm_throughput.avg.pct of peak sustained elapsed --nvtx --nvtx-include
"update and calc/" -c 1 -f -o tea leaf %i ./tea leaf

ncu -i tea leaf 3.ncu-rep
[10768] tea leaf@127.0.0.1
device tea leaf ppcg solve update r (kernel info t, ..), 2021-Aug-17 14:43:05, Context 1, Stream 7
NVTX Push/Pop Stack for Thread 10768:
<default domain>
<0,update and calc>
Section: Command line profiler metrics
sm__throughput.avg.pct of peak sustained elapsed % 86.51

22 A NWVIDLA.

More: Data Collection

Collecting Data

By default, CLI results are printed to stdout

Use --export/-o to save results to a report file, use -f to force overwrite
$ ncu -f -o S$HOME/my report <app>
$ my report.ncu-rep

Use --log-file to pipe text output to a different stream (stdout/stderr/file)

Can use (env) variables available in your batch script or file macros to add report name placeholders

Full parity with nvprof filename placeholders/file macros
$ ncu -f -o SHOME/my report %$h ${LSB JOBID} %p <app>
$ my report hostOl 951697 123.ncu-rep

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#command-line-options-file-
macros

24 A NWIDA.

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

What To Collect

Curated "sets" and "sections” with commonly-used, high-value metrics

$ ncu --list-sets
Identifier Sections Estimated Metrics
default LaunchStats, Occupancy, SpeedOfLight 35

detailed ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly 157
sis, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight
RooflineChart, WarpStateStats

full ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly 162
sis, MemoryWorkloadAnalysis Chart, MemoryWorkloadAnalysis Tables, Occupancy
;, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight RooflineChart,

WarpStateStats
source SourceCounters 47

Use defaults, or combine as desired

$ ncu --set default --section SourceCounters --metrics sm__inst executed pipe tensor.sum ./my-app

25 CANVIDIA.

What To Collect

Query metrics for any targeted chip

$ ncu --query-metrics --chip galOO0

smsp warps_issue stalled not selected cumulative # of warps waiting

for the microscheduler to select the warp to issue

smsp__warps_issue stalled selected cumulative # of warps selected
by the microscheduler to issue an instruction

smsp warps_issue stalled short scoreboard cumulative # of warps waiting

for a scoreboard dependency on MIO operation other than (local, global, surface, tex)

tpc__cycles active # of cycles where TPC was active
tpc_ cycles elapsed # of cycles where TPC was active
==PROF== Note that these metrics must be appended with a valid suffix before profiling them. See --help for
more information on --query-metrics-mode.

Specify sub-metrics in section files, or on the command line

$ ncu --query-metrics-mode suffix --metrics sm__inst executed pipe tensor ./my-app
sm__inst executed pipe tensor.sum
sm__inst executed pipe tensor.avg
sm__inst executed pipe tensor.min

26

CANVIDIA.

Source Analysis

SASS (assembly) is always available, embedded into the report
CUDA-C (Source) and PTX availability depends on compilation flags
Use -lineinfo to include source/SASS correlation data in the binary

Source is not embedded in the report by default, need local or remote access to the source file to
resolve in the Ul. Import source during collection to (--import-source yes) to solve this.

Compiler optimizations can prevent exact source/SASS correlation

27 A NWVIDLA.

More: Data Analysis

Python Interfaces

ThroughputRule.py

&

Python

import ncu_report
report = ncu_report.load_report(sys.argv[1])

for range_idx in range(report.num_ranges()):
current_range = report.range_by_idx(range_idx)
for action_idx in current_range.actions_by nvtx(["BottomRange/*/TopRange"], []):
action = current_range.action_by idx(action_idx)
print(action.name())
print(action.metric_by name("gpc__cycles_elapsed.sum").as_uint64())

29 CANVIDIA.

Command Line Output

$ ncu -1 /tmp/report.ncu-rep -c 2 --page raw —--csv —-metrics \
gpc__cycles elapsed.sum,sm maximum warps per active cycle pct

"ID","Process ID","Process Name", "Host Name", "Kernel Name", "Kernel

Time", "Context","Stream", "sm maximum warps per active cycle pct"

""I ""I ""I ""I ""I ""I ""I ""I "%"

"0","16301","tea leaf","127.0.0.1","device tea leaf ppcg solve update r (kernel info t, double *, const
double *, const double *, const double *)","2021-Dec-14 14:37:22","1","7","100.000000"
"1m,"16301","tea leaf","127.0.0.1","device tea leaf ppcg solve calc sd new(kernel info t, const double
*, double *, const double *, const double *, double *, const double *, const double *, const double *,

const double *, const double *, const double *, const double *, int)","2021-Dec-14
14:37:22","1","7","100.000000"

30 CANVIDIA.

Multi-Process Profiling

On a single-node submission, one Nsight
Compute instance can profile all
launched child processes

Data for all processes is stored in one
report file

Nsight Compute ncu —--target-processes all -o <single-

report-name> <app> <args>
GPU GPU GPU GPU
0 1 2 3

31 CANVIDIA.

Multi-Process Profiling

On multi-node submissions, one tool

instance can be used per node
jsrun
Ensure that instances don’t write to the
same report file on a shared disk
Nsight Nsight
Compute Compute

IIIIHHHH!!IIII IIIIIEHHHI!IIII
GPU GPU GPU GPU
0 1 2 3

ncu -o report $gq{OMPI COMM WORLD RANK}
<app> <args>

32 CANVIDIA.

Multi-Process Profiling

Multiple tool instances on the same node
are supported, but...

=
el
T =
EEEE
0] 1 2 3

GPU GPU GPU GPU
0 1 2 3

All kernels across all GPUs will be
serialized using system-wide file lock

33 CANVIDIA.

Multi-Process Profiling

Consider profiling only a single rank, e.g. using a

wrapperscnpt
/sw/cluster/cuda/11.1/ nsight-compute/ncu -
o report $S{OMPI COMM WORLD RANK} --target-
processes all $*
else
$*
rank § rank § rank § rank

GPU GPU GPU GPU
0 1 2 3

#!/bin/bash

fi

34 A NWIDA.

Conclusion

Conclusion

Nsight Compute enables detailed CUDA kernel analysis
Rules give guidance on optimization opportunities and help metric understanding
Limit metrics to what is required when overhead is a concern. Consider using application replay.

Still requires level of hardware understanding to fully utilize the tool - pay attention to rule results and
refer to https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Analyze results in the Ul, or post-process with CSV output or python report interface

Check known issues: https://docs.nvidia.com/nsight-compute/ReleaseNotes/index. html#known-issues

36 CANVIDIA.

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html

Further Reading

Download

Documentation

Forums

Further Reading

https://developer.nvidia.com/nsight-compute (can be newer than toolkit version)

https://docs.nvidia.com/nsight-compute (and local with the tool)

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

https://devtalk.nvidia.com

https://developer.nvidia.com/nsight-compute-videos

https://developer.nvidia.com/nsight-compute-blogs

https://github.com/NVIDIA/nsight-training

Repository with interactive training material for multiple Nsight tools, including
Systems and Compute.

https://gitlab.com/NERSC/roofline-on-nvidia-gpus

37 CANVIDIA.

https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://devtalk.nvidia.com/
https://developer.nvidia.com/nsight-compute-videos
https://developer.nvidia.com/nsight-compute-blogs
https://github.com/NVIDIA/nsight-training
https://gitlab.com/NERSC/roofline-on-nvidia-gpus

<A NVIDIA.

[
=
—

