

|
 |
|------|------|------|------|------|------|------|
|
 |

The AMD EPYC Rome processor

Björn Dick (HLRS), Thomas Bönisch (HLRS)

Node - Overview

.

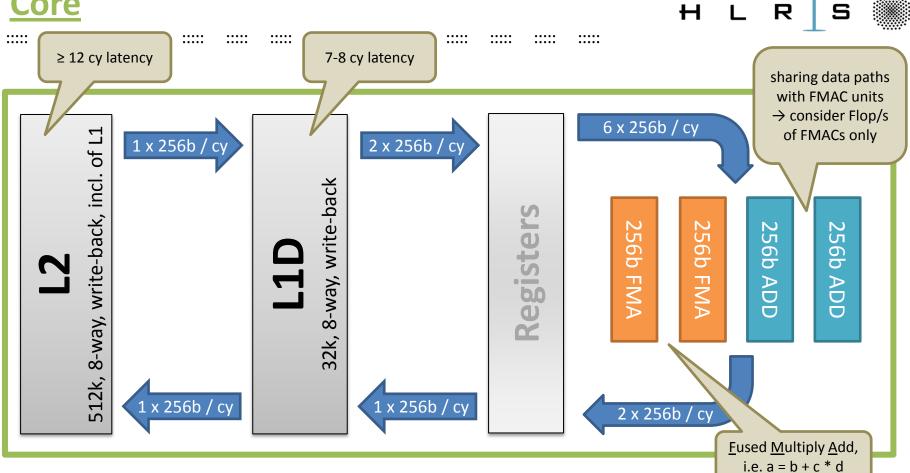
- 2 x AMD EPYC 7742 (Zen2 aka "Rome"), each:
 - 64 cores @ 2.25GHz, AVX2

•	Cache	L1D	L1I	L2	L3		
	Size	32kB		512kB	16MB		
	Cache line size			(64B		
	Associativity		8-way		16-way		
	private/shared?		private		shared among 4 cores only!		
	Inclusion policy		inclusive		victim cache		
	Write policy		e-back				
	Write-miss policy	v	vrite-alloca	te	not applicable		

- DRAM:
 - 256GB @ 380GB/s

•••

::



••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••

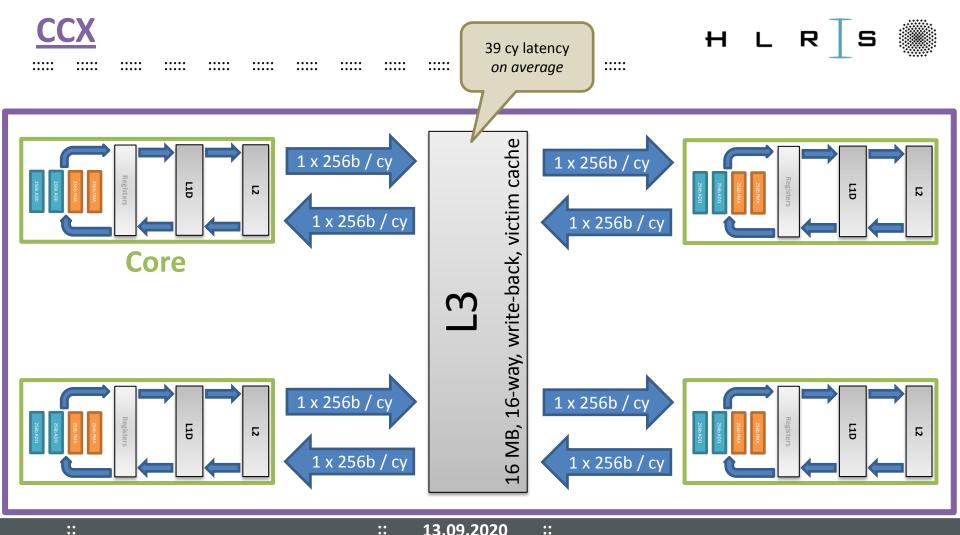
• EPYC Rome has a highly hierarchical architecture!

• The basic building block of the processor is a core.

 A core can be used by up to 2 hyperthreads / hardware threads, hence sharing L1I, L1D and L2 caches. Core

S

••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••


4 cores are combined in a so called CCX (Core CompleX)

together with a common L3 cache

L3 can *not* be used by cores in other CCXs!

...

::

13.09.2020

...

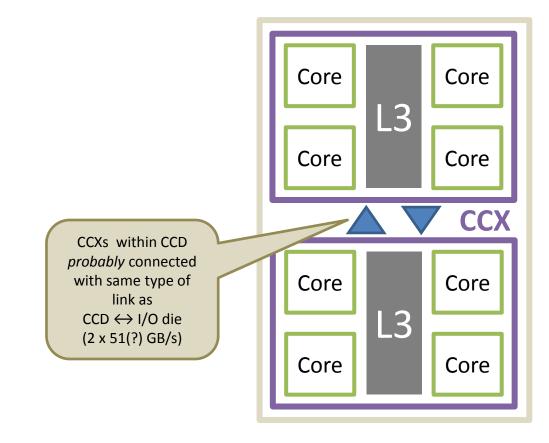
Hierarchical Architecture (3)

...

• 2 CCXs are combined to a CCD (<u>Cluster Complex Die</u>)

• Sharing a common interface to the I/O die (cf. below)

...


• Each CCD is located on a separate silicon die

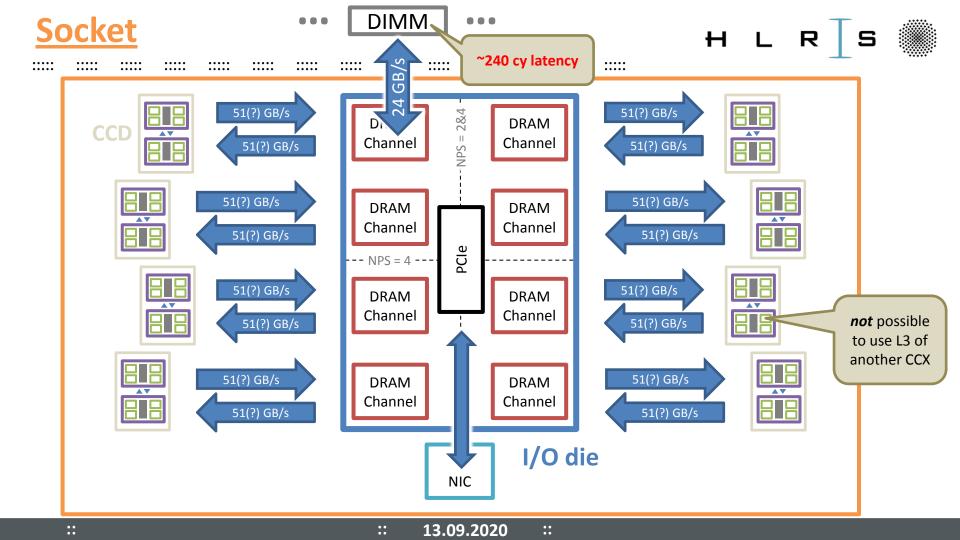
→ This hierarchy layer is relevant from a manufacturing point of view, but not that much from a user's point of view.

HLR	S	
-----	---	--

|
 |
|------|------|------|------|------|------|------|
|
 |

8

Hierarchical Architecture (4)


::

- 8 CCDs are attached to a common I/O die (holding memory controllers as well as PCIe) in order to form a socket.
- Memory channels as well as PCIe lanes can be split into 1, 2 or 4 NUMA <u>n</u>odes <u>per s</u>ocket (NPS)
 - pages distributed round robin among domains' DRAM channels
 - NPS=4 set by HLRS at system boot time \rightarrow fixed!
- Every socket has a link to the NIC (aka "Socket Direct[®]")

...

::

.

....

.

....

....

н	L	R	S	
---	---	---	---	--

 2 sockets are combined to 	form a node

.

....

....

.

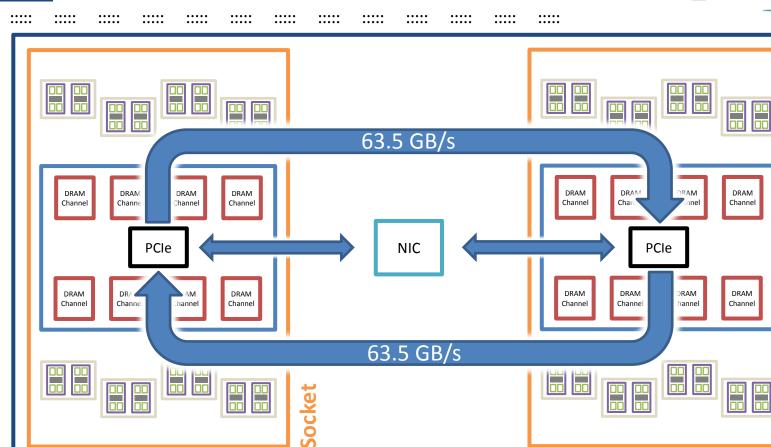
....

....

.

....

Every core in the node can access all memory DIMMs. However, cores have different distance to different DIMMs due to the hierarchical architecture!


...

....

....

13.09.2020

...

::

Hierarchical Architecture :: Summary

	••••							
	hie	rarchy	what	Dor	sharing	distance	data t	ransfer
	l	ayer	wilat	per	Sharing	uistance	delay	B/W
		1	2 Threads	Core	L1I, L1D and L2			
		2	4 Cores	CCX	L3			
relevance		3	2 CCXs	CCD	link to I/O die			
minor rele		4	2/4/8 CCDs	NUMA node	DRAM channels & PCIe lanes			
Ľ		5	4/2/1 NUMA nodes	Socket	inter-socket link			
		6	2 Sockets	Node	inter-node link			

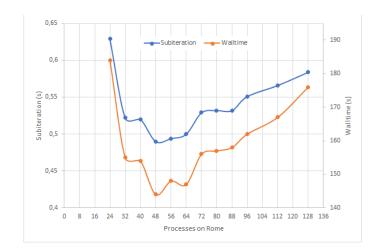
→ To achieve sufficient performance, partition problem & place groups of processes and threads in hierarchical manner so that distances of data transfers are minimized!

•••

•••

:::

ΗL


R

Remarks

- Rome core @ 2.25 GHz vs.
 Haswell core @ 2.5 GHz
- Haswell node: 2 x 70 GB/s
 Rome node: 2 x 190 GB/s
- → it's not fair to compare
 128 Haswell cores
 (= 6 x 2 x 70 GB/s = 840 GB/s)
 to 128 Rome cores
 (= 2 x 190 GB/s = 380GB/s)
 if your code is bound by DRAM B/W
- \rightarrow compare node vs. node instead

It might be beneficial to use less than 128 cores per node! In particular if your code is bound by DRAM B/W:

::

...

Hardware Performance Counter

• Available via PAPI interface

::

- However, almost no *derived* PAPI metrics available
- Hence, use native events and do the math on your own:

Metric	PAPI event name	raw event	raw umask
IPC	RETIRED_INSTRUCTIONS	0xC0	0x00
IPC	CYCLES_NOT_IN_HALT	0x76	0x00
DP Flop/s	RETIRED_SSE_AVX_FLOPS	0x03	0x0F
L1 misses / cy	unfortunately not published by AMD		
L2 misses / cy	CORE_TO_L2_CACHEABLE_REQUEST_ACCESS_STATUS:LS_RD_BLK_C	0x64	0x08
L3 misses / cy	unfortunately not available (yet) due to security concerns		
DRAM B/W	Unfortunately not available (yet) due to security concerns		

cf. <u>here</u> (section 2.1.15.4) w.r.t. events/umasks description

::

ΗL

R