-. wﬁe & Ryan Hulguin
30t July 2020

© 2020 Arm“‘nite+d (orits affiliat"és)

. B e

Agenda

* 14:00 — Introduction

 14:15 - MAP & Performance Reports
e 14:45 - Examples

* 15:30 — (break)

* 16:00—-Hands-On

e 17:00 - (end of workshop)

2 © 2020 Arm Limited (or its affiliates) a r m

An Introduction to Arm

Arm is the world's leading semiconductor intellectual
property supplier

We license to over 350 partners: presentin 95% of smart phones,
80% of digital cameras, 35% of all electronic devices. Total of 60
billion Arm cores have been shipped since 1990*

Our partners license:
e Architectures and Technical Standards, e.g. Armv8-A or GIC-300
* Hardware Designs, e.g. Cortex-A72

* Software Development Tools, e.g. Arm Forge

3 © 2020 Arm Limited (or its affiliates)

..and our [P extends beyond the CPU

arm

Allinea history

4 © 2020 Arm Limited (or its affiliates) a r m

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86 64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools
4
arm arm arm
FORGE C/C++ & FORTRAN ALLINEA STUDIO
L DDTJ LMAPJ _ COM PILER % C/C++ Compiler
+ = % Fortran Compiler
4 O A % Performance Libraries
. CI rm a rm % Forge (DDT and MAP)
PERFORMANCE PERLII:BC?{RAI\I/{'IA\EI\SICE < Performance Reports
 REPORTS S

5 © 2020 Arm Limited (or its affiliates) a r m

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86 64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools
4

arm arm arm

FORGE C/C++ & FORTRAN ALLINEA STUDIO
LDDTJ LMAPJ _ COMPILER % C/C++ Compiler
+ P = % Fortran Compiler
A «% Performance Libraries
- arm PERFORMANCE 5 parommanee Rpors
PERFO RMANCE L| BRAR| ES < Performance Reports
L REPORTS _

6 © 2020 Arm Limited (or its affiliates) a r m

" Performance Reports

Hardware utilization

8 © 2020 Arm Limited (or its affiliates) a r m

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Gathers a rich set of data
‘s
4, - Analyses metrics around CPU, memory, 10, hardware counters, etc.
Commercially supported - Possibility for users to add their own metrics
oy Arm Build a culture of application performance & efficiency awareness
- Analyses data and reports the information that matters to users
@ - Provides simple guidance to help improve workloads’ efficiency
Accurate and astute
insight Adds value to typical users’ workflows
- Define application behaviour and performance expectations
? - Integrate outputs to various systems for validation (e.g. continuous
X integration)

. - Can be automated completely (no user intervention)
Relevant advice

to avoid pitfalls

9 © 2020 Arm Limited (or its affiliates) a r m

© 2020 Arm Limited (or its affiliates)

Arm MAP

A cross-platform toolkit for profiling

Commercially supported
by Arm

—+

Il l
Fully Scalable

° ®
Very user-friendly

11 © 2020 Arm Limited (or its affiliates)

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
« Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art profiling capabilities

- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

Profiled: clover leaf on 32 processes, 4 nedes, 32 cores (1 per process) Sampled from: Tue Nov & 2016 07:59:11 (UTC) for 408.1s

MAP Capabilities e

CPU floating-point 00 & polt o LRI L. Rl 1lBELE. . lEE B L Rl..L & -4
319% | e e it A s T
o ™= o~ o sk, = s} = iy ______-._.____ . . o i e i

Memory usage 160

149 MB

* MAP is a sampling based scalable profiler |

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %. OpenMP 60.7 %. MPI 19.1 %, File 1O 8.6 %. Synchrenisation %, OpenMP overhesz

- Built on same framework as DDT e

- Parallel support for MPI, OpenMP e B e
- Designed for C/C++/Fortran T S I

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks

* Designed for ‘hot-spot’ analysis S 2180 _|oretrsi|Puncint e ___

=l # clover_leaf CALL clover_init_comms ()
= hydre CALL hydro
[] Sta C k tra Ces LU L Qg — 6.8% <0.1% advection_medule::advection CALL advection()
18.1% [— 8.3% <0.1% [+ timestep_module::timestep CALL timestep()
. . 7.0% _ 0.7% [+ pdv_module:pdv CALL PdV(.TRUE.)
7.0% m <0.1% [+ visit IF {visit_frequency.NE.0) CALL visit{)

° Augmented Wlth pe rfo rma nce metrlcs 5.0% e 1.2% <0.1% # pdv_module::pdv CALL PdV(.FALSE.)

31% . . L. [+ accelerate_module::accelerate CALL accelerate()
2.6% L <0.1% + flux_cale_medule:flux_calc CALL flux_calc({)

2.3% <0.1% reset_field_module::reset_field CALL reset_field()

Showing data from 32,000 samples taken over 32 processes (1000 per process)

* Adaptive sampling rate
Cycles per instruction L T LT
- Throws data away — 1,000 samples per process 0.83
- Low overhead, scalable and small file size CPU Cycles b

51.5G/s

o
Instructions ar7 ~ -
61.5G /s
o
L2 Cache Accesses E2 . . ~
379 M /s R) -
o
12 © 2020 Arm Limited (or its affiliates) L2 cache Misses o=

125 M /s

Quick Comparison
Using the right tool for the job...

* Easy to configure / use
- No compiler wrappers / instrumentation / tracing
- Minimal configuration (almost-all features enabled all the time)
- Adaptive sampling to automatically keep overhead down
- Aggregated data across processes/threads
- Low overhead
- One size fits all - tradeoffs...

* Potential workflow: MAP first and then dig deeper with other tools
- Understand overall performance characteristics

- Find hotspots

- If more data is required:
— Within Forge: Profile subset of program, Custom metrics, DDT
— Other tools mentioned this week
— Specialist tools - e.g. NVIDIA tools for GPUs, 10 profilers, etc

13 © 2020 Arm Limited (or its affiliates) a r m

Six Great Things to Try with Allinea MAP

e = 1 ol 30 ! late to the party
5 == 5 31 do j=1,20*nprocs; a
o 32 end if i Main Thread Stack i
i1 33 Project Files ain Threa acks | Functions
I 34 = if (pe /= 0) then tacks
5 .. 35 11 MPI SEND(a, si - -
f 36 elg: - (a, si x ~ MPI Function(s) on line
o 37 = do from=1,nprocs-1 CallActionsSeparatedConcerns [in
.,_—',.-r & 38 call MPI RECV(b,
-:_::"- z: e —— 33 dO_le;S?; b=5‘"¥ hemelb::net::IteratedAction::Ce
L : a1 prin » ANSWer hemelb::extraction::Property?
end do ;
42 end if § - hemelb::extraction::Property
43 end do hemelb::extraction::LocalPi
& _—m 44] call MPI BARRIER(MPI CO . 80. PMPI_File_write_at

pute 76 %. MPl1 24 %_ File
Find the peak memory

AE

=S M

AL Remove 1/0 bottleneck

use

Hide Metrics... . e - -_

size, nproc, mat a
P Ali*size+k]*B[k*s

L

Restructure for

Make sure OpenMP

; Improve memory access
regions make sense

vectorization

14 © 2020 Arm Limited (or its affiliates) a r m

Core Principles of Profiling with MAP

A quick start

Sampling in MAP GUI
e Sampling driven profiler e Activity timeline
- Dynamic interval to scale - Percentage of active threads in activity
e On sample collect data » Colour coded
« Current call stack * Activity classified such as:
- Performance metrics - Compute, MPI, I/0, Synchronisation
« Custom metric events - Based on call stack analysis
e Additional metrics added in * Top down source code tree
« Such as MPI events - Drill down into ‘Hotspots’

- Time regions selectable

Application System

Call stack
Memory Usage

Time CPU Usage

Custom Metric

15 Custom Metric Iemsx arm

Some types of profiles

Spike

* The application spends most of the time in a few functions
» Speed-up potential depends on the aggregated time
e Variable optimisation time

16 © 2020 Arm Limited (or its affiliates)

arm

Preparing Code for Use with MAP

* To see the source code, the application should be compiled with the debug flag typically —
g

* Itis recommended to always keep optimization flags on when profiling

17 © 2020 Arm Limited (or its affiliates) a r m

Collecting a profile / performance report

* MAP

- Prepare application by compiling with “-g” (leave optimization enabled)

- In general
-map --profile mpirun ..

* Performance Reports
- No preparation required
- Collect directly
- perf-report -mpiexec ..
- Convert from a MAP file
- perf-report myfile.map

18 © 2020 Arm Limited (or its affiliates) a r m

Python Profiling

Arm MAP: Python profiling

21

Launch command
- S python ./laplacel.py slow 100 100

Profiling command

- S map --profile python ./laplacel.py slow 100
100

- --profile: non-interactive mode

« --output: name of output file

Display profiling results
- S map laplacel.map

© 2020 Arm Limited (or its affiliates)

Laplacel.py
[.]
err = 0.0

for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,]]

u[iJj] = ((u[i_lJ j] + U[i+1, j])*dyz +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv

diff = u[i,j] - tmp
err += diff*diff
return numpy.sqrt(err)

-]

arm

aive Python loop (laplacel.py slow 100 100)

File Edit View Metrics Windew Help
Profiled: python on 1 process, 1 node Sampled from: Thu Jan 24 2019 16:21:41 (UTC) for 27.7s

Main thread activity

Hide Metrics...

CPU floating-point LD
0.3 %
ol — —
CPU integer Sy
10.0 % - L - — " - - =~
0l._— - 3 B - - mm e e e G —_|
CPU memory access LD Ty . . - I - . = _ o - , —— s " -
73.6 %) - - - - T il g " 8 -

Zoom '% EE' O

Time spent on line 112

@ &

ga-’ self.setTimeStepper (stepper) *| | Breakdown of the 44.3% time
99 def slowTimeStepl(self, dt=0.0}: Epan okt ane:

100 """Takes a time step using straight forward Python loops.™"" Executing instructions 0.0%
101 g = self.grid - 5

102 nx, ny = g.u.shape Calling other functions 52.7%
103 dx2, dy2 = g.dx**2, g.dy**2 Executing Python code 41.3% M
104 dnr_inv = 0.5/ (dx2 + dy2)

105 u = g.u [

106

107 err = 0.0 m

108 for i in (1, nx-1):

109 for j nge (1, ny-1}:

110 tmp uli,jl

111 uli, 1 = ((uwfi-1, j] + uli+l, j]1}*dy2 +

112 (uli, §-11 + uli, j+11)*dx2?)}*dnr_inv

113 diff - uli,j] - tmp

114 err += diff*diff

ka3

116 return numpy.sgrt(err)

117 =

118 def mmericTimeStenfzelf dAt=0 01- =

[Input/Output] Project Files | Main Thread Stacks ‘ Functions

Main Thread Stacks

Total core time

“ Function(s) on line

Source

10.9% Il
7-a% (11 EEI00 I 0

double_add, double_multiply, _... err += diffrdifs

Position
EEItime_tE;t print "tock", time_test{n, n, stepper=soclver, n_iter=n_iter), "seconds" laplacel.py:235
= solve s.solve({n_iter=n_iter, eps=eps) laplacel.py:228
= slowTimeStep err = self.timeStep() laplacel.py:195
3%| ..o dufi, j-1] + u[i, j+1]) 1 laplacel.py:112
o | “larray subscript, double multipl... =[i,4] = ({uli-1, 3] + a[itl, 3])*dy2 + laplacel.py:111
(XL IR TARREI rray_subscript 4iff = uli,3] - tmp

laplacel.py:113
laplacel.py:114

-

Showing data from 1,000 samples taken over 1 process (1000 per process)

22 © 2020 Arm Limited (or its affiliates)

Arm Forge 19.0.1 & Main Thread View

arm

Optimizing computation on NumPy arrays

Naive Python loop

err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):

tmp = u[i,]]
U[i,j] = ((U[i-l, j] + u[i+1) j])*dyz +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return numpy.sqgrt(err)

23 © 2020 Arm Limited (or its affiliates)

—

NumPy loop

ufl:-1, 1:-1] =

((u[@:-2, 1:-1] + u[2:, 1:-1])*dy2 +
(u[1:-1,0:-2] + u[l:-1, 2:])*dx2)*dnr_inv

return g.computeError()

arm

NumPy array notation (laplacel.py numeric 1000 1000)

24

File Edit View Metrics Window Help
Profiled: python on 1 process, 1 node Sampled from: Thu jan 24 2019 16:17:48 (UTC) for 22.9s

Main thread activity

This is 10 times more iterations than was computed in the previous profile

Hide Metrics...

CPV floating-point LD
38.0 %

[}

CPU memory access LD
90.9 %

o

CPU fp vector 100
38.0 %

@ =
Zoom 4 = L

Time spent on line 128 %)

def numericTimeStep(self, dt=0.0):
""""akes a time step using a numeric expressions.
g == rid
dx2, dy2 = g.dx**2, g.dy**2
dnr_inv = 0.5/ (dx2 + dy2)
u = g.u

g.nld;u = u.copy ()

2 O o -

SR 1T

=)

The actual iteration
ufl:-1, 1:-1] = ((ul0:-2, 1:-1] + ul2:, 1:-1]1)*dy2 +

1 on L B L B b

J

[v]

(m[1:-1,0:-2] + ull:-1, 2:])*dx2) *dnr_inv

=N]

return g.computeError()

2 def fortran77TimeStep(self, dt=0.0):

B """"akes a time step using a simple fortran module that
4 ,rp ements the loop in £

5 f lik

6 the latest f2p

(]

Breakdown of the 47.0% time
spent on this line:

Executing instructions 0.0%
Calling other functions ~ 100.0% Nl
Executing Python code 0.0%

[Input/Output] Project Files] Main Thread Stacks | Functions

Functions (3]
Self ~ Total Child Function E
T 31.1% W 3110 __memmove_ssse3_back
29.2% [l _mm_add_pd [inlined]
13.4% || _mm_sub_pd [inlined]
l] % || _mm_mul_pd [inlined]
% [N LIFTTHE] _mm_store_pd [inlined]
| RN ddot_kernel 8
FIETEIE T 1.3% brk
. 0.7% [PYTHON_IO_WRITE]
0.6% Il | 0. 6% sse2 blnar;.r add DOUBLE [inlined] =

Showing data from 1,000 samples taken over 1 process (1000 per process)

© 2020 Arm Limited (or its affiliates)

Arm Forge 19.0.1 & Main Thread View

arm

© 2020 Arm Limited (or its affiliates)

a rm " " " "~ Thank You
. Danke
| | | | | | | | | Merci

iR
HYHED
Gracias
Kiitos
YAt
?H«IOIJ_C'(
I8

NI
NTIN

© 2020 Arm Limited (or its affiliates)

Extra documentation

Arm DDT User Guide : https://developer.arm.com/docs/101136/latest/ddt

Arm MAP User Guide : https://developer.arm.com/docs/101136/latest/map

Arm Performance Reports User Guide : https://developer.arm.com/docs/101137/latest/introduction

Arm Forge Webinars : https://developer.arm.com/products/software-development-
tools/hpc/training/arm-hpc-tools-webinars

27 © 2020 Arm Limited (or its affiliates) a r m

https://developer.arm.com/docs/101136/latest/ddt
https://developer.arm.com/docs/101136/latest/map
https://developer.arm.com/docs/101137/latest/introduction
https://developer.arm.com/products/software-development-tools/hpc/training/arm-hpc-tools-webinars

© 2020 Arm Limited (or its affiliates)

*The Arm trademarks featured in thi$ presentation are registéred
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

+ t + +
+ t ¥ + t 4
+ t + +
+ ¥ + 4

