
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

 3 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

4 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019) 5

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Enables users to install library wrappers for any C/C++ library

 Intercept calls to a library API
 no need to either build the library with Score-P or add manual instrumentation to the application

using the library

 no need to access the source code of the library, header and library files suffice

 Score-P needs to be executed with --libwrap=…

 Execute scorep-libwrap-init for directions:

6 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

Step 1: Initialize the working directory

Step 2: Add library headers

Step 3: Create a simple example application

Step 4: Further configure the build parameters

Step 5: Build the wrapper

Step 6: Verify the wrapper

Step 7: Install the wrapper

Step 8: Verify the installed wrapper Step 9: Use the wrapper

Only once Often

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Generate your own library wrappers by telling scorep-libwrap-init how you would

compile and link an application, e.g. using FFTW

 Generate and build wrapper

7 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

% scorep-libwrap-init \

> –-name=fftw \

> --prefix=$PREFIX \

> -x c \

> --cppflags=“-O3 -DNDEBUG -openmp -I$FFTW_INC“ \

> --ldflags=“-L$FFTW_LIB“ \

> --libs=“-lfftw3f -lfftw3“ \

> working_directory

% cd working_directory

% ls # (Check README.md for instructions)

% make # Generate and build wrapper

% make check # See if header analysis matches symbols

% make install #

% make installcheck # More checks: Linking etc.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 MPI + OpenMP

 Calls to FFTW library

8 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

9 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019) 10

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019) 11

Memory leaks Memory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

12

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

13 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

14

% papi_avail

% papi_native_avail

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 No replacement for automatic compiler instrumentation

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

15 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

16

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

 ! Declarations

 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 do i=1,100

 [...]

 end do

 SCOREP_USER_REGION_END(solve)

 ! Some more code…

end subroutine

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

17

#include "scorep/SCOREP_User.h"

void foo()

{

 /* Declarations */

 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */

 SCOREP_USER_REGION_BEGIN(solve, “<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 SCOREP_USER_REGION_END(solve)

 /* Some more code… */

}

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

18

#include "scorep/SCOREP_User.h"

void foo()

{

 // Declarations

 // Some code…

 {

 SCOREP_USER_REGION(“<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 }

 // Some more code…

}

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

19

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

 ! Some code…

 SCOREP_RECORDING_OFF()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 SCOREP_RECORDING_ON()

 ! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

 /* Some code… */

 SCOREP_RECORDING_OFF()

 /* Loop will not be measured */

 for (i = 0; i < 100; i++) {

 [...]

 }

 SCOREP_RECORDING_ON()

 /* Some more code… */

}

Fortran (requires C preprocessor) C / C++

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Conclusion and Outlook

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Project management

 Ensure a single official release version at all times which will always work with the

tools

 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation
 Development based on meritocratic governance model

 Open for contributions and new partners

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019) 21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future features

 Scalability to maximum available CPU core count

 Support for emerging architectures and new programming models

 Features currently worked on:
 MPI-3 RMA support

 OpenMP tool support (OMPT)

 I/O recording

 Basic support of measurements without re-compiling/-linking

 Java recording

 Persistent memory recording (e.g., PMEM, NVRAM, …)

33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019) 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods) and sampling

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under 3-clause BSD open-source license

 Documentation & Sources:

 http://www.score-p.org

 User guide also part of installation:

 <prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

23 33RD VI-HPS TUNING WORKSHOP (JUELICH, GERMANY, 24-28 JUNE 2019)

