

MAQAO Performance Analysis and Optimization Tool

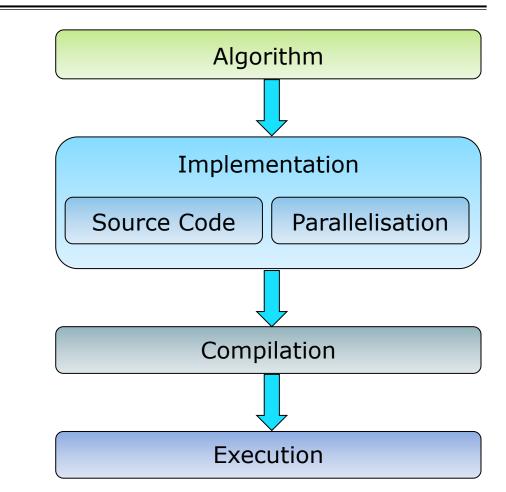
CRS

Emmanuel OSERET, Salah IBNAMAR emmanuel.oseret@uvsq.fr, mohammed-salah.ibnamar@uvsq.fr Performance Evaluation Team, University of Versailles S-Q-Y <u>http://www.maqao.org</u>

VI-HPS 34th TW (Online) EPCC, Scotland – 28-30 July 2020

Performance analysis and optimisation

How much of an application can be optimized?What would the effort/gain ratio be?


Where is the application spending most execution time and resources?

Why is the application spending time there?

- Algorithm, implementation, runtime or hardware?
- Data access or computation?

How to improve the application?

- At which step(s) of the workflow?
- What additional information is needed?

A multifaceted problem

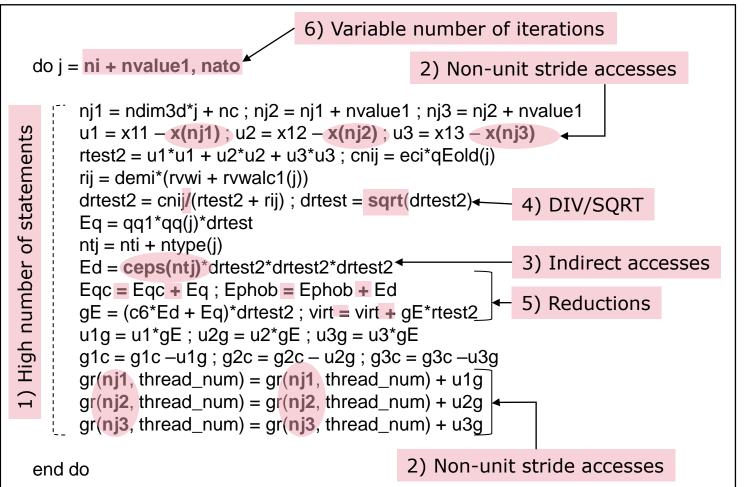
Pinpointing the performance bottlenecks

Identifying the dominant issues

Algorithms, implementation, parallelisation, ...

Making the **best use** of the machine features

- Complex multicore and manycore CPUs
- Complex memory hierarchy


Need for dedicated and complementary tools

Finding the **most rewarding** issues to be fixed

- 40% total time, expected 10% speedup
 - ➡ TOTAL IMPACT: 4% speedup
- 20% total time, expected 50% speedup
 - → TOTAL IMPACT: 10% speedup

Motivating example

Code of a loop representing ~10% walltime

Source code and associated issues:

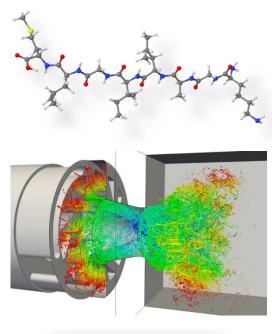
- 1) High number of statements
- 2) Non-unit stride accesses
- 3) Indirect accesses
- 4) DIV/SQRT
- 5) Reductions
- 6) Variable number of iterations

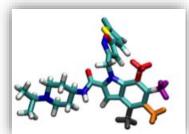
MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:

- Characterizing performance of HPC applications
- Focusing on performance at the core level
- Guiding users through optimization process
- Estimating return of investment (R.O.I.)

Characteristics:


- Modular tool offering complementary views
- Support for Intel x86-64 and Xeon Phi
 - ARM on-going development
- LGPL3 Open Source software
- Developed at UVSQ since 2004
- Binary release available as static executable



Success stories

MAQAO was used for optimizing industrial and academic HPC applications:

- QMC=CHEM (IRSAMC)
 - Quantum chemistry
 - Speedup: > 3x
 - Optimization: moved invocations of functions with identical parameters out of loop body
- Yales2 (CORIA)
 - Computational fluid dynamics
 - Speedup: up to 2.8x
 - Optimization: removing double structure indirections
- Polaris (CEA)
 - Molecular dynamics
 - Speedup: 1.5x 1.7x
 - Optimization: enforcing loop vectorisation through compiler directives
- AVBP (CERFACS)
 - Computational fluid dynamics
 - Speedup: **1.08x 1.17x**
 - Replaced divisions with multiplications by reciprocal
 - Complete unrolling of loops with a small number of iterations

Partnerships

MAQAO was funded by UVSQ, Intel and CEA (French department of energy) through Exascale Computing Research (ECR) and the French Ministry of Industry through various FUI/ITEA projects (H4H, COLOC, PerfCloud, ELCI, etc...)

Provides core capabilities and features for other tools:

- TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
- ATOS bullxprof with MADRAS through MIL
- Intel Advisor
- INRIA Bordeaux HWLOC

PeXL ISV also contributes to MAQAO:

- Commercial performance optimization expertise
- Training and software development
- www.pexl.eu

MAQAO team and collaborators

MAQAO Team

- William Jalby, Prof.
- Cédric Valensi, Ph.D.
- Emmanuel Oseret, Ph.D.
- Mathieu Tribalat, M.Sc.Eng.
- Salah Ibn Amar, M.Sc.Eng.
- Kévin Camus, Eng.

Collaborators

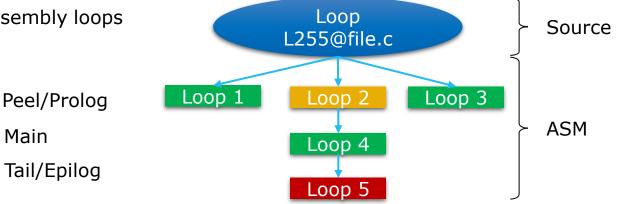
- David J. Kuck, Prof
- Andrés S. Charif-Rubial, Ph.D.
- Eric Petit, Ph.D.
- Pablo de Oliveira, Ph.D.
- David C. Wong, Ph.D.
- Othman Bouizi, Ph.D.

Past Collaborators or Team Members

- Denis Barthou, Prof.
- Jean-Thomas Acquaviva, Ph.D.
- Stéphane Zuckerman, Ph.D.
- Julien Jaeger, Ph.D.
- Souad Koliaï, Ph.D.
- Zakaria Bendifallah, Ph.D.
- Tipp Moseley, Ph.D.
- Jean-Christophe Beyler, Ph.D.
- Hugo Bolloré, M.Sc.Eng.
- Jean-Baptiste Le Reste, M.Sc.Eng.
- Sylvain Henry, Ph.D.
- José Noudohouenou, Ph.D.
- Aleksandre Vardoshvili, M.Sc.Eng.
- Romain Pillot, Eng
- Youenn Lebras, Ph.D.

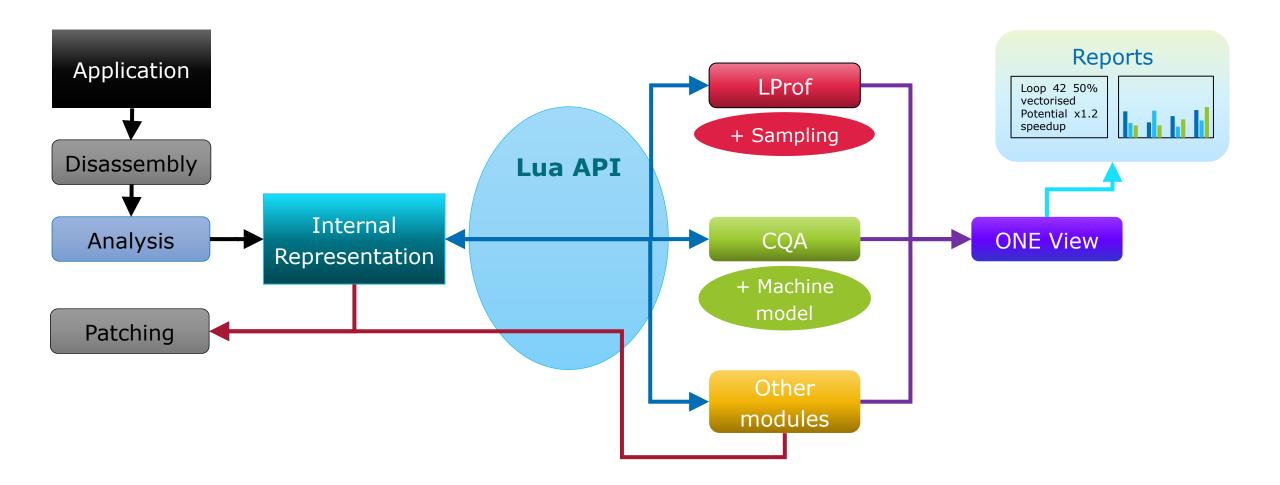
Analysis at binary level

Advantages of binary analysis:


- Compiler optimizations increase the distance between the executed code and the source code
- Source code instrumentation may prevent the compiler from applying certain transformations

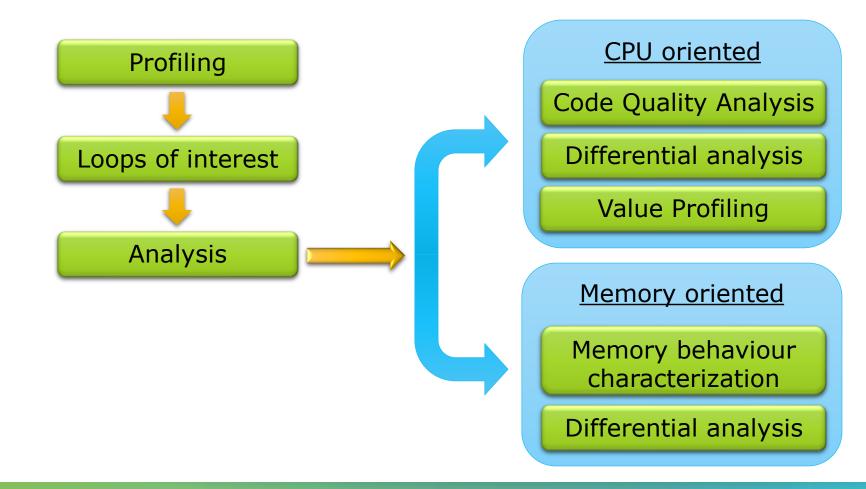
Main

We want to evaluate the "real" executed code: What You Analyse Is What You Run


Main steps:

- Reconstruct the program structure
- Relate the analyses to source code
 - A single source loop can be compiled as multiple assembly loops
 - Affecting unique identifiers to loops

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

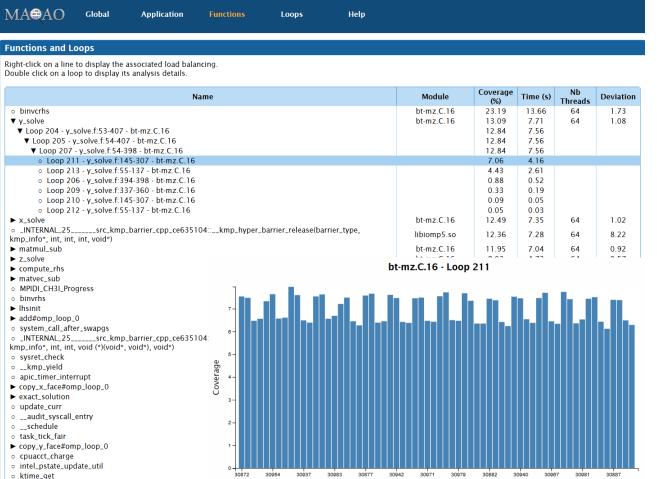

MAQAO Main structure

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Methodology

Decision tree

MAQAO LProf: Lightweight Profiler


Goal: Lightweight localization of application hotspots

Features:

- Sampling based
- Access to hardware counters
- Analysis at function and loop granularity

Strengths:

- Non intrusive: No recompilation necessary
- Low overhead
- Agnostic with regard to parallel runtime

MAQAO CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance

Features:

- Static analysis: no execution of the application
- Allows cross-analysis of/on multiple architectures
- Compiler generated code quality evaluation
- Proposes hints and workarounds to improve quality/performance
- Loops centric
 - In HPC, loops cover most of the processing time
- Targets compute-bound codes

Static Reports

▼ CQA Report

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve.f:415-423

▼ Path 1

2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz)) gain potential hint expert

Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them, you can lower the cost of an iteration from 65.00 to 57.00 cycles (1.14x speedup).

Workaround

- Try to reorganize arrays of structures to structures of arrays
- Consider to permute loops (see vectorization gain report)
- To reference allocatable arrays, use "allocatable" instead of "pointer" pointers or qualify them with the "contiguous" attribute (Fortran 2008)
- For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b before this loop

Vectorization

Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

Workaround

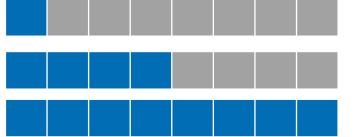
- Try another compiler or update/tune your current one:
- use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences", try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient", try the VECTOR ALWAYS directive.
- Remove inter-iterations dependences from your loop and make it unit-stride:
 - If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i do j a(i,j) = b(i,j) (slow, non stride 1) => do i do j a(j,i) = b(i,j) (fast, stride 1)
 - \circ If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i a(i)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks.

MAQAO CQA: Main Concepts

Applications exploit at best 5 to 10% of the peak performance.


Main elements of analysis:

- Peak performance
- Execution pipeline
- Resources/Functional units

Key performance levers for core level efficiency:

- Vectorizing
- Avoiding high latency instructions if possible (DIV/SQRT)
- Guiding the compiler code optimization
- Reorganizing memory and data structures layout

Same instruction – Same cost

Process up to 8X data

MAQAO CQA: Guiding the compiler and hints

Compiler can be driven using flags and pragmas:

- Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
- Forcing optimization (unrolling, vectorization, alignment, ...)
- Bypassing conservative behaviour when possible (e.g. 1/X precision)

Hints for implementation changes:

- Improve data access
 - Memory alignment
 - Loop interchange
 - Changing loop strides
 - Reshaping arrays of structures
- Avoid instructions with high latency

MAQAO ONE View: Performance View Aggregator

- Automating the whole analysis process
- Invoke multiple MAQAO modules
- Generate aggregated performance views
- Available in HTML format

Main steps:

- Invokes LProf to identify hotspots
- Invokes CQA on hotspots

Available results:

- Speedup predictions
- Global code quality metrics
- Hints for improving performance
- Parallel efficiency analysis

Analysing an application with MAQAO

ONE View execution

- Provide all parameters necessary for executing the application
 - Parameters can be passed on the command line or as a configuration file
 - Parameters include binary name, MPI commands, dataset directory, ...

```
$ maqao oneview --create-report=one --binary=bt-mz.C.16 --mpi command="mpirun -n 16"
```

\$ maqao oneview --create-report=one --config=my config.lua"

- Analyses can be tweaked if necessary
 - Report level one corresponds to lightweight profiling (LProf) and code quality analysis (CQA)
- ONE View can reuse an existing experiment directory to perform further analyses
- Results available in HTML format by default
 - XLS spreadsheets and textual output generation are also available

Online help is available:

```
$ maqao oneview --help
```

Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced analyses

- LProf
 - Profiling

```
$ maqao lprof xp=exp_dir --mpi-command="mpirun -n 16" -- ./bt-mz.C.16
```

Display functions profile

```
$ maqao lprof xp=exp_dir -df
```

Displaying the results from a ONE View run

```
$ maqao lprof xp=oneview_xp_dir/lprof_npsu -df
```

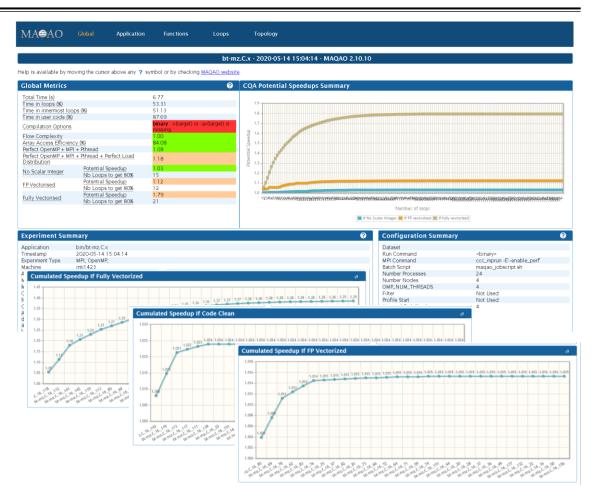
```
    CQA
```

\$ maqao cqa loop=42 bt-mz.C.16

Online help is available:

```
$ maqao lprof --help
```

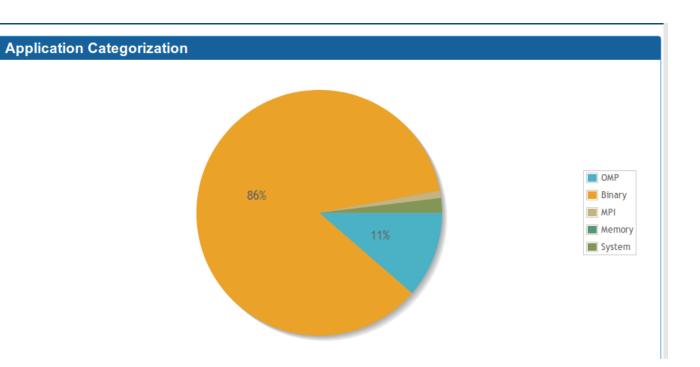
\$ maqao cqa --help


Global summary

Experiment summary

Machine characteristics and configuration

Global metrics


- General quality metrics derived from MAQAO analyses
- Global speedup predictions
 - Speedup prediction depending on the number of vectorised loops
 - Ordered speedups to identify the loops to optimise first

Time Categorisation

Identifying at a glance where time is spent

- Application
 - Main executable
- Parallelization
 - Threads
 - OpenMP
 - MPI
- System libraries
 - I/O operations
 - String operations
 - Memory management functions
- External libraries
 - Specialised libraries such as libm / libmkl
 - Application code in external libraries

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Functions Profiling

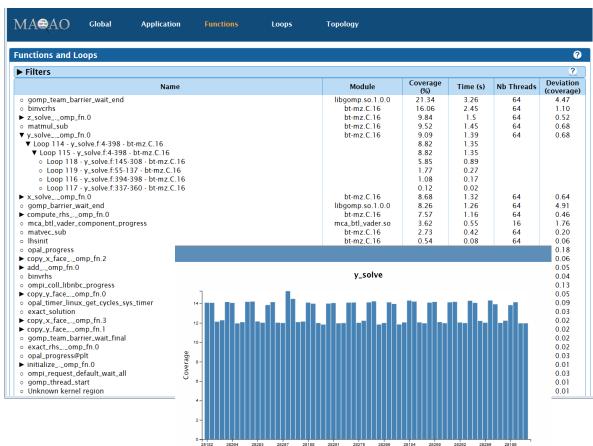
Identifying hotspots

- Exclusive coverage
- Load balancing across threads
- Loops nests by functions

- ▼ matmul_sub
 - Loop 230 solve_subs.f:71-175 bt-mz.C.16
 - Loop 231 solve_subs.f:71-175 bt-mz.C.16
- ▼ z_solve

Loop 232 - z_solve.f:53-423 - bt-mz.C.16

- Loop 233 z_solve.f:54-423 bt-mz.C.16
 - ▼ Loop 236 z_solve.f:54-423 bt-mz.C.16
 - Loop 239 z_solve.f:146-308 bt-mz.C.16 Innermost


Single

Outermost

Inbetween

Inbetween

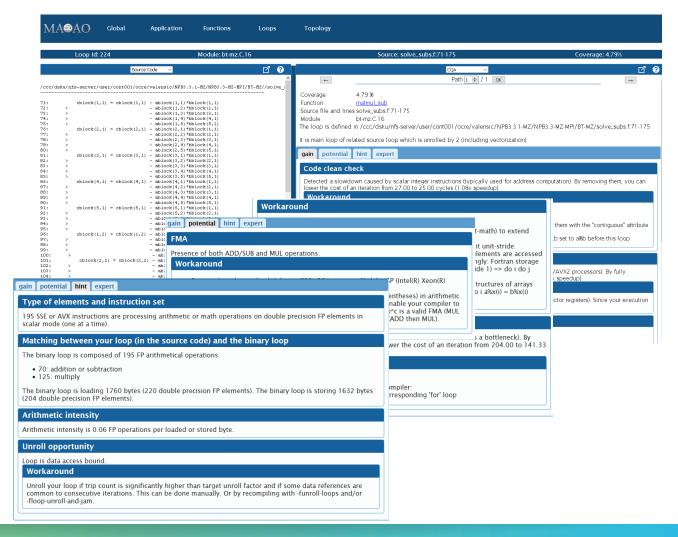
- Loop 235 z_solve.f:55-137 bt-mz.C.16
- Loop 234 z_solve.f:415-423 bt-mz.C.16

× × × × × VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Loops Profiling Summary

Identifying loop hotspots

- Vectorisation information
- Potential speedup by optimisation
 - No scalar integer: Removing address computations
 - FP Vectorised: Vectorising floatingpoint computations
 - Fully Vectorised: Vectorising floating-point computations and memory accesses
 - Perfect Load Balancing: Optimal balance across all threads


MA	AO Globa	al Applicati	ion Fi	unctions Loops Topology									
Show Full Profile Open Expert Summary													
Loops	Index									?			
73 loops have been discarded from the report because their coverage is lower than the threshold set by <i>object_coverage_threshold</i> (0.01%). It represents about 0% of the application. To include them, change the value of <i>object_coverage_threshold</i> in the experiment directory configuration file, then rerun the command with the additionnal parameter <i>force-static-analysis</i>													
► Filte	ers									?			
Coverage (%) 🛛 Level 🖓 Time (s) 🖉 Vectorization Ratio (%) 🖓 Speedup If No Scalar Integer 🖓 Speedup If FP Vectorized 🖓 Speedup If Fully Vectorized Select none													
Loop id	Source Location	Source Function	Coverage (%)	Level	Time (s)	Vectorization Ratio (%)	Speedup If No Scalar Integer	Speedup If FP Vectorized	Speedup If Fully Vectorized	Speedup If Perfect Load Balancing			
	bt-mz_C.8 - x_solv e.f:146-309	x_solveomp_fn. 0	7.67	Innermost	1.29	5.02	1.04	1	2.06	1.22			
207	bt-mz_C.8 - z_solve. f:146-309	z_solveomp_fn.	7.67	Innermost 1.29 5.3		5.31	1.02	1	2.06	1.15			
	bt-mz_C.8 - y_solve. f:145-308	y_solveomp_fn. 0	7.35	Innermost	1.24	5.17	1.03	1	2.06	1.22			
	bt-mz_C.8 - z_solve. f:55-137	e. z_solveomp_fn. 3.4		Innermost	0.59	7.09	1	1.13	2.26	1.17			
	bt-mz_C.8 - x_solv e.f:57-139	x_solveomp_fn. 0	3.09	Innermost	0.52	7.04	1	1.11	2.23	1.25			
	bt-mz_C.8 - y_solve. f:55-137	y_solveomp_fn. 0	3.06	Innermost	0.52	7.09	1	1.11	2.23	1.21			
	bt-mz_C.8 - rhs.f:40	compute_rhsom p_fn.0	2.41	Innermost	0.41	0	1	2	2	1.15			
133	bt-mz_C.8 - rhs.f:4-		1.84	Innermost	0.31	0	1	1.65	3.41	1.29			
150	bt-mz_C.8 - rhs.f:4- 132	compute_rhsom p_fn.0	1.77	Innermost	0.3	0	1	1.71	3.68	1.27			
	bt-mz_C.8 - rhs.f:4- 238	compute_rhsom p_fn.0	1.76	Innermost	0.3	0	1	1.65	3.41	1.27			
	bt-mz_C.8 - z_solve. f·415-421	z_solveomp_fn.	1.7	Innermost	0.29	0	1	1	2.83	1.17			

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Loop Analysis Reports

High level reports

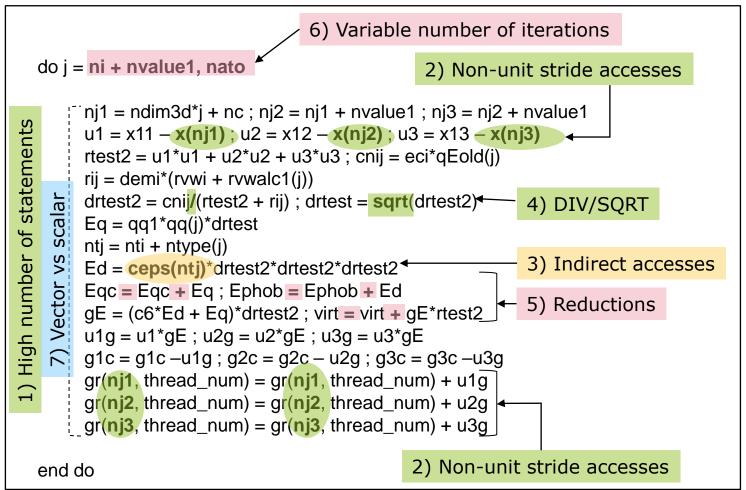
- Reference to the source code
- Bottleneck description
- Hints for improving performance
- Reports categorized by probability that applying hints will yield predicted gain
 - Gain: Good probability
 - Potential gain: Average probability
 - Hints: Lower probability

Loop Analysis Reports – Expert View

Low level reports for performance experts

- Assembly-level
- Instructions cycles costs
- Instructions dispatch predictions
- Memory access analysis

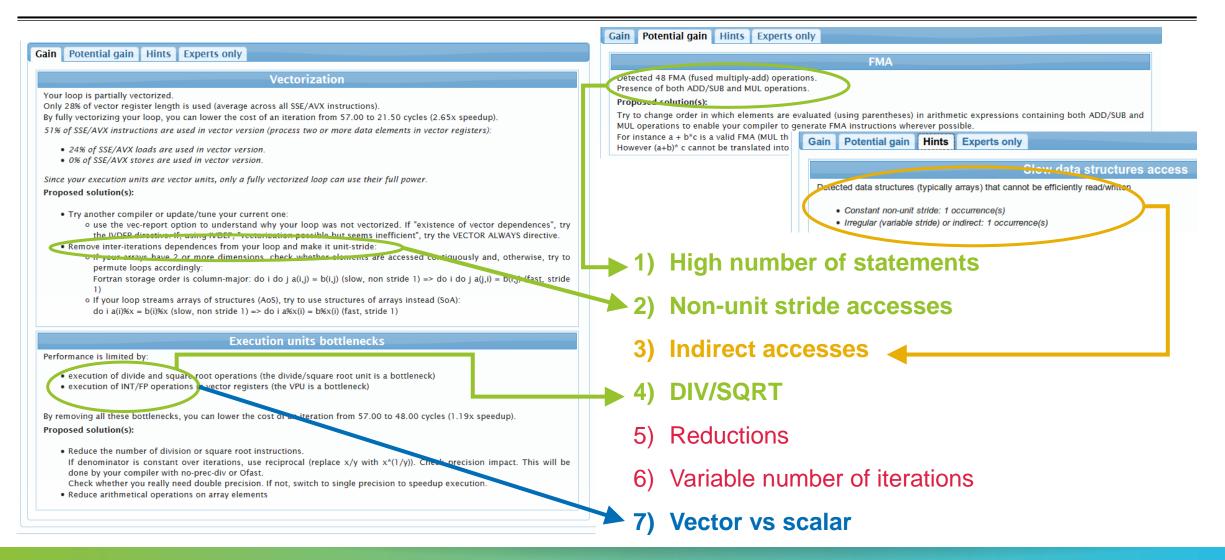
Assembly code


 Highlights groups of instructions accessing the same memory addresses

CQA internal metrics

		_												
Gain Potential gain Hints Expe	erts onl	у												
			ASM	l code										
In the binary file, the address of the loo	In the binary file, the address of the loop is: 421409													
Instruction	Nb FU P0 P1 P2 P3 P4 P5 P6 Latency Recip. throughput													
MOVAPS %XMM13,%XMM5	1	0.50	0.50	0	0	0	0	0	2	0.50				
INC %RDI	1	0.50	0.50	0	0	1.50	0.50	0	1	1				
	4	1	-	0.50	0.50	0	0.50	0		12-32				
DIVSD 0x28(%R10,%RDX,1),%XMM5			0						40-42					
MOVAPS %XMM5,%XMM15	1	0.50	0.50	0	0	0	0	0	2	0.50				
MULSD %XMM5,%XMM15	1	0.50	0.50	0	0	0	0	0	6	0.50				
MOVSD %XMM5,0x12890(%R14)	1	0	0	0.50	0.50	0	0	1	2	1				
MULSD %XMM15.%XMM5	1	0.50	0.50	0	0	0	0	0	6	0.50				
Loop Id: 224 Modu	ıle: bt-mz	.C.16				0	0	1	2	1				
Assembly Code 🗸						0	0	1	2	1				
						^ O	0	1	2	1				
de groups analysis						0	0	1	2	1				
					Source:	solve_si	ıbs.f:71-1	75						
35 MOVUPS (%RDI,%RAX,8),%XMM4 [3] 39 MOVAPS %XMM5,%XMM2														
e3c MULPD %XMM4,%XMM2										vanced V				
40 LEA (%RCX,%RAX,8),%RSI				+	_				Path	1 🗘 / 1 ОК				
44 MOVUPS (%RSI),%XMM15 [2]							Ν	detrio	r					
8 SUBPD %XMM2,%XMM15			Co	verage (9	6 app. tin	ne)	-		-					
4d LEA 0x28(%RDI,%RAX,8),%R8 52 MOVUPS (%R8),%XMM2 [4]			Tir	ne (s)										
52 MOVUPS (%R6),%XMM2 [4] 56 MOVUPS 0x1d0(%RSP),%XMM1 [1]				A speed										
25e MOVAPS %XMM12,%XMM14						rith vecto								
52 MULPD %XMM2,%XMM1						vectoriz	ea ion depe	ndon						
66 MOVUPS 0x130(%RSP),%XMM0 [1]							ck killed		сy					
e6e SUBPD %XMM1,%XMM15				urce	ap in nost	bottione								
373 MOVUPS 0x28(%R8),%XMM1 [4]				urce loop										
≥78 MULPD %XMM1,%XMM0 ≥7c SUBPD %XMM0,%XMM15						onfidenc								
281 MOVUPS 0x50(%R8),%XMM0 [4]						loop typ	e							
e86 MOVUPS 0xd0(%RSP),%XMM3 [1]				roll facto										
≥8e MULPD %XMM0,%XMM3				A cycles A cycles										
92 SUBPD %XMM3,%XMM15						h vectori	zed							
97 MOVUPS 0×78(%R8),%XMM3 [4]			CC			ectorized								
MOVSD 0x38(%R10,%RDX,1),%XMM3	1	0	• Fro	ont-end c										
MOVSD 0x12898(%R14),%XMM2	1	0		cycles										
MULSD %XMM3,%XMM2	1	0.50		cycles										
MILLSD %YMM5 %YMM2	1	0.50		cycles										
			P3	cycles										

Application to Motivating Example


Issues identified by CQA

CQA can detect and provide hints to resolve most of the identified issues:

- 1) High number of statements
- 2) Non-unit stride accesses
- 3) Indirect accesses
- 4) DIV/SQRT
- 5) Reductions
- 6) Variable number of iterations
- 7) Vector vs scalar

Application to Motivating Example

MAQAO ONE View Thread/Process View

Software Topology

- List of nodes
- Processes by node
- Thread by process

View by thread

Function profile at the thread or process level

MAQAO

MARAO Global Application	Functions	Loops	Topology
Software Topology			
ID	Processes	Threads	Time(s)
▼ Node c251-109.wrangler.tacc.utexas.edu	8	32	5.34
▼ Process 145897		4	5.34
◦ Thread 145897			5.34
 Thread 145933 			5.32
 Thread 145952 			5.32
◦ Thread 145969			5.3
▶ Process 145899		4	5.34
▶ Process 145901		4	5.34
▶ Process 145903		4	5.34
► Process 145898		4	5.34
▶ Process 145900		4	5.34
▶ Process 145895		4	5.34
► Process 145896		4	5.34
► Node c251-110.wrangler.tacc.utexas.edu	8	32	5.36
• AVERAGE			5.36


Profiling node c251-109.wrangler.tacc.utexas.edu - process 145897 - thread 145897

Name	Module	Coverage (%)	Time (s)
 binvcrhs _INTERNAL_25src_kmp_barrier_cpp_fa608613::kmp_hy 	bt-mz_B.16	24.34	1.3
per_barrier_gather(barrier_type, kmp_info*, int, int, void (*)(void*, void*), void*)	libiomp5.so	17.6	0.94
► matmul_sub	bt-mz_B.16	12.73	0.68
► y_solve	bt-mz_B.16	7.87	0.42
▶ compute_rhs	bt-mz_B.16	7.49	0.4
► x_solve	bt-mz_B.16	7.12	0.38
► z_solve	bt-mz_B.16	6.74	0.36

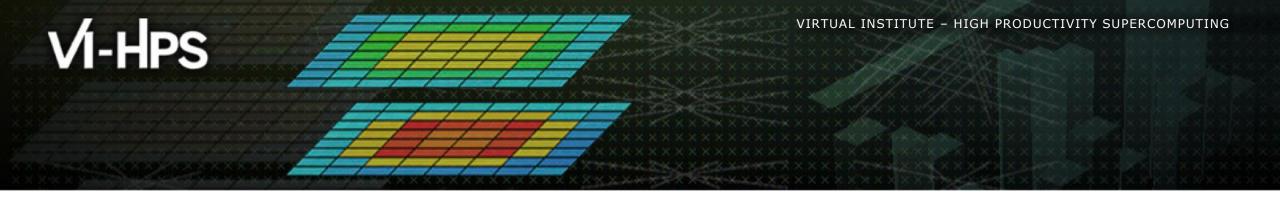
MAQAO ONE View Scalability Reports

Goal: Provide a view of the application scalability

- Profiles with different numbers of threads/processes
- Displays efficiency metrics for application

MAQAO ONE View Scalability Reports – Application View

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING


MAQAO ONE View Scalability Reports – Functions and Loops Views

Displays metrics for each						MARAO Global Application Functions Loops Topology															
					Functio	ons and Loops															0
function/loop		► Filte	▶ Filters															?			
ranceion, loop						otential Speed) Potential Spe		2) Efficiency Select none	⊠(1-2) Pot	ential Speed-Up ((%) ☑(1-4) Efficiency ☑(1-4) Potential S				I Speed-Up (%) ☑(1-8) Efficiency ☑(1-8) Po					(%)	
 Efficiency 						Name			Module	Covera (%)	ge Time (s) N		Deviation (coverage)	(1-1) (Efficiency Effic	(1-2) Poteni iency Spee Up (?	ial (1-4) d- Efficiend			(1-8) Potential Speed- Up (%)	Efficiency	(1-16) Potential Speed- Up (%)
 Potential speedup if efficiency=1 				kmp_hy , void*)	/per_barrier_release(barrier	o_barrier_cpp_a r_type, kmp_inf		libiomp5.so	24.02		16	18.62		1 0	0.04	5.49	0.01	14.35	0.01	23	
					 binv comp 				bt-mz.C.1 bt-mz.C.1	20.71 10.76		16 16	6.22 2.45		0.7 6.14 .63 2.68		10.2	0.45 0.26	11.58 8.47	0.41 0.25	11.43 7.57
	P 0011				0. THE . O. T	10.10	0.0	10	2.10		2.91	0.57	4.44	0.44	5.75	0.41	5.45				
	MA	AO	Global App	olication Functio	ons L	<mark>_oops</mark> Topology									2.69		4.24 3.73	0.42 0.46	5.43 4.09	0.37	5.61 4.18
															2.06		3.56	0.45	3.92	0.39	4.11
											0.9	0.57	1.31 0.22	0.45 0.25	1.62 0.41	0.41	1.59 1.17				
☑ (1-2) Efficiency ☑ (1-2) Potential Speed-Up (%) ☑ (1-4)						inciency 🛛 (1-4) Potential Speed-Up (%) 🔄 (1-8) Efficiency 🔄 (1-8) Potential Speed-Up (%) 🔄 (1-16) Efficiency 🖄 (1-16) Potential Speed-Up (%)													0.62		
	Loop id	ct none Source	Source File	Source Function	(1-2)	(1-2) Potential Speed-	(1-4)	(1-4) Potentia			1-8) Potential Spe	ed (1-1	6) (1-16	6) Potential Spe	ed- 0.11		0.27 0.2	0.53 0.51	0.24 0.19	0.42 0.44	0.31 0.21
	Loop	Lines 71-175	bt-mz.C.1:solve_sub	s matmul sub	Efficiency 0.71	Up (%) 1.51	Efficiency 0.56	Up (% 2.49		iciency 0.45	Up (%) 2.99	Efficie 0.4		Up (%) 2.96	0.06	0.27	0.15	0.07	0.24 0.27	0.04	0.34 0.3
	215 Loop 224		.1		0.7	1.34	0.57	2.07		0.43	2.73	0.4		2.62	0.01	0.02 0.28	0.07 0.16	0.01	0.18 0.22	0 0.17	0.28 0.18
	Loop 192	146-308	bt-mz.C.1:x_solve.f	x_solve	0.66	1.22	0.52	1.91		0.45	1.92	0.3	9	2.04	0.07		0.1 0.16	0.31 0.14	0.16 0.2	0.37 0.13	0.1 0.18
	Loop 199	145-307	bt-mz.C.1:y_solve.f	y_solve	0.69	1.09	0.54	1.81		0.45	1.99	0.3	9	2.11	0	0.04	0.04	0.01	0.13	0.01	0.19 0.16
	Loop 169	40-50	bt-mz.C.1:rhs.f	compute_rhs	0.52	0.49	0.23	1.59		0.11	2.95	0.1	1	2.3	0.03	0.08	0.03	0.39	0.07 0.02	0.43 0.01	0.05 0.12
	Loop 221	55-137	bt-mz.C.1:z_solve.f	z_solve	0.66	0.92	0.54	1.32		0.43	1.56	0.3	7	1.66	0	0.06	0.02	0.02	0.06 0.05		0.07 0.07
	Loop 189	57-139	bt-mz.C.1:x_solve.f	x_solve	0.71	0.7	0.57	1.14		0.47	1.28	0.4	.3	1.26	0	0.12	0.01	0.06	0.02 0.04		0.06
	Loop 196	55-137	bt-mz.C.1:y_solve.f	y_solve	0.73	0.52	0.55	1.01		0.44	1.18	0.4	1	1.12	0	0.25 0.25	0.01	0.06	0.02		0.07
	Loop 165	65-67	bt-mz.C.1 :rhs.f	compute_rhs	0.45	0.55	0.24	1.22		0.11	2.31	0.1	3	1.64	Ŏ	0.06	0.02	0.00	0.03	0.02	0.06
	Loop 227	26-28	bt-mz.C.1 :add.f	add#omp_loop_0	0.64	0.12	0.44	0.22		0.25	0.4	0.0	9	1.14							
	Loop 220	415-423	bt-mz.C.1:z_solve.f	z_solve	0.67	0.34	0.49	0.62		0.34	0.87	0.3	3	0.88							
	Loop 188		bt-mz.C.1:x_solve.f		0.62	0.5	0.56	0.57		0.44	0.69	0.4	1	0.65							
	Loop 216	71-175	bt-mz.C.1:solve_sub .f	^s matmul_sub	0.77	0.23	0.62	0.41		0.48	0.54	0.4	4	0.62							
	Loop	304-349	bt-mz.C.1 :rhs.f	compute_rhs	0.71	0.29	0.65	0.34		0.46	0.56	0.4	4	0.5							

More on MAQAO

MAQAO website: www.maqao.org

- Documentation: www.maqao.org/documentation.html
 - Tutorials for ONE View, LProf and CQA
 - Lua API documentation
- Latest release: <u>http://www.maqao.org/downloads.html</u>
 - Binary releases (2-3 per year)
 - Source code
- Publications around MAQAO: <u>http://www.maqao.org/publications.html</u>

Thank you for your attention !

Questions ?

