
Florent.Lebeau@arm.com
28/06/2019

Acting on Insight
Tips for developing and optimizing

scientific applications

2 © 2019 Arm Limited

Agenda

• Introduction

• Maximize application efficiency

• Analyze code performance

• Profile multi-threaded codes

• Optimize Python-based applications

• Visualize code regions with Caliper

3 © 2019 Arm Limited

Arm Technology Already Connects the World

Arm is ubiquitous

We design IP, we do not
manufacture chips

Partners build products for
their target markets

One size is not always the best fit
for all

HPC is a great fit for
co-design and collaboration

Partnership is key Choice is good

21 billion chips sold by
partners in 2017

#1 in Infrastructure today with
28% market shares

4 © 2019 Arm Limited

Arm’s solution for HPC application development and porting
Combines cross-platform tools with Arm only tools for a comprehensive solution

Cross-platform Tools Arm Architecture Tools

DDT MAP

FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

5 © 2019 Arm Limited

The billion dollar question in “weather and forecasting”
Is it going to rain tomorrow?

1. Choose domain 2. Gather Data 3. Create Mesh

4. Match Data to Mesh 5. Simulate 6. Visualize

6 © 2019 Arm Limited

Weather forecasting workflow

Version
control
system

Continuous
integration
framework

CI Agents

Staging
environment

Production

Develop
Fix

Optimize

Commit

Pull
Start CI job

Builds

Deploy

Scalability

Performance

Regressions

• 24 hour timeframe

• 2 to 3 test runs for 1 production run

7 © 2019 Arm Limited

Application efficiency

Scientist

• Efficient use of allocation
time

• Higher result throughput

Developer

• Characterize application
behaviour

• Gets hints on next
optimization steps

System admin

• Maximize resource usage
• Diagnose performance

issues

Decision maker

• High-level view of system
workload

• Reporting figures and
analysis to help decision
making

8 © 2019 Arm Limited

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data

• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows

• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous

integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

9 © 2019 Arm Limited

Analyze application behavior easily

Simple start-up

No source code needed

Scalable, low overhead

Powerful metrics and analysis

Human and machine-readable results

10 © 2019 Arm Limited

Debug

FixProfile

Optimize

Forge: an integrated solution

Develop
Fix

Optimize

Version
control
system

Continuous
integration
framework

CI Agents
+ PR

Staging
environment

+ PR

Production
+ PR

Commit

Pull
Start CI job

Builds

Deploy

Scalability

Performance

Regressions

11 © 2019 Arm Limited

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development

• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

• Powerful and in-depth error detection mechanisms (including memory
debugging)

• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

12 © 2019 Arm Limited

Why profile?

Profiling: a form of dynamic program analysis used to
optimize an application.

How to optimize an application?
• Select representative test cases
• Profile

• Tracing
• Instrumenting
• Sampling

• Optimize
• Profile and iterate until your speedup goal has been reached

Hotspot

Spike

Flat

Type of profile Optimization
time

13 © 2019 Arm Limited

Multi-node low-overhead profiling with Arm MAP

No instrumentation

Low overhead

Scalable

JSON export

C/C++, F90, Python profiling

14 © 2019 Arm Limited

Basic debugging

• The first debugger: print statements
• Each process prints a message or value at

defined locations
• Diagnose the problem from evidence and

intuition

• A long slow process
• Analogous to bisection root finding

• Broken at modest scale
• Too much output – too many log files

x

f(x)

15 © 2019 Arm Limited

Professional debugging with Arm DDT

C/C++, Fortran

Scalable parallel debugger

Interactive and non-interactive

Intuitive

Remote client available

16 © 2019 Arm Limited

Professional debugging with Arm DDT

Offline
memory

debugging

Switch
between
OpenMP

threads

Visualise data
structuresMessage

queue
debugging

C/C++, Fortran

Scalable parallel debugger

Interactive and non-interactive

Intuitive

Remote client available

Hands-on

18 © 2019 Arm Limited

Set up your environment

• Copy NPB in your workspace:

$ cd $SCRATCH/$USER

$ cp -r /p/scratch/share/VI-HPS/examples/NPB3.3-MZ-MPI.tar.gz .

$ tar xf NPB3.3-MZ-MPI.tar.gz

$ cd NPB3.3-MZ-MPI/

• Load the MPI, Forge and Performance Reports modules

$ module load Intel IntelMPI

$ module use /p/scratch/share/VI-HPS/JURECA/mf/

$ module load Arm-forge Arm-reports

19 © 2019 Arm Limited

Run Arm Performance Report

• Compile your application as usual – no requirements

$ make bt-mz CLASS=C NPROCS=8

• Edit the job script and submit

$ cd bin/

$ cp ../jobscript/jureca/reference.sbatch job.sub

Modify the following line to add:

perf-report srun -n $PROCS $EXE

$ sbatch -A <youraccount> job.sub

• View the results

$ firefox bt-mz_C_8p_2n_6t_YYYY-MM-DD_HH-MM.html

$ cat bt-mz_C_8p_2n_6t_YYYY-MM-DD_HH-MM.html

20 © 2019 Arm Limited

Run Arm MAP

• Edit the makefile and compile

FFLAGS = -O3 -g -fno-omit-frame-pointer -no-ip -no-ipo $(OPENMP)
• The debugging option (-g) is a requirement for all applications profiled with MAP
• With Intel compilers, aggressive optimizations can interfere with MAP. To prevent this use the following flags:

-fno-omit-frame-pointer -no-ip -no-ipo

$ make bt-mz CLASS=C NPROCS=8

• Edit the job script job.sub and submit

map --profile srun -n $PROCS $EXE
• --profile enables to run the profiler in non-interactive mode

$ sbatch -A <youraccount> job.sub

• View the results

$ map bt-mz_C_8p_2n_6t_YYYY-MM-DD_HH-MM.map

21 © 2019 Arm Limited

MPI_Init_thread limitations

• BT-MZ uses MPI_Init_thread() rather than MPI_Init()

• MAP provides limited support for MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE

• A warning message will be displayed if that’s the case

• MPI activity on non-main threads won’t contribute to the MPI metric graphs.

• Additional profiling overhead may appear

• Pthread view is recommended to view the profiling results

• MPI_THREAD_SINGLE or MPI_THREAD_FUNNELED are fully supported

22 © 2019 Arm Limited

Run Arm DDT

• Edit the makefile and compile

FFLAGS = -O0 -g $(OPENMP)
• The debugging option (-g) is a requirement for all applications debugged with DDT
• Disabling compiler optimizations -O0 is recommended

$ make bt-mz CLASS=C NPROCS=8

• Launch the debugger from the login node

$ ddt

• Edit the job script job.sub and submit

ddt --connect srun -n $PROCS $EXE

$ sbatch -A <youraccount> job.sub

• Accept the incoming connection, click on Run and debug interactively

23 © 2019 Arm Limited

Arm Remote Client

• To avoid using X forwarding when using Forge, a client is available for Linux, MacOS and

Windows

• Install the Arm Remote Client

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

• Connect to the cluster with the remote client

• Open your Remote Client

• Create a new connection: Remote Launch ➔ Configure ➔ Add

– Hostname: <username>@jureca.fz-juelich.de

– Remote installation directory:

/p/scratch/share/VI-HPS/JURECA/packages/arm-forge-19.1/

• Connect!

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Profile
multithreaded

codes

25 © 2019 Arm Limited

Genomics use case: DISCOVAR
Myth: genomic applications are I/O intensive

• Identifying DNA sequence variants helps
understanding the genetic basis of many diseases
(e.g. cancer) in order to develop:
• New diagnosis
• New therapies

• DISCOVAR
• Variant caller and small genome assembler
• Input: DNA sequencing files of sub-mammalian sized

genomes
• Newer DISCOVAR de novo for larger genomes

• C++ and OpenMP

• Developed by Broad Institute at MIT

26 © 2019 Arm Limited

A first look
On real hardware

• It’s not I/O intensive

• Good quantity of OpenMP time

• No vectorization

27 © 2019 Arm Limited

OpenMP in detail

• Physical cores are 200% loaded
• Hyper-threading is on

• 17% of parallel region time is
synchronization

28 © 2019 Arm Limited

DISCOVAR – Investigating the OpenMP synchronization

• Horizontal time axis: colour
coded
• Dark green – single core
• Light green – OpenMP work
• Light blue – Pthread sync
• Grey – idle

• Vertical axis
• #cores doing something

• Something’s very wrong
towards the end…

29 © 2019 Arm Limited

Zoom in on the region

• Arm MAP lets you zoom
• Stacks, code, regions, time all

focused on zoom area

• Key observation:
• OpenMP “critical” region

30 © 2019 Arm Limited

Fixing

• #pragma omp critical
• Execute exactly one thread at

a time to ensure safety

• is costing too much
• Passing “token” from thread to

thread to do small pieces of
work.

• Run whole section on one
thread instead
• Has same semantics

31 © 2019 Arm Limited

Impact of change

• Runtime down by 7%

32 © 2019 Arm Limited

As a performance report

• Improvements in
• Runtime
• Synchronization overhead

Optimize
Python-based

applications

34 © 2019 Arm Limited

Python in HPC

• Essential modules:
• NumPy: support of large multi-dimensional

arrays and matrices
• SciPy: support for linear algebra, integration,

interpolation, FFT, …
• MPI4Py: provides bindings of the MPI standard

• Rely on highly-optimized libraries
• Written in lower-level languages:

– C, FORTRAN, …

• BLAS, LAPACK, FFTW, …

• Can easily be interfaced with other
languages

35 © 2019 Arm Limited

Use Arm MAP on Python applications

• Launch command
• $ python ./laplace1.py slow 100 100

• Profiling command
• $ map --profile python ./laplace1.py slow 100

100
• --profile: non-interactive mode
• --output: name of output file

• Display profiling results
• $ map laplace1.map

Laplace1.py

[…]
err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv

diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)
[…]

36 © 2019 Arm Limited

Naïve Python loop

37 © 2019 Arm Limited

Optimizing computation on NumPy arrays

Naïve Python loop

err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)

NumPy loop

u[1:-1, 1:-1] =
((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

return g.computeError()

38 © 2019 Arm Limited

NumPy array notation

39 © 2019 Arm Limited

Use FORTRAN in Python applications

• F2PY: FORTRAN to Python interface generator

• Part of NumPy

• Compile with debugging flag for profiling
• $ f2py --debug -c flaplace90_arrays.f90 -m flaplace90_arrays
• Relies on underlying compiler: GCC, IFORT, PGI
• Generates a *.so library imported in the Python script:

import flaplace90_arrays

• --debug: enables debug information

40 © 2019 Arm Limited

Use FORTRAN in Python applications

FORTRAN loop

import flaplace90_arrays

[…]

def fortran90TimeStep(self, dt=0.0):

g = self.grid

g.u,err =

flaplace90_arrays.timestep(g.u, g.dx, g.dy)

return err

[…]

Python script

subroutine timestep(u,n,m,dx,dy,error)
[…]
!f2py intent(in) :: dx,dy
!f2py intent(in,out) :: u
!f2py intent(out) :: error
!f2py intent(hide) :: n,m
[…]

u(1:n-2, 1:m-2)=((u(0:n-3, 1:m-2) + u(2:n-1, 1:m-2))*dy2 + &
(u(1:n-2,0:m-3) + u(1:n-2, 2:m-1))*dx2)*dnr_inv

error=sqrt(sum((u-diff)**2))
end subroutine

41 © 2019 Arm Limited

FORTRAN code

42 © 2019 Arm Limited

FORTRAN code

Recompile module with:
$ f2py --debug --opt="-O3 -ffast-math“ …

43 © 2019 Arm Limited

FORTRAN code fast-math

44 © 2019 Arm Limited

Multi-processing in Python

• MPI4Py
• Provides Python bindings of the MPI standard
• MPI: Message Passing Interface

• Rely on existing MPI infrastructure
• MPICC must be in path when installing

module
• MPIRUN enables to launch the application

• Profiling command
• $ map --profile mpirun -n 8 python

./mmprod.py

MPI4Py example

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1)

elif rank == 1:
data = comm.recv(source=0)
print('On process 1, data is ',data)

45 © 2019 Arm Limited

MPI-parallel matrix multiplication

46 © 2019 Arm Limited

MPI-parallel matrix multiplication

avg
max

min

47 © 2019 Arm Limited

MPI-parallel matrix multiplication

48 © 2019 Arm Limited

MPI-parallel matrix multiplication: OpenBLAS

Recompile NumPy module to use Intel MKL

49 © 2019 Arm Limited

MPI-parallel matrix multiplication: MKL

50 © 2019 Arm Limited

Multi-node matrix multiplication: MKL

Enable multi-threading with
MKL_NUM_THREADS=8

51 © 2019 Arm Limited

Hybrid OMP/MPI matrix multiplication
Multithreaded/OpenMP MKL

Visualize code
regions with

Caliper

53 © 2019 Arm Limited

Region profiling with Caliper by LLNL
Retrieve contextual information as part of your performance profiles

For more information about Caliper…

- Project landing page https://computation.llnl.gov/projects/caliper

- Download https://github.com/LLNL/Caliper

- Documentation https://llnl.github.io/Caliper/

- Tutorial https://computation.llnl.gov/sites/default/files/public/Caliper%20vi-hps%20tutorial.pdf

Caliper in brief
Provider: LLNL

What: General purpose
Application Introspection
System

For who: Developers working
with complex workflows &
applications (e.g. combination
of packages, solvers, libraries)

Why: Get contextual
information of an application
performance

Instrument with Caliper API

CALI_MARK_LOOP_BEGIN(riemann_slice_id);

#compute pressure, density, velocity for each slice

for(s=0; s<slices; s++) {

CALI_MARK_ITERATION_BEGIN(riemann_slice_id, s);

CALI_MARK_BEGIN(“riemann_slice_precompute”);

for(i=0; i<narray; i++) { […] }

CALI_MARK_END(“riemann_slice_precompute”);

[…]

CALI_MARK_BEGIN(“riemann_slice_arrays”);

for(i=0; i<narray; i++) { […] }

CALI_MARK_END(“riemann_slice_arrays”);

CALI_MARK_ITERATION_END(riemann_slice_id, s);

}

CALI_MARK_LOOP_END(riemann_slice_id);

Get contextual information

Path Inclusive time Exclusive time Time

(usec) (usec) (%)

updateConservativeVars 1637063.000000 1637063.000000 7.955088

riemann 8586175.000000 1317.000000 0.006400

riemann_slices – pressure 8584307.000000 1190957.000000 5.787295

riemann_slice_arrays 2907784.000000 2907784.000000 14.129986

riemann_slice_interfaces 2873562.000000 2873562.000000 13.963688

riemann_slice_precompute 1612004.000000 1612004.000000 7.833317

qleftright 1787885.000000 1787885.000000 8.687987

trace 2218274.000000 2218274.000000 10.779404

slope 1037166.000000 1037166.000000 5.039969

constoprim 1195203.000000 1195203.000000 5.807928

gatherConservativeVars 1559916.000000 1559916.000000 7.580202

https://computation.llnl.gov/projects/caliper
https://github.com/LLNL/Caliper
https://llnl.github.io/Caliper/
https://computation.llnl.gov/sites/default/files/public/Caliper vi-hps tutorial.pdf

54 © 2019 Arm Limited

Performance Analysis with MAP, part of Forge
By default, provides the “computer science” view of an application performance

MAP in brief

Provider: Arm

What: Lightweight, highly
scalable profiler for HPC
applications on any hardware

For who: Developers of all level
looking to improve the
performance of their C/C++
and Fortran codes

Why: Extract the last drop of
performance by identifying &
diagnosing a wide range of
bottlenecks (e.g. network, CPU,
IO, etc.)

55 © 2019 Arm Limited

Caliper regions support in MAP
Combining contextual information with data collection in a slick GUI

MAP and Caliper

What: Collecting & presenting
Caliper’s data into MAP’s GUI
- Correlates regions with

performance metrics &
data

- Associates regions with the
timeline

- Ability to sort and filter by
regions

Benefit: Makes it easy for users
to understand what scientific
phenomenon or stage in a
workflow is slow and why

56 © 2019 Arm Limited

Caliper regions support in MAP
Combining contextual information with data collection in a slick GUI

MAP and Caliper

What: Collecting & presenting
Caliper’s data into MAP’s GUI
- Correlates regions with

performance metrics &
data

- Associates regions with the
timeline

- Ability to sort and filter by
regions

Benefit: Makes it easy for users
to understand what scientific
phenomenon or stage in a
workflow is slow and why

57 © 2019 Arm Limited

Summary: Arm provides...

Rapid
innovation
and user

focus

• Providing what
science needs, first.

Active
development

and
investment

• Innovative,
extremely scalable
tools with unique
visual insight

Leadership in
HPC software

tools

• The only scalable
cross-platform tool
suite for HPC

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद
شكرًا
תודה

© 2019 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

