— ¥ VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO
Hands-on exercises

Profiling bt-mz (incl. scalability)
Optimising a code

— UNIVERSITE DE u
Universitit Stuttgart VERSAILLES

S ST-QUENTIN-EN-YVELINES.
THE|
UNIVERSITY OF OREGON m

Barceiona (=) Technische
Center German Research School 'Mm m_wers!tit
Cantr Nacknal o Supsreompuiicién for Simultion Sciences Minchen

ST iy G 0

FORSCHUNGSZENTRUM

TE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (reminder)

Login to the cluster
> ssh <username>@lxloginl0.lrz.de

Copy handson material to your workspace directory

> export TW40=/lrz/sys/courses/vihps

> export WORK=$SCRATCH # assumed fastest filesystem
Hint: copy in ~/.bash profile

> cd S$SWORK

> tar xvf $TW40/material/magao/MAQAO HANDSON. tgz

> tar xvf $TW40/material/maqao/NPB3.4-MZ-MPI. tgz

Load MAQAO environment
> module use $TW40/modulefiles
> module load magao

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 2

TUTE #= HIGH PRODUCTIVITY SUPERCOMPUTING

Setup (bt-mz compilation with Intel compiler and MPI &
debug symbols)

Go to the NPB directory provided with MAQAO handsons
> cd $WORK/NPB3.4-MZ-MPI

Load Intel compiler and environment (if not already loaded)

> module load devEnv/Intel/2019

Compile and run

> make bt-mz CLASS=C

> cd bin

> cp $WORK/MAQAO HANDSON/bt/bt.sbatch .
> sbatch bt.sbatch

Remark: with version 3.4 the generated executable supports any number of
ranks (no need to generate one executable for 6 ranks, another for 8 etc.)

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling bt-mz with MAQAO

Salah Ibnamar

— UNIVERSITE DE u
Universitit Stuttgart VERSAILLES

o Technische
s . i
for Simulation Sciences Minchen ST-QUENTIN-EN-YVELINES.

i

UNIVERSITY OF OREGON

[5 TECHNISCHE
A) jiLicH |8 e Lyernor R (0)

FORSCHUNGSZENTRUM

ﬁ
|

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Setup ONE View for batch mode

The ONE View configuration file must contain all variables for executing the
application.

Retrieve the configuration file prepared for bt-mz in batch mode from the
MAQAO_HANDSON directory

> cd SWORK/NPB3.4-MZ-MPI/bin

> cp $WORK/MAQAO HANDSON/bt/bt OV _sbatch.lua

> less bt OV sbatch.lua

binary = "bt-mz.C.x"

batch _script = "bt magao.sbatch"
batch command = "sbatch <batch script>"

number processes = 4
number processes_per node = 2
omp num threads = 8

mpi command = "mpirun -n <number processes>"

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 5

JAL ENSTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Review jobscript for use with ONE View

All variables in the jobscript defined in the configuration file must be
replaced with their name from it.

Retrieve jobscript modified for ONE View from the MAQAO_HANDSON
directory.

> cd SWORK/NPB3.4-MZ-MPI/bin #if current directory has changed
> cp SWORK/MAQAO HANDSON/bt/bt magao.sbatch .
> less bt magao.sbatch

#SBATCH --ntasks-per-node=2<number processes per node>
#SBATCH --cpus-per-task=8<omp num threads>

export OMP NUM THREADS=8<omp num threads>

mpi—fuﬁ——ﬂTSEXE

<mpi command> <run command>

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 6

(INSTATUTE = ‘HIGH -PRODUCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View on bt-mz (batch mode)

Launch ONE View

> cd SWORK/NPB3.4-MZ-MPI/bin #if current directory has changed
> magao oneview -Rl --config=bt OV _sbatch.lua -xp=ov_sbatch

The -xp parameter allows to set the path to the experiment directory, where
ONE View stores the analysis results and where the reports will be
generated.

If -xp is omitted, the experiment directory will be named

magao_ <timestamp>.

WARNINGS:

- If the directory specified with -xp already exists, ONE View will reuse its
content but not overwrite it.

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

NSTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

(OPTIONAL) Setup ONE View for interactive mode

Retrieve the configuration file prepared for bt-mz in interactive mode from
the MAQAO_HANDSON directory

> cd SWORK/NPB3.4-MZ-MPI/bin #if current directory has changed
> cp $WORK/MAQAO HANDSON/bt/bt OV _interact.lua
> less bt OV interact.lua

binary = "bt-mz.C.x"

4

number_processes_per_node = 2

number_processes

omp num_ threads = 8

mpi command = "mpirun -n <number processes>"

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 8

TUTE #= HIGH PRODUCTIVITY SUPERCOMPUTING

(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive
mode)

Request interactive session with 2 nodes

> srun -M ivymuc --reservation=hhpsls2l workshop \

--nodes=2 --pty bash

Launch ONE View
> cd SWORK/NPB3.4-MZ-MPI/bin
> magao oneview -Rl --config=bt OV interact.lua \

-xp=ov_interactive

Exit interactive session

> exit

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 9

TUTE #= HIGH PRODUCTIVITY SUPERCOMPUTING

Display MAQAO ONE View results

The HTML files are located in <exp-dir>/RESULTS/<binary> one html,
where <exp-dir> is the path of he experiment directory (set with -xp) and
<binary> the name of the executable.

Mount $WORK locally:

> mkdir ivymuc work
> sshfs <user>@lxloginlO.lrz.de:/gpfs/scratch/a2c06/<user> \

ivymuc_work
> firefox ivymuc_ work/NPB3.4-MZ-MPI/bin/ov_sbatch/RESULTS/bt-
mz.C.x one html/index.html

It is also possible to compress and download the results to display them:
> tar czf SHOME/bt html.tgz ov _sbatch/RESULTS/bt-mz.C.x one html

> scp <user>@lxloginl0.lrz.de:bt html.tgz
> tar xf bt html.tgz
> firefox ov sbatch/RESULTS/bt-mz.C.x one html/index.html

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 10

STITUTFE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

sshfs & scp hints

* To install sshfs on Debian-based Linux distributions (like Ubuntu)

> sudo apt install sshfs

* Recommended to close a sshfs directory after use

> fusermount -u /path/to/sshfs/directory

* scp is slow to copy directories (especially when containing many small files),
copy a .tgz archive of the directory

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

11

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Display MAQAO ONE View results (optional)

A sample result directory is in MAQAO HANDSON/bt/bt html example.tgz

Results can also be viewed directly on the console in text mode:

> magqao oneview -Rl -xp=ov sbatch --output-format=text

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 12

e e " VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Scalability profiling of bt-mz with
MAQAO

Salah Ibnamar

— UNIVERSITE DE u
Universitit Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES.
THE|
UNIVERSITY OF OREGON m

Technische
e ™ f
for Simulation Sciences Minchen

ST iy G 0

FORSCHUNGSZENTRUM

()

i

|
O,

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Setup ONE View for scalability analysis

Retrieve the configuration file prepared for bt-mz in batch mode from the
MAQAO_HANDSON directory

> cd SWORK/NPB3.4-MZ-MPI/bin #if cur. dir. has changed
> cp SWORK/MAQAO HANDSON/bt/bt OV _scal.lua
> less bt OV_scal.lua

binary = "./bt-mz.C.x"
run_command = "<binary>"

batch_script = "bt magao.sbatch"
batch_command = “sbatch <batch_script>"
number processes = 4

number processes _per node = 4

omp num threads =1

mpi_ command = “mpirun -n <number processes>"

multiruns params = {
{number processes = 1, omp num threads = 8, number processes per node = 1},
{number processes = 4, omp num threads = 1, number processes per node = 2},
{number processes = 4, omp num threads = 8, number processes per node = 2},

}

scalability reference = “lowest-threads”

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 14

TE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View on bt-mz (scalability mode)

Launch ONE View (execution will be longer!)

> magao oneview -Rl --with-scalability=on \

-c=bt OV scal.lua -xp=ov_scal

The results can then be accessed similarly to the analysis report.
> firefox ivymuc work/NPB3.4-MZ-MPI/bin/ov_scal/RESULTS/bt-
mz.C.x one html/index.html

OR

> tar czf SHOME/bt scal.tgz \
ov scal/RESULTS/bt-mz.C.x one html

> scp <user>@lxloginl0O.lrz.de:ov_scal.tgz
> tar xf ov_scal.tgz
> firefox ov_scal/RESULTS/bt-mz.C.x one html/index.html

A sample result directory is in MAQAO HANDSON/bt/bt_scal html example.tgz

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 15

e e " VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Optimising a code with MAQAO

Emmanuel OSERET

— UNIVERSITE DE u
Universitit Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES.
THE|
UNIVERSITY OF OREGON m

Technische
e ™ f
for Simulation Sciences Miinchen

ST iy G 0

FORSCHUNGSZENTRUM

()

i

|
O,

TE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Matrix Multiply code

(int n,

float aln] [n],
float bln] [n],
float c[n] [n]) {
int i, j, k;

volid kernelO

for (i=0; i<n; i++)
for (j=0; j<n; Jj++) |
c[i][j] = 0.0f;
for (k=0; k<n; k++)

c[i][]] += a[i][k] * b[k][]]’

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

“Naive” dense matrix multiply
implementation in C

17

TUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Compile with GNU compiler

Go to the handson directory
> cd $WORK/MAQAO HANDSON/matmul

Compile all variants (must be done on login node)

> module load gcc/9
> make all

Load MAQAO environment
> module use $TW40/modulefiles
> module load magao

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 18

CINSTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Setup matmul for srun-direct run from Oneview

The ONE View configuration file must contain all variables for executing the
application.

> cd SWORK/MAQAO HANDSON/matmul #if cur. directory has changed
> less ov_orig.lua

binary = "matmul orig"

run command = "<binary> 400 300" -- <size of matrix> <number of
repetitions>

number processes per node = 1

mpi command = "srun -M ivymuc --reservation=hhpsls2l workshop --

exclusive"

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 19

STITUTFE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Analysing matrix multiply with MAQAO

Analyse matrix multiply with ONE View

> magao oneview -Rl -c=ov_orig.lua -xp=ov_orig

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 20

Viewing results (HTML)

AL ENSTATUTE: * *HIGH PRODUCTIVITY SUPERCOMPUTING

On your local machine (sshfs):

matmul orig one html/index.html &

> firefox ivymuc work/MAQAO HANDSON/matmul/ov_orig/RESULTS/

Total Time | (s)

Profiled Time (s)

Time in loops (%)

Time in innermost loops (%)

Time in user code (%)

Compilation Options

Perfect Flow Complexity
Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect Load
Distribution

Potential Speedup
MNb Loops to get 80%
Potential Speedup
MNb Loops to get 80%
Potential Speedup
MNb Loops to get 80%
Potential Speedup
MNb Loops to get 80%

Mo Scalar Integer

FP Vectorised

Fully Vectorised

FP Arithmetic Only

Global Metrics (7]

26.16
26.16
100

99.87

e

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

21

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for the baseline kernel

Vectorization

Your loop is not vectorized. 8 data elements could be processed at once
in vector registers. By vectorizing your loop, you can lower the cosLQf\
an iteration from 3.00 to 0.37 cycles (8.00x speedup).

All SSE/AVX instructions are used in scalar version (process only

one data element in vector registers). Since your execution units are
vector units, only a vectorized loop can use their full power.

= Try another compiler or update/tune your current one:

o recompile with fassociative-math (included in Ofast or

ffast-math) to extend loop vectorization to FP reductions.
» Remove inter-iterations dependences from your loop and make
it unit-stride:

o If your arrays have 2 or more dimensions, check whether
elements are accessed contiguously and, otherwise, try
to permute loops accordingly: C storage order is row-
major: for(i) for(j) afjlli] = blilli]; (slow, non stride 1) ==
for(i) for(j) afi][j] = b[i]lj]; (fast, stride 1)

o If your loop streams arrays of structures (AoS), try to use
structures of arrays instead (SoA): for(i) afi].x = b[i].x;
(slow, non stride 1) == for(i) a.x[i] = b.x[i]; (fast, stride 1)

Vectorization (summing elements):

VADDSS +

(scalar) .
ormpes L L LT

(packed) pimmtastmm

=

= Accesses are not contiguous =>

let’'s permute k and j loops
= No structures here...

XX X 'V-IRTUAL ENSTITUTE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Impact of loop permutation on data access

Logical mapping

j=0,1... Efficient vectorization +
prefetching

Physical mapping

(C stor. order: row-major)

EREI=0; <n; J++)
for (i=0; i<n; 1i++)
f(alil([3]);

for (i=0; i<n; i++)
for (j3=0; j<n; J++)
f(alil(3])~

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

s E = *HIGH PRODUCTIVITY SUPERCOMPUTING

Removing inter-iteration dependences and getting stride 1

by permuting loops on j and k

void kernell (int n,
float al[n] [n],
float b[n] [n],
float c[n]n]) {

int i, 3, k;

for (1i=0; i<n; i++) {
for (3=0; j<n; Jj++)
c[i][J] = 0.0f;

for (k=0; k<n; k++)
for (3=0; j<n; j++)

cl1][3] += alillk] * blk][J];

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

24

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Analyse matrix multiply with permuted loops

Analyse matrix multiply with ONE View

> magao oneview -Rl -c=ov_perm.lua -xp=ov_perm

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 25

VIRTUAL ENSTITUTRE: = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

On your local machine (sshfs):

> firefox ivymuc work/MAQAO HANDSON/matmul/ov_perm/RESULTS/
matmul perm one html/index.html &

Global Metrics

Total Time (s)
Profiled Time (s) £.28
Time in loops (%) 899.77
Time in innermost loops (%) 07.16

|Time in user code (%)

Compilation Options

Perfect Flow Complexity 1.00
Array Access Efficiency (%) 100.00
Perfect OpenMP + MPI + Pthread 1.00

Perfect OpenMP + MPI + Pthread + Perfect

Load Distribution | 1.00
No Scalar Integer il{;tiggillsstgeg?tuapg% 1.01
FP Vectorised e e e o
Fully Vectorised Elztiggzlsstgeg?tuapg% i-UE

Potential Speedup 1.51

FP Arithmetic Only

Nb Loops to get 80% .

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) ' I _

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output after loop permutation

gain | potential | hint | expert

Your loop is vectorized, but using only 128 out of 256 bits (SSEfAVX-128 instructions on AVX/AVXZ processors). By fully vectorizing your loop, you can
lower the cost of an iteration from 2.00 to 1.00 cycles (2.00x speedup).

All SSE/AVX instructions are used in vector version (process two or more data elements in vector registers). Since your execution units are vector
units, only a fully vectorized loop can use their full power.

Workaround

+ Recompile with march=core-avx-i. CQA target is Core_i7X_Xeon ELE7 v2 (Intel Xeon proce Let S try th IS
Xeon processor E5-2400 v2 and E7-8800/4800/2800 v2 product families based on lvy Bridge-E microarchitecture, el Core 17-49XX PTocessor
Extreme Edition) but specialization flags are -march=x86-64

« Use vector aligned instructions:

1. align vour arrays on 32 bytes boundaries: replace { void *p = malloc (size); } with { void *p; posix_memalign (&p, 32, size); }.
2. inform your compiler that your arrays are vector aligned: if array foo' is 32 bytes-aligned, define a pointer 'p_foo' as
__builtin_assume_aligned (foo, 32) and use it instead of 'foo’ in the loop.

Impacts of architecture specialization: vectorization

* Vectorization
» SSE instructions (SIMD 128
bits) used on a processor
supporting AVX256 ones (SIMD
256 bits)
= => 50% efficiency loss

ADDPS XMM -

(SSE) ++++++++
128 bits

VADDPS

vMM (AVX) +t+++++++

T ———

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

28

ITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Analyse matrix multiply with microarchitecture-specialization
and array alignment (requires size%8=0)

Analyse matrix multiply with ONE View

> magqao oneview -Rl -c=ov_align.lua -xp=ov_align

Checkout program output (in lprof.log)

> cat ov_align/logs/lprof.log

driver.c: Using posix memalign instead of malloc

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 29

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

Multidimensional array alignment

Data organized as a 2D array: n lines of 3 columns IESiGERSGNNSFEENREEN =(2]: line 2
Each vector can hold 4 consecutive elements

a[n][3], only 1st
element is aligned

i etc.

a[n][4], 1st element of
each line are aligned

k || etc.

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

On your local machine (sshfs):

> firefox ivymuc_ work/MAQAO HANDSON/matmul/ov_align/RESULTS/
matmul align one html/index.html &

Global Metrics

Total Time (s)
Profiled Time (s)
Time in loops (%

potential

Vectorization

Your loop is fully vectorized, using full register length.

All SSE/AVX instructions are used in vector version (process two or more data elements in vector registers).

Potential Speedup 1.01
Nb Loops to get 80% 1

No Scalar Integer

- Potential Speedup 1.01

FP Vectorised Nb Loops to get 80% =
Potential Speedup 1.02

Fully Ve Nb Loops to get 80% 1

Potential Speedup 151

FP Arithmetic Only Nb Loops to get 80% 1

lR;TUAL ENSTITUTE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

Global Metrics (7]

Total Time (s) 4.64
Profiled Time (s) 4.64
Time in loops (%) 99.67
Time in innermaost loops (%) 96.83
Time in user code (%) ,) 99.68
Perfect Flow Complexity 1.00
Array Access Efficiency (%) 100.00
Perfect OpenMP + MPI + Pthread 1.00
Perfect OpenMP + MPI + Pthread + Perfect Load
o 1.00
Distribution
Potential Speedup 1.01
No Scalar Integer Nb Loops to get 80% 1
. Potential Speedup 1.01
FP Vectorised Nb Loops to get 80% E
. Potential Speedup 1.02
Fily ve e Nb Loops to get 80% 1
< . Potential Speedup 1.51
FP Arithmetic Only Nb Loops to get 80% 1

T ——
40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 32

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Analyse matrix multiply with loop unrolling

Analyse matrix multiply with ONE View

> magao oneview -Rl -c=ov _unroll.lua -xp=ov_unroll

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 33

RTUAL ENSTITUTE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

On your local machine (sshfs):

> firefox ivymuc_ work/MAQAO HANDSON/matmul/ov_unroll/RESULTS/
matmul unroll one html/index.html &

Global Metrics (7]

Total Time (s) 4.29
Time in loops (%) 99.67
Time in innermost loops (%) 92.93
Time in user code (%) 99.67
Perfect Flow Complexity 1.00
Array Access Efficiency (%) 83.34
Perfect OpenMP + MPI + Pthread 1.00
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution 1.00
Potential Speedup 1.01
s cCa Hgal Nb Loops to get 80% 1
; Potential Speedup 1.00
FP Vectorised Nb Loops to get 80% 1
: Potential Speedup 1.03
Fully Vectorised Nb Loops to get 80% 1
. ; Potential Speedup 1.99
FP Arithmetic Only Nb Loops to get 80% 1

T ———

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

34

ENSTITUTE! = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Using comparison mode (iso-source)

-Xp=ov_orig vs unroll

> magao oneview --compare-reports --inputs=ov_orig,ov_unroll \

Remark: open ov_orig vs unroll/index.html (Xp is directly a HTML directory)

Global Metrics

Metric
Total Time (s) 26.16
Profiled Time (s) 26.16
Time in loops (%) 100.00

Time in innermost 00ps gq g7
%) '
Time in user code (%) 100

Compilation Options

Perfect Flow Complexity 1.00
Array Access Efficiency 83.32
(%)

Perfect OpenMP + MPI
: ad

Perfect OpenMP + MPI
+ Pthread + Perfect 1.00

1.00

Potential
No Scalar b

p
Integer Nb Loops to

1

" get80%

Potential 7.09

Arithmelic Nb Loops to
get 80%

1

4.29
4.29
99.67

9293
99.67

1.00
83.34

1.00

1.00

1.01

1.00

1.03

1.99

rz

Application Categorization

Time

30.00

rl-26.16

25.00

20.00

15.00

Time (s)

10.00

5.00

Reports

| System Binary

Coverage

100.00
83.33

66.67

Experiment Summaries 9

rl 2
Application Jmatmul_orig Jmatmul_unroll
Timestamp
Experiment Type Sequential Sequential
Machine ivynsrOrlis07 ivynsrOrlis07
Architecture x86_64 x86_64
Micro Architecture IVY_BRIDGE_E IVY_BRIDGE_E
Intel(R) Xeon(R) CPU E5-2650 v2 @ Intel(R) Xeon(R) CPU E5-2650 v2 @
bt 2.50(GE|Z ® 2 GO(GILZ ®
Cache Size 20480 KB 20480 KB
Number of Cores 8 8
Maximal Frequency 3.4 GHz 3.4 GHz
0S Version Linux 4.4.180-94.100-default #1 SMP Tue Linux 4.4.180-94.100-default #1 SMP Tue

Jul 9 19:57:20 UTC 2019 (1569ffh)

Architecture used during static analysis x86_64
Micro Architecture us_ed during static IVY_BRIDGE_E
analysis

Jul 9 19:57:20 UTC 2019 (1569ffb)
X86_64

IVY_BRIDGE_E

matmul_orig: GNU 9.2.0 -mtune=generic matmul_unroll: GNU 9.2.0

Compilation Options

pointer
Number of processes observed 1
Number of threads observed 1
MAQAO version 2.13.10
MAQAO build

-march=x86-64 -g -O3 -fno-omit-frame-

-march=ivybridge -g -O3 -funroll-loops
-fno-omit-frame-pointer

1

1

2.13.10

357719356ff88ecffcd8d699db3b2bca524d 357719356ff88ecfcd8d699db3b2bcd524d

3¢25::20210604-185701

3c25::20210604-185701

Coverage (%)

Name Module

runl | run2
kernel binary 100 | 99.65
__Gl_memset libc-2.22.s0 0 0.26
|__random_r libc-2.22.s0 0 0.02
rand libc-2.22.50 0 0.02
|__random libc-2.22.s0 0 0.02
init_mat binary 0 0.02

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

Time (s) | Nb Threads | Deviation (coverage)
runlrun2frunlrun2 runl run 2
26.16| 4.27 1 1 0.00 0.00

0.01 1 0.00
0 1 0.00
0 1 0.00
0 1 0.00
0 1 0.00

35

TITUTE = *HIGH PRODUCTIVITY SUPERCOMPUTING

Summary of optimizations and gains

- | Baseline: 26.16 s

4,99x speedup

Action: loop permutation
Result: 128b vectorization

S Loop permutation: 5.28 s

6.12x speedup

Action: uarch-specialization + alignment
Result: 256b vectorization + more
efficient array accesses

- Prev + align + spe : 4.64s

Action: unrolling
Result: unrolling, small gain

Prev + unroll: 4.29 s

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

36

UTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Hydro code

int build index (int i, int J, int grid size)

{ Iterative linear system solver
ST E e e - 2) * 5); using the GaussTS|edeI
} relaxation technique.

« Stencil » code

void linearSolver0O (...) {
int i, 3j, k;

for (k=0; k<20; k++)
for (i=1; i<=grid size; 1i++)
for (J=1; j<=grid size; j++)
x[build index (i, J, grid size)]

[= ii-

(a * (x[build index(i-1, j, grid size)] + L1
x[build index (i+1, j, grid size)] + . I .
x[build:index(i, -1, grid:size)] + = |'1J 1] |+1J
x[build index (i, Jj+1, grid size)]

) + x0[build index (i, j, grid size)] ,j+1

) [/ c;

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 37

A\

TITUTE = *HIGH PRODUCTIVITY SUPERCOMPUTING

Compile with Intel compiler on login node

Switch to the hydro handson folder

> cd SWORK/MAQAO HANDSON/hydro

Load MAQAO (if no more loaded)

> module use $TW40/modulefiles
> module load magao

Load Intel 19 compiler (if no more loaded)

> module load devEnv/Intel/2019

Compile

> make

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

38

‘ INSTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Setup hydro for srun-direct run from Oneview

The ONE View configuration file must contain all variables for executing the
application.

> cd SWORK/MAQAO HANDSON/hydro #if cur. directory has changed
> less ov_kO0.lua

binary = "./hydro kO"

run _command = "<binary> 300 200" -- <size of matrix> <number of
repetitions>

number processes per node = 1

mpi command = "srun -M ivymuc --reservation=hhpsls2l workshop --

exclusive"

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 39

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Running and analyzing kernelO

Profile with MAQAO

> maqao oneview -Rl -xp=ov_kO0 -c=ov_kO0.lua

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 40

‘ UAL—'INSTITUTE * HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

On your local machine (sshfs):

> firefox ivymuc work/MAQAO HANDSON/hydro/ov_ kO/RESULTS/
hydro kO one html/index.html &

Global Metrics o

Total Time () 19.76
Profiled Time (s) 19.76
Time in loops (%) 100.03
Time in innermost loops (%) 99.93
Time in user code (%) 99.97
Compilation Options OK
Perfect Flow Complexity 1.04
Array Access Efficiency (%) 50.57
Perfect OpenMP + MPI + Pthread 1.00
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution 1.00
Potential Speedup 1.06
No Scalar Integer Nb Loops to get 80% 1
. Potential Speedup 1.98
FP Vectorised Nb Loops to get 80% 4
: Potential Speedup 4.58
Fully Vectorised Nb Loops to get 80% 6
. ; Potential Speedup 1.12
FP Arithmetic Only Nb Loops to get 80% 5

T T———

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

41

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

Running and analyzing kernelO

184
1685
106:
187
108
169:
11@

for (j = 1; j <= grid_size; j++]
{
x[build_index(i, j, grid size)] = (a * (x[build_index(i-1, j, grid_size}] +
x[build index(i+l, j, grid size)l +
x[build index(i, j-1, grid size)l +
x[build_index(i, j+1, grid size)l} +
x@[build_index(i, j, grid_size)]) / ¢;

& Path[o - |/1 [ok] =

Average path: Display a virtual path defined by average values of all real paths

Coverage 28.05 %
Function project

Source file and lines kernel.c:104-110
Module hydro_k0

The loop is defined in /gpfs/scratch/a2c06/hpckurs06/hpckursO6/MAQAO_HANDSON/hydro/kernel.c:104-110.

The related source loop is not unrolled or unrolled with no peelftail loop.

Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them, you can lower the cost of an
iteration from 5.00 to 4.00 cycles (1.25x speedup).

Workaround

= Try to reorganize arrays of structures to structures of arrays
« Consider to permute loops (see vectorization gain report)

Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your loop, you can lower the cost of an
iteration from 5.00 to 0.62 cycles (8.00x speedup).

All SSE/AVX instructions are used in scalar version (process only one data element in vecior registers). Since your execution units are vector units,
only a vectorized loop can use their full power.

« Try another compiler or update/tune your current one:
o use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences”, try the IVDEP directive.
If, using IVDEP, "vectorization possible but seems inefficient”, try the VECTOR ALWAYS directive.
« Remove inter-iterations dependences from your loop and make it unit-stride:
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops
accordingly: C storage order is row-major: for(i) for(j) a[jl[i] = b[i][i]; (slow, non stride 1) == for(i) for(j) a[il[i] = b[il[j]; (fast, stride 1)
o |f your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): for(i) a[i].x = b[i].x; (slow, non stride 1) =>
for(i) a.x[i] = b.x{i]; (fast, stride 1)

CQA output for kernelO

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

The related source loop is not unrolled or unrolled with no peeltail loop.

hint

gain | potential expert

Slow data structures access

Detected data structures (typically arrays) that cannot be efficiently read/written
« Constant unknown stride: 4 occurrence(s)

Non-unit stride (uncontiguous) accesses are not efficiently using data caches

« Try to reorganize arrays of structures to structures of arrays
* Consider to permute loops (see vectorization gain report)

Type of elements and instruction set

5 SSE or AVX instructions are processing arithmetic or math operations on single precision FP elements in
scalar mode (one at a time).

Matching between your loop (in the source code) and the binary loop

The binary loop is composed of 5 FP arithmetical operations:

+ 4: addition or subtraction
« 1: multiply

The binary loop is loading 20 bytes (5 single precision FP elements). The binary loop is storing 4 bytes (1 single
precision FP elements).

Arithmetic intensity

Arithmetic intensity is 0.21 FP operations per loaded or stored byte.

Unroll opportunity

Loop is potentially data access hound.
Workaround

Unroll your loop if trip count is significantly higher than target unroll factor and if some data references are
common to consecutive iterations. This can be done manually. Or by combining O2/03 with the UNROLL

(resp. UNROLL_AND_JAM) directive on top of the inner (resp. surrounding) loop. You can enforce an unroll
factor: e.g. UNROLL{4).

Unrolling is generally a
good deal: fast to apply
and often provides gain.
Let's try to reuse data
references through
unrolling

ENSTITUTRE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 44

ENSTITUTRE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 45

R’ NSTITUTE = '‘HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)

1 reuse

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 46

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

M

2 reuses

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 47

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR_SOLVER(i+0,j+0)

LINEAR_SOLVER(i+1,j+0)

LINEAR_SOLVER(i+2,j+0)

N LINEAR_SOLVER(i+3,j+0)
1 LINEAR_SOLVER(i+0,j+1)

4 reuses

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 48

Memory references reuse : 4x4 unroll footprint on loads

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)

LINEAR_SOLVER(i+1,j+1)

/ reuses

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR _SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)

10 reuses

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 50

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR _SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)
LINEAR_SOLVER(i+3,j+1)

12 reuses

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 51

TITUTRE = "HIGH PRODUCTIVITY SUPERCOMPUTING

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR_SOLVER(i+0-3,j+0)

LINEAR_SOLVER(i+0-3,j+1)

- 1 2 2 1 LINEAR_SOLVER(i+0-3,j+2)
2 3 3 2 LINEAR_SOLVER(i+0-3,j+3)
2 3 3 2
| 32 reuses
1 2 2 1

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 52

ENSTITUTRE = ‘HIGH PRODUCTIVITY SUPERCOMPUTING

Impacts of memory reuse

* For the x array, instead of 4x4x4 = 64 loads,
now only 32 (32 loads avoided by reuse)

* For the x0 array no reuse possible : 16 loads

 Total loads : 48 instead of 80

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 53

TITUTE = *HIGH PRODUCTIVITY SUPERCOMPUTING

4x4 unroll

#define LINEARSOLVER(...) x[build index(i, Jj, grid size)]

volid linearSolver2 (...) {

(...)

for (k=0; k<20; k++)
for (i=1; i<=grid size-3; i+=4)
for (j=1; j<=grid_size-3; j+=4) {

LINEARSOLVER
LINEARSOLVER
LINEARSOLVER
LINEARSOLVER

LINEARSOLVER
LINEARSOLVER
LINEARSOLVER
LINEARSOLVER

LINEARSOLVER
LINEARSOLVER
LINEARSOLVER
LINEARSOLVER

LINEARSOLVER
LINEARSOLVER
LINEARSOLVER
LINEARSOLVER

(...

A~ e~ A~ o~

A~ N A~ o~

o~ e~ A~ o~

14

(r
(...
(

ey

4

i+0,
i+0,
i+0,
i+0,

i+1,
i+1,
i+1,
i+1,

i+2,
i+2,
i+2,
i+2,

i+3,
i+3,
i+3,
i+3,

j+0);
j+1) ;
j+2) ;
J+3)) 7

j+0);
j+1) ;
j+2);
IS &

j+0) ;
j+1) ;
j+2) ;
j+3);

j+0) ;
j+1) ;
j+2) ;
j+3);

grid_size must now be multiple
of 4. Or loop control must be
adapted (much less readable)
to handle leftover iterations

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021)

54

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Running and analyzing kernell

Profile with MAQAO

> magao oneview -Rl -xp=ov_kl -c=ov_kl.lua

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 55

RTUAL—'INSTITUTE * HIGH PRODUCTIVITY SUPERCOMPUTING

Viewing results (HTML)

On your local machine (sshfs):

> firefox ivymuc work/MAQAO HANDSON/hydro/ov_k1l/RESULTS/
hydro k1l one html/index.html &

Global Metrics (7]

Total Time (s) 8.03
Profiled Time (s) 8.03
Time in loops (%) 99.92
Time in innermost loops (%) 99.88
Time in user code (%) 99.96
Compilation Options OK
Perfect Flow Complexity 1.10
Array Access Efficiency (%) £3.66
Perfect OpenMP + MPI + Pthread 1.00
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution 1.00
No Scalar Integer Potential Speedup 1.01
Mb Loops to get 80% 3
: Potential Speedup 1.48
FP Vectorised Nb Loops to get 80% 3
: Potential Speedup 5.95
i Vonanagy Mb Loops to get 80% 8
. : Potential Speedup 1.14
FP Arithmetic Only Nb Loops to get 80% 8

T ———
40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 56

AL ENSTATUTE: * *HIGH PRODUCTIVITY SUPERCOMPUTING

o
/apfs/scratch/a2c06/hpckursd6/hpckursas/MADAD_HANDSON/hydro,/ke = Path[o © |/1 [ok] =]

urn (i + (grid_size + 2} * j); Average path: Display a virtual path defined by average values of all real paths
156: for (j = 1; j <= grid size-3; j+=4) Coverage 62.3%
157: { Function linearSolverl
158: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+8, j+0);j Source file and lines kernel.c:15-176
159: LINEARSOLVER (x, x8, a, inv_c, grid size, i+, j+1); Module hydm Kl
160: LINEARSOLVER (x, x8, a, inv_c, grid size, i+, j+2); . N . " .
1615 LINEARSOLVER (x, 0, a, inv_c, grid size, i+8, +3); The loop is defined in /gpfs/scratch/a2c06/hpckurs06/hpckurs06/MAQAQ_HANDSON/hydro/kernel.c:15,156-176.
162: . - .
163 LINEARSOLVER (x, %0, a, inv c, grid size, i+1, j+0); The related source loop is not unrolled or unrolled with no peelftail loop.

164 LINEARSOLVER (x, x0, a, inv_c, grid size, i+l, j+1}; . N N
166: LINEARSOLVER (x, x8, a, inv_c, grid size, i+1, j+3);

168: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+2, j+0);

169: LINEARSOLVER (x, x@, a, inv_c, grid size, i+2, j+1); Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your loop, you can lower the cost of an iteration from 64.00 to 8.56 cycles (7.47x speedup).
170: LINEARSOLVER (x, x8, a, inv_c, grid size, i+2, j+2);

171: LINEARSOLVER (x, x8, a, inv c, grid size, i+2, j+3);

172: All SSE/AVX instructions are used in scalar version (process only one data element in vector registers). Since your execution units are vector units, only a vectorized loop can use their full power.
173: LINEARSOLVER (x, x8, a, inv_c, grid size, i+3, j+0);

174: LINEARSOLVER (x, x@, a, inv_c, grid size, i+3, j+1); Workaround

175: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+3, j+2);

176: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+3, j+3);

» Try another compiler or update/tune your current one:
o use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences”, try the IVDEP directive. If, using IVDEP, "vectorization possible but
seems inefficient”, try the VECTOR ALWAYS directive.
» Remove inter-iterations dependences from your loop and make it unit-stride:
o |f your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly: C storage order is row-major: for(i)
for(j) afjl[i] = b[fi]; (slow, non stride 1) => for(i) for(j) a[il[j] = b[i][i]; (fast, stride 1)
o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): for(i) a[i].x = b[i].x; (slow, non stride 1) => for(i) a.x[i] = b.x[i]; (fast, stride 1)

Execution units bottlenecks

Performance is limited by execution of FP add operations (the FP add unit is a bottleneck). By remaoving all these bottlenecks, you can lower the cost of an iteration from 64.00 to 42.50 cycles (1.51x
speedup).

Workaround

Reduce the number of FP add instructions

VIRTUYAL ENSTITUTE: = "HIGH PRODUCTIVITY SUPERCOMPUTING

CQA output for kernell

Type of elements and instruction set

96 SSE or AVX instructions are processing arithmetic or math operations on single precision FP elements in scalar mode (one at a time).

Matching between your loop (in the source code) and the binary loop
The binary loop is composed of 96 FP arithmetical operations:

« §4: addition or subtraction

The binary loop¥g loading 276 bytes (69 single precision FP elements). The hinary loop is storing 64 bytes (16 single precision FP elements).

4x4 Unrolling were applied

Expected 48... But still better than 80

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Summary of optimizations and gains

kernelQ: 19.76s

Action: 4x4 unroll

2146x speedup Result: big loop body with mem reuse

Kernell: 8.03s

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 59

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

More sample codes

More codes to study with MAQAO in

$WORK/MAQAO HANDSON/loop optim tutorial.tgz

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 60

e e " VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Scalability profiling of lulesh with
MAQAO

Salah Ibnamar

— UNIVERSITE DE u
Universitit Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES.
THE|
UNIVERSITY OF OREGON m

Technische
e ™ f
for Simulation Sciences Minchen

ST iy G 0

FORSCHUNGSZENTRUM

()

i

|
O,

JTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Compiling Lulesh (on login node)

Copy Lulesh sources to your working directory
> cd SWORK
> tar xvf $TW40/material/magao/lulesh2.0.3.tgz

(if necessary: reload Intel environment) Compile Lulesh

> cd lulesh

module purge # if necessary

module load admin/1.0 1lrz/1.0 devEnv/Intel/2019 #if necessary
make

VVYV

(Optional) To execute a sample run of Lulesh:
> less job lulesh.sbatch
> sbatch job lulesh.sbatch

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 62

ENSTITUTE! = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Setup ONE View for scalability analysis

Retrieve the configuration file prepared for lulesh in batch mode from the
MAQAO_HANDSON directory

> cd S$SWORK/lulesh #if current directory has changed

> cp SWORK/MAQAO HANDSON/lulesh/config magao lulesh.lua .

> less config magao lulesh.lua

binary = "./lulesh2.0"
run_command = "<binary> -i 10 -p -s 130"

batch_script = "job lulesh magao.sbatch"
batch_command = “sbatch <batch_script>"
number processes = 1

number nodes = 1

mpi_ command = “mpirun -n <number processes>"

omp num threads =1

multiruns params = {
{number processes = 1, omp_num_ threads = 8, number nodes = 1, number processes_per node = 1},
{number processes = 8, omp num threads = 1, number nodes = 1, number processes_per node = 8,
run_command = "<binary> -i 10 -p -s 65"},
{number processes = 8, omp num threads = 1, number nodes = 2, number processes per node = 4. },

4dTH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 63

ISTITUTE = 'HIGH PRODUCTIVITY SUPERCOMPUTING

Review jobscript for use with ONE View

All variables in the jobscript defined in the configuration file must be
replaced with their name from it.

Retrieve jobscript modified for ONE View from the MAQAO_HANDSON
directory.

> cd SWORK/lulesh #if current directory has changed
> cp SWORK/MAQAO HANDSON/lulesh/job lulesh magao.sbatch
> less job lulesh maqao.sbatch

#SBATCH --nodes=2<number nodes>

export OMP NUM THREADS=8<omp num threads>

mpi—fuﬁ——nﬁ%

<mpi command> <run command>

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 64

E' #= HIGH PRODUCTIVITY SUPERCOMPUTING

Launch MAQAO ONE View on lulesh (scalability mode)

Launch ONE View (execution will be longer!)

> module use $TW40/modulefiles
> module load magao

> magao oneview -Rl --with-scalability=on \

—-c=config maqao lulesh.lua -xp=maqao lulesh

The results can then be accessed similarly to the analysis report.

> firefox
ivymuc work/lulesh/magao lulesh/RESULTS/lulesh2.0 one html/index.html

OR
> tar czf $HOME/lulesh html.tgz \
magao lulesh/RESULTS/lulesh2.0 one html

> scp <user>@lxloginl0O.lrz.de:lulesh html.tgz

> tar xf lulesh html.tgz

> firefox magao lulesh/RESULTS/lulesh2.0 one html/index.html
A sample result directory is in MAQAO HANDSON/lulesh/lulesh html example.tgz

40TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY/ONLINE, 14-18 JUN 2021) 65

	Diapo 1
	Setup (reminder)
	Setup (optional: bt-mz compilation with debug symbols)
	Diapo 4
	Setup ONE View for batch mode
	Review jobscript for use with ONE View
	Launch MAQAO ONE View on bt-mz (batch mode)
	(OPTIONAL) Setup ONE View for interactive mode
	(OPTIONAL) Launch MAQAO ONE View on bt-mz (interactive mode)
	Display MAQAO ONE View results
	Diapo 11
	Display MAQAO ONE View results (optional)
	Diapo 13
	Setup ONE View for scalability analysis
	Launch MAQAO ONE View on lulesh (scalability mode)
	Diapo 16
	Matrix Multiply code
	Preparing interactive session with GNU compiler
	Diapo 19
	Analysing matrix multiply with MAQAO
	Viewing results (HTML)_clipboard0
	CQA output for the baseline kernel
	Impact of loop permutation on data access
	Diapo 24
	Analyse matrix multiply with permuted loops
	Viewing results (HTML)
	CQA output after loop permutation
	Impacts of architecture specialization: vectorization and FMA
	Diapo 29
	Diapo 30
	Viewing results (HTML)_clipboard1
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Summary of optimizations and gains
	Diapo 37
	Preparing (new) interactive session with Intel compiler
	Diapo 39
	Running and analyzing kernel0 (icc -O3 -xHost)
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Running and analyzing kernel1
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Compiling Lulesh
	Diapo 63
	Review jobscript for use with ONE View_clipboard0
	Diapo 65

