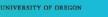

Virtual Institute - High Productivity Supercomputing



Virtual Institute - High Productivity Supercomputing

- **Goal**: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems
- Start-up funding (2006–2011)
 by Helmholtz Association of German Research Centres

- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Academic workshops
 - Training workshops
 - Service
 - Support email lists
 - Application engagement

http://www.vi-hps.org

VI-HPS partners (founders)

Forschungszentrum Jülich

Jülich Supercomputing Centre

RWTH Aachen University

■ Centre for Computing & Communication

Technische Universität Dresden

■ Centre for Information Services & HPC

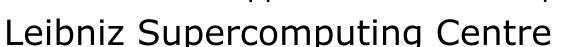
University of Tennessee (Knoxville)

Innovative Computing Laboratory

VI-HPS partners (cont.)

Allinea Software

Barcelona Supercomputing Center


■ Centro Nacional de Supercomputación

Lawrence Livermore National Lab.

Center for Applied Scientific Computing

Technical University of Darmstadt

Laboratory for Parallel Programming

VI-HPS partners (cont.)

Friedrich-Alexander-Universität

■ Erlangen Regional Computing Center (RRZE)

Technical University of Munich

Chair for Computer Architecture

University of Oregon

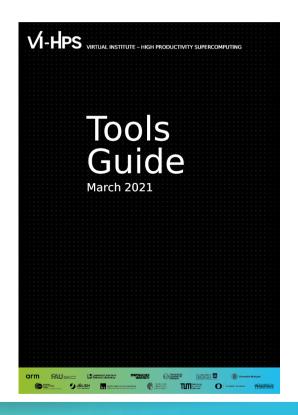
Performance Research Laboratory

University of Stuttgart

HPC Centre

University of Versailles St-Quentin

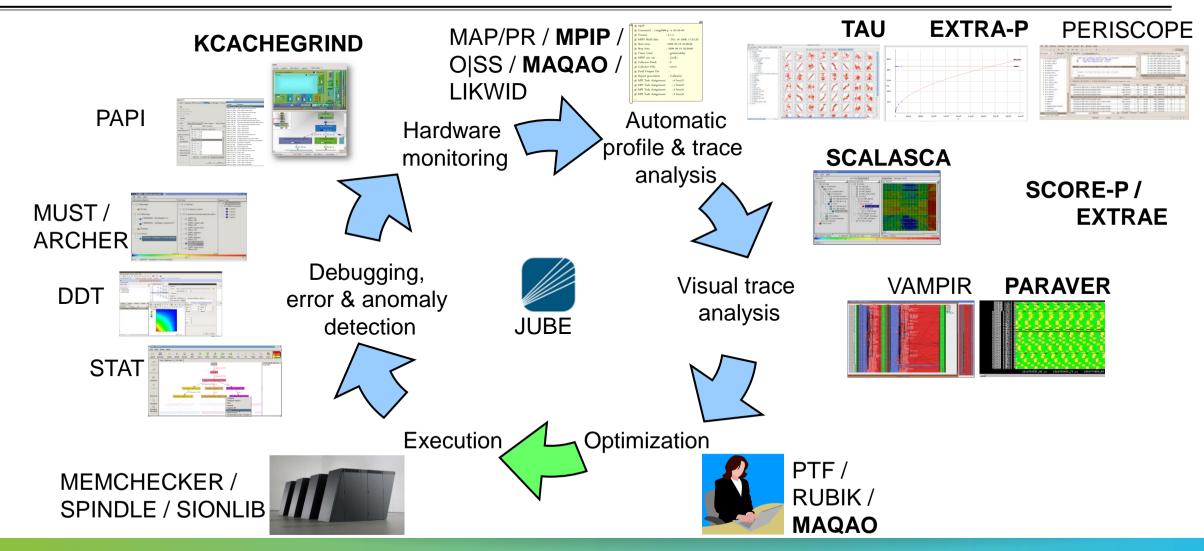
■ Li-Parad



Productivity tools

- Extra-P:
 - Automated performance modelling
- Kcachegrind:
 - Callgraph-based cache analysis [x86 only]
- MAQAO:
 - Assembly instrumentation & optimization [x86-64 only]
- mpiP/mpiPview:
 - MPI profiling tool and analysis viewer
- Paraver/Dimemas/Extrae:
 - Event tracing, graphical trace visualization & analysis
- Scalasca
 - Large-scale parallel performance analysis
- Score-P
 - Community-developed instrumentation & measurement infrastructure
- TAU
 - Integrated parallel performance system

For a brief overview of tools consult the VI-HPS Tools Guide:



Productivity tools (cont.)

- FORGE DDT/MAP/PR: Parallel debugging, profiling & performance reports
- JUBE: Workflow execution environment
- LIKWID: Command-line performance tools suite
- MUST & Archer: MPI & OpenMP usage correctness checking
- Open MPI: Integrated memory checking
- Open|SpeedShop: Integrated parallel performance analysis environment
- PAPI: Interfacing to hardware performance counters
- Periscope Tuning Framework: Automatic analysis and Tuning
- Rubik: Process mapping generation & optimization [BG only]
- SIONlib/Spindle: Optimized native parallel file I/O & shared library loading
- STAT: Stack trace analysis tools
- Vampir: Interactive graphical trace visualization & analysis

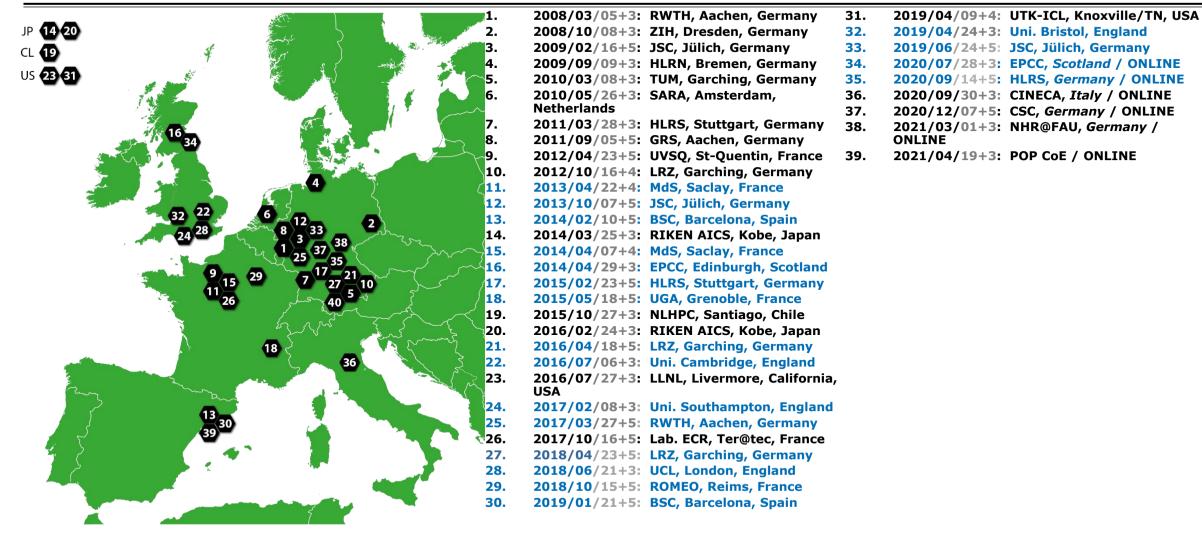
Technologies and their integration

Disclaimer

Tools will **not** automatically make you, your applications or computer systems more productive.

However, they can help you understand how your parallel code executes and when / where it's necessary to work on correctness and performance issues.

VI-HPS training & Tuning Workshops


- Goals
 - Give an overview of the programming tools suite
 - Explain the functionality of individual tools
 - Teach how to use the tools effectively
 - Offer hands-on experience and expert assistance using tools
 - Receive feedback from users to guide future development
- For best results, bring & analyze/tune your own code(s)!
- VI-HPS Hands-on Tutorial series
 - SC'08-11/13/14/15/16/17/19, ICCS'09, Cluster'10, EuroMPI'12/14, XSEDE'13, ISC-HPC'15-19
- VI-HPS Tuning Workshop series
 - 2008 (x2), 2009 (x2), 2010 (x2), 2011 (x2), 2012 (x2), 2013 (x2), 2014(x4), 2015(x3)
 - 2016 (Kobe/Japan, Garching/Germany, Cambridge/UK, Livermore/USA)
 - 2017 (Southampton/UK, Aachen/Germany, Bruyères-le-Châtel/France)
 - 2018 (Garching/Germany, London/UK, Reims/France)
 - 2019 (Barcelona/Spain, Knoxville/USA, Bristol/UK, Jülich/Germany)
 - 2020 (EPCC/Scotland / Online, HLRS/Germany / Online, CINECA/Italy / Online, CSC/Germany / Online)
 - 2021 (NHR@FAU/Germany / Online, POP CoE / ONLINE)

VI-HPS

VI-HPS Tuning Workshop series

Upcoming events

- Hands-on tutorial at ISC-HPC'21 digital conference (27 June 2021, Frankfurt/Main, Germany)
- Tuning Workshop (Autumn 2021, JSC/RWTH, Germany ONLINE)
 - Focus on GPU
- Further events to be determined
 - (one-day) tutorials: with guided exercises sometimes using a Live-ISO/OVA
 - (multi-day) training workshops: with your own applications on actual HPC systems
- Check www.vi-hps.org/training for announced events
- Contact us if you might be interested in hosting a training event