
COMPUTE-SANITIZER
41TH VI-HPS TUNING WORKSHOP
NICOLAS POITOUX, SYSTEM SOFTWARE ENGINEER



COMPUTE SANITIZER
What is compute-sanitizer

▪ Dynamic analysis tools that reports common programming errors that could lead to undefined behavior

▪ Command line, non-interactive

▪ Included in CUDA toolkit since 11.0

▪ /usr/local/cuda/bin/compute-sanitizer

▪ C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\V11.X\bin\compute-sanitizer.bat

▪ 4 tools

▪ Memcheck: report invalid memory access

▪ Initcheck: reports uninitialized memory reads

▪ Racecheck: reports invalid concurrent accesses to shared memory

▪ Synccheck: reports invalid barrier usage

▪ Replaces cuda-memcheck (deprecated since CUDA 11.5)

▪ Supports all regular CUDA applications, and OptiX

▪ Supports architectures >= Maxwell on Windows, Linux (x86_64, ppc64le, aarch64, aarch64sbsa)



COMPUTE SANITIZER
Memcheck

▪ Memcheck: report invalid memory accesses

▪ Out of bounds or misaligned, local, shared, global memory read/writes or atomic accesses

▪ Stack overflows

▪ Invalid system-scoped atomic accesses

▪ Reports CUDA API errors

▪ Hardware exceptions

▪ Invalid device-side malloc/free usage



COMPUTE SANITIZER
Memcheck

▪ Uses debug info –g –G

▪ Destroys context by default,

`--destroy-on-device-error [context|kernel]`



COMPUTE SANITIZER
Memcheck

▪ Reports device memory leaks with `--leak-check=full`



COMPUTE SANITIZER
Memcheck

▪ Can pad memory to mitigate false-negative on aligned consecutive allocations

▪ `--padding=n`



COMPUTE SANITIZER
Memcheck



COMPUTE SANITIZER
Initcheck

▪ Detect and report uninitialized memory reads

▪ Inside a kernel or from the CUDA API

▪ Only for global memory

▪ Works with peer GPUs allocations



COMPUTE SANITIZER
Initcheck



COMPUTE SANITIZER
Initcheck

▪ Detect unused (not written to) memory with `--track-unused-memory yes`



COMPUTE SANITIZER
Racecheck

▪ Detects possible data races

▪ WAW, WAR, RAW accesses to a shared memory address by different threads with lack of valid synchronization (warp level, block 
level…)

▪ Only on shared memory

▪ Two reporting options

▪ Analysis: Aggregated reports

▪ Hazard: Every single detected error with details

▪ Multiple severity levels

▪ Info: not displayed by default. e.g. same value

▪ Warn: may be valid on architectures older than Volta

▪ Can support partial masks

▪ Works with cuda::barrier from libcu++



COMPUTE SANITIZER
Racecheck



COMPUTE SANITIZER
Synccheck

▪ Detects invalid usage of CUDA synchronization primitives

▪ Dependent on the architecture

▪ Divergent threads in warp/block, invalid barrier arguments

▪ Also verifies correctness of cuda::barrier



COMPUTE SANITIZER
Synccheck



COMPUTE SANITIZER
Synccheck



COMPUTE SANITIZER
Useful options

▪ `--target-processes=all`: track all children processes of the application

▪ `--kernel-regex`, `--kernel-regex-exclude`: filter kernel launches to be tracked

▪ `--launch-count`, `--launch-skip`: only track/ignore n kernel launches (matching the filters if specified)

▪ `--force-synchronization-limit`: force stream synchronization every n launches (may mitigate memory usage)

▪ `--xml yes`: XML output for error reports



COMPUTE SANITIZER
NVTX

▪ Support of custom allocators through NVIDIA Tools Extension (NVTX)

▪ For Initcheck and Memcheck

▪ Permissions handling

▪ Naming allocations (leaks only)

▪ Header "nvToolsExtMem.h" found on https://github.com/NVIDIA/NVTX/tree/dev-mem-api (experimental branch)

▪ Requires adding `--nvtx=yes`

https://github.com/NVIDIA/NVTX/tree/dev-mem-api


COMPUTE SANITIZER
NVTX



COMPUTE SANITIZER
NVTX



COMPUTE SANITIZER
NVTX



COMPUTE SANITIZER
Coredump

▪ Save program state when an error is encountered

▪ `--generate-coredump=yes`

▪ Aborts the program at the first error

▪ Use cuda-gdb to load the coredump and inspect state

▪ Doesn’t support racecheck



COMPUTE SANITIZER
Coredump



COMPUTE SANITIZER
Coredump



COMPUTE SANITIZER
Sanitizer API

▪ Compute-sanitizer built on top of the Sanitizer public API

▪ Allow users to build customized tools

▪ Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, Xu Liu. "GVPROF: A Value Profiler for GPU-Based Clusters", SC20 
(2020). https://dl.acm.org/doi/10.5555/3433701.3433819

▪ Headers in /usr/local/cuda/compute-sanitizer/include

▪ Callbacks on host CUDA events

▪ Patching API to get callbacks on device in-kernel events

https://dl.acm.org/doi/10.5555/3433701.3433819


COMPUTE SANITIZER
Links

▪ Documentation: https://docs.nvidia.com/compute-sanitizer/index.html

▪ Compute-sanitizer and public api samples: https://github.com/NVIDIA/compute-sanitizer-samples

https://docs.nvidia.com/compute-sanitizer/index.html
https://github.com/NVIDIA/compute-sanitizer-samples



