Performance Analysis Exercises with Vampir

Matthias Weber, Holger Brunst, Hartmut Mix Technische Universität Dresden

Exercise Trace Files

% ls \$TW36/tools/vampir/examples/

```
01-p100-cosmo-specs-orig
02-p100-cosmo-specs-fd4
03_wrf_deimos
04_sbmfd4_jugene
scorep tea leaf 8x3 trace.vampir
```

- Four trace files for exercising performance analysis with Vampir
- Traces show real application runs
- Do the traces contain performance problems?
- If yes, try to find their causes

- Weather forecast code COSMO-SPECS
- Run with 100 processes
- COSMO: weather model (METEO group)
- SPECS: microphysics for accurate cloud calculation (MP and MP_UTIL group)
- Coupling of both models done in COUPLE group

- Compared to METEO, MP and MP_UTIL are very compute intensive, however this is due to more complex calculations and no performance issue
- Problem: >32% of time spent in MPI
- MPI runtime share increases throughout the application run

- Zoom into the first three iterations
- MP/MP_UTIL perform four sub-steps in one iteration
- Low MPI time share
- Everything is balanced and looks okay

- Zoom into the last three iterations
- Very high MPI time share (>50%)
- Large load imbalance caused by MP functions around Process 54 and Process 64

- PAPI_FP_OPS counter showing higher FLOPs rates on processes causing the imbalance
- Reason for imbalance:
 Static grid used for distribution of processes.
 Depending on the weather, expensive cloud computations (MP group) may be only necessary on some processes

02-p100-cosmo-specs-fd4

- Weather forecast code COSMO-SPECS
- Run with 100 processes
- COSMO: weather model (METEO group)
- SPECS: microphysics for accurate cloud calculation (MP and MP_UTIL group)
- Coupling of both models done in COUPLE group
- Dynamic load balancing (FD4 group)

VI-HPS

02-p100-cosmo-specs-fd4

- Dynamic load balancing mitigates the balance problems of the original COSMO-SPECS version
- MPI time share is reduced to <13%
- MPI time share stays constant throughout the application runtime
- Runtime reduced by factor of 2.1, from initially 578s to 276s

VI-HPS

02-p100-cosmo-specs-fd4

- Zoom into last three iterations
- FD4 balances MP load (precipitation processes in clouds) across all available processes

03_wrf_deimos

- Weather forecast code WRF
- Run with 64 processes
- Dynamical core: e.g., density, temperature, pressure, and winds in the atmosphere (DYN group)
- Physical parameterization:
 e.g., clouds, rain, and
 radiation (PHYS group)

03_wrf_deimos

- Problem: 25% MPI run time fraction during the iterations of the model
- Behaviour is constant throughout all iterations
- Question: Which user function causes the problem? And why?

VI-HPS

03_wrf_deimos

03_wrf_deimos

- Load imbalance is caused by floating point (FP) exceptions in WRF
- CounterFR_FPU_EXCEPTIONS_SSE_MICROTRAPS showsFP exceptions

Floating point exceptions

03_wrf_deimos

MODULE_ADVECT_EM::ADVECT_SCALAR occurrences shown in yellow

- Zoom into one iteration
- Function invocations of

 MODULE_ADVECT_EM::ADVE

 CT_SCALAR (shown in yellow) match high floating point exception occurrences indicated by the counter at the bottom

04_sbmfd4_jugene

- Weather forecast code COSMO-SPECS
- Run with 8192 processes
- COSMO: weather model (METEO group)
- SPECS: microphysics for accurate cloud calculation (MP and MP_UTIL group)
- Coupling of both models done in COUPLE group
- Dynamic load balancing (FD4 group)

04_sbmfd4_jugene

- Problem: Large MPI runtime fraction (>60%) during iterations
- Especially in MPI_Waitalland MPI Allreduce
- Behaviour is constant throughout all iterations

04_sbmfd4_jugene

High MPI_Allreduce variance between processes

- Large runtime variation inMPI Allreduce
- Sorted profile reveals processes with smallMPI_Waitall timeshare
- Reason: Load imbalancein FD4_COUPLE_PUT andFD4_COUPLE_GET
- Most processes need to wait at MPI_Allreduce and MPI_Waitall (asynchronously)

Summary

- Performance flaws can lead to significant runtime overheads
- Use resources efficiently
- Analyze your code
- Performance analysis tools are there to help you

ITEA2

