

BSC Tools Extrae & Paraver Hands-On

Germán Llort, Judit Giménez Barcelona Supercomputing Center

Getting a trace with Extrae

Extrae features

Platforms

- Intel, Cray, BlueGene, Intel MIC, ARM, Android, Fujitsu Sparc...
- Parallel programming model
 - MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python...

Performance Counters

Using PAPI interface

Link to source code

- Callstack at MPI routines
- OpenMP outlined routines
- Selected user functions
- Periodic sampling
- User events (Extrae API)

No need to recompile / relink!

Extrae overheads

	Average values	Stampede2 (KNL)	Stampede2 (SKX)
Event	150 – 200 ns	450 ns	110 ns
Event + PAPI	750 – 1000 ns	6.3 us	1000 ns
Event + callstack (1 level)	600 ns	8.7 us	2.3 us
Event + callstack (6 levels)	1.9 us	20 us	5.6 us

How does Extrae work?

Symbol substitution through LD_PRELOAD

- Specific libraries for each combination of runtimes
 - MPI
 - OpenMP
 - OpenMP+MPI
 - ...

- Dynamic instrumentation
 - Based on DynInst (developed by U.Wisconsin/U.Maryland)
 - Instrumentation in memory
 - Binary rewriting

```
Static link (i.e., PMPI, Extrae API)
```

Using Extrae in 3 steps

- **1. Adapt** your job submission script
- 2. Configure what to trace
 - XML configuration file
 - Example configurations at \$EXTRAE_HOME/share/example
- 3. Run it!

- For further reference check the Extrae User Guide:
 - <u>https://tools.bsc.es/doc/html/extrae/index.html</u>
 - Also distributed with Extrae at \$EXTRAE_HOME/share/doc

Login to Stampede2 and copy the examples

```
laptop> ssh -Y <USER>@stampede2.tacc.xsede.org
```

```
stampede2> cp -r ~tg856590/tools-material $WORK
```

- stampede2> ls \$WORK/tools-material
 - ... apps/
 - ... clustering/
 - ... extrae/
 - ... slides/
 - ... traces/

Here you have a copy of this slides

Step 1: Adapt the job script to load Extrae with LD_PRELOAD

stampede2> vi \$WORK/tools-material/extrae/run_64p_knl.sh

Step 1: Adapt the job script to load Extrae with LD_PRELOAD

Step 1: Which tracing library?

Choose depending on the application type

Library	Serial	MPI	OpenMP	pthread	CUDA
libseqtrace	\checkmark				
libmpitrace[f]*		\checkmark			
libomptrace			\checkmark		
libpttrace				\checkmark	
libcudatrace					\checkmark
libompitrace[f] *		\checkmark	\checkmark		
libptmpitrace[f] *		\checkmark		\checkmark	
libcudampitrace[f] *		\checkmark			\checkmark

* include suffix "f" for Fortran apps

Step 3: Run it!

Submit your job

stampede2> cd \$WORK/tools-material/extrae

stampede2> sbatch run_64p_knl.sh

Once finished the trace will be in the same folder: lulesh_64p_knl.{pcf,prv,row} (3 files)

Check the status of your job with: squeue -u \$USER

Any issue?

Already generated at \$WORK/tools-material/traces

Step 2: Extrae XML configuration

Step 2: Extrae XML configuration (II)

```
<counters enabled="yes">
  <cpu enabled="yes" starting-set-distribution="1">
    <set enabled="yes" changeat-time="500000us" domain="all">
       PAPI_TOT_INS, PAPI_TOT_CYC, PAPI_L1_DCM, PAPI_BR_INS
    </set>
    <set enabled="yes" changeat-time="500000us" domain="all">
       PAPI TOT INS, PAPI TOT CYC, PAPI BR MSP, PAPI LD INS
   </set>
   <set ... /set>
  </cpu>
  <network enabled="no" />
  <resource-usage enabled="no" />
  <memory-usage enabled="no" />
</counters>
```

Select which HW counters are measured (How's the machine doing?)

Step 2: Extrae XML configuration (III)

Installing Paraver & First analysis steps

Install Paraver in your laptop

laptop> scp <USER>@stampede2.tacc.xsede.org:~tg856590/tools-packages/<PACKAGE> \$HOME

Install Paraver (II)

- Download tutorials:
 - Documentation → Paraver tutorials → Introduction to Paraver and Dimemas methodology

- Also available @Stampede2
 - ~tg856590/tools-packages

laptop> scp <USER>@stampede2.tacc.xsede.org:~tg856590/tools-packages/3.* \$HOME

Install tutorial

- Uncompress both packages
- Move the tutorial folder (3.Introduction*) inside "paraver" /tutorials" folder

) ?	laptop> tar xf wxparaver-4.8.1-linux-x86_64.tar.gz
	laptop> mv wxparaver-4.8.1-linux-x86_64 paraver
	laptop> mkdir paraver/tutorials
	<pre>laptop> tar xf 3.introduction*</pre>
	<pre>laptop> mv 3.Introduction* paraver/tutorials</pre>
	laptop> ls -l paraver/tutorials
	drwxrwxr-x 3.Introduction_to_Paraver_and_Dimemas_methodology

? Right click on wxparaver.app \rightarrow Show Package Contents \rightarrow Contents \rightarrow Resources

* * * * * * * * * * * * * * * * * * *

Tutorials

Check that everything works

Start Paraver

laptop> \$HOME/paraver/bin/wxparaver &

Check that tutorials are available

File

Windo

Remotely available in Stampede2

laptop> ssh -Y <USER>@stampede2.tacc.xsede.org stampede2> ~tg856590/tools/paraver/bin/wxparaver &

First steps of analysis

Copy the trace to your laptop (All 3 files: *.prv, *.pcf, *.row)

laptop> scp <USER>@stampede2.tacc.xsede.org:\$WORK/tools-material/extrae/lulesh_64p_knl.* ./

Measure the parallel efficiency

Click on the "mpi_stats.cfg"

🔲 🗉 Tutorials

To **measure the parallel e ficiency** load the configuration file <u>cfgs/mpi/mpi_stats.cfg</u> I is configuration pops up a table with %time of every thread spends in every MPI call. Look at the global statistics at the bottom of the outside mpi column. Entry Average represents the application parallel efficiency, entry Avg/Max represents the global load balance and entry Maximum represents the communication efficiency. If any of those values are lower than 85% is recommended to look at the corresponding metric in detail. Open the control window to identify the phases and iterations of the code.

• To measure the computation time distribution load the configuration file <u>cfgs/general/2dh usefulduration.cfg</u> This configuration pops up a histogram of the duration for the computation regions. The computation regions are delimited by the exit from an MPI call and the entry to the next call. If the histogram does not show vertical lines, it indicates the computation time may be not balanced. Open the control window to look at the time distribution and visually correlate both views.

• To measure the computational load (instructions) distribution

Close

8 D 30 🗌 🤇) 🔍 I 🔳 F	• 🙀 💵 🎽	Υ Σ ¹ /ε					
	Outside MPI	MPI_Isend	MPI_Irecv	MPI_Wait	MPI_Waitall	MPI_Barrier	MPI_Reduce	MPI_Allreduce
THREAD 1.55.1	88.28 %	0.18 %	0.09 %	0.12 %	0.58 %	0.03 %	0.88 %	9.42 %
HREAD 1.56.1	94.12 %	0.12 %	0.06 %	0.07 %	1.49 %	0.03 %	0.22 %	3.46 %
THREAD 1.57.1	94.58 %	0.12 %	0.07 %	0.08 %	0.74 %	0.03 %	0.24 %	3.73 %
THREAD 1.58.1	94.43 %	0.17 %	0.09 %	0.12 %	0.57 %	0.02 %	0.26 %	3.91 %
THREAD 1.59.1	92.21 %	0.17 %	0.09 %	0.11 %	0.99 %	0.03 %	0.44 %	5.55 %
THREAD 1.60.1	93.39 %	0.13 %	0.07 %	0.08 %	0.74 %	0.03 %	0.36 %	4.80 %
THREAD 1.61.1	89.98 %	0.09 %	0.05 %	0.08 %	1.08 %	0.03 %	0.67 %	7.60 %
HREAD 1.62.1	89.56 %	0.13 %	0.06 %	0.07 %	0.62 %	0.03 %	0.75 %	8.36 %
HREAD 1.63.1	90.27 %	0.13 %	0.06 %	0.07 %	1.01 %	0.03 %	0.65 %	7.37 %
THREAD 1.64.1	87.89 %	0.10 %	0.04 %	0.04 %	1.48 %	0.03 %	0.85 %	9.16 %
Total	5,880.98 %	9.88 %	6.28 %	12.00 %	50.71 %	3.69 %	36.41 %	377.74 %
Average	91.89 %	0.15 %	0.10 %	0.19 %	0.79 %	0.06 %	0.57 %	5.90 %
Maximum	98.51 %	0.36 %	0.18 %	0.55 %	2.62 %	0.11 %	1.09 %	10.04 %
Minimum	85.83 %	0.06 %	0.04 %	0.04 %	0.15 %	0.00 %	0.00 %	0.01 %
StDev	2.80 %	0.07 %	0.04 %	0.10 %	0.52 %	0.04 %	0.28 %	2.44 %
Avg/Max	0.93	0.43	0.56	0.34	0.30	0.53	0.52	0.59

Measure the parallel efficiency

Click on the "mpi_stats.cfg"

Contrie mpi_stats	lug				MPI cal	l profile @	lulesh_64p_k	nl.prv		
		ic d 3d (🤉 🔍 🔳 🖪	- <mark></mark> 11 🖗	τ Σ τ/ε					
			Outside MPI	MPI_Isend	MPI_Irecv	MPI_Wait	MPI_Waitall	MPI_Barrier	MPI_Reduce	MPI_Allreduce
		THREAD 1.55.1	88.28 %	0.18 %	0.09 %	0.12 %	0.58 %	0.03 %	0.88 %	9.42 %
		THREAD 1.56.1	94.12 %	0.12 %	0.06 %	0.07 %	1.49 %	0.03 %	0.22 %	3.46 %
Click on		THREAD 1.57.1	94.58 %	0.12 %	0.07 %	0.08 %	0.74 %	0.03 %	0.24 %	3.73 %
		THREAD 1.58.1	94.43 %	0.17 %	0.09 %	0.12 %	0.57 %	0.02 %	0.26 %	3.91 %
"Open Control Windo	W″	THREAD 1.59.1	92.21 %	0.17 %	0.09 %	0.11 %	0.99 %	0.03 %	0.44 %	5.55 %
		THREAD 1.60.1	93.39 %	0.13 %	0.07 %	0.08 %	0.74 %	0.03 %	0.36 %	4.80 %
		THREAD 1.61.1	89.98 %	0.09 %	0.05 %	0.08 %	1.08 %	0.03 %	0.67 %	7.60 %
		THREAD 1.62.1	89.56 %	0.13 %	0.06 %	0.07 %	0.62 %	0.03 %	0.75 %	8.36 %
		THREAD 1.63.1	90.27 %	0.13 %	0.06 %	0.07 %	1.01 %	0.03 %	0.65 %	7.37 %
		THREAD 1.64.1	87.89 %	0.10 %	0.04 %	0.04 %	1.48 %	0.03 %	0.85 %	9.16 %
			5 000 00 %	0.00.07	6 20 00	42.00.00	50 74 %	2.60.00	26.44.04	277.74.0/
call @ lulesh 64p knl.prv		Tabal	2 00/110 02	9.88 %	0.28 %	12.00 %	50.71%	3.69%	30.41 %	377.74%
AD 1.1.1	10.4 10.4 10.4 10.4		11.4 11.4	0.15 %	0.10 %	0.19%	0.79 %	0.06 %	0.57%	5.90 %
				0.36 %	0.18%	0.55%	2.02%	0.11%	1.09 %	10.04 %
AD 1.17.1				0.06 %	0.04 %	0.04 %	0.15 %	0.00 %	0.00 %	0.01 %
AD 1.33.1				0.07%	0.04 %	0.10 %	0.52 %	0.04 %	0.28 %	2.44 %
AD 1.49.1			7 7	0.43	0.56	0.34	0.30	0.53	0.52	0.59
)			(4 (
AD 1.64.1 0 us			15,349,7	35 us						

Measure the parallel efficiency

Click on the "mpi_stats.cfg"

k on the mpi_sta	CSICIG				MPI cal	l profile @	lulesh_64p_k	nl.prv		
		KE ID 30 (🔉 🔍 🔳 🖡	• 💌 II 🈕	τ Σ Τ/ε					
			Outside MPI	MPI_Isend	MPI_Irecv	MPI_Wait	MPI_Waitall	MPI_Barrier	MPI_Reduce	MPI_Allreduce
Ze evente alvie initialia		THREAD 1.55.1	88.28 %	0.18 %	0.09 %	0.12 %	0.58 %	0.03 %	0.88 %	9.42 %
Zoom to skip initializa	ation /	THREAD 1.56.1	94.12 %	0.12 %	0.06 %	0.07 %	1.49 %	0.03 %	0.22 %	3.46 %
finalization phase	~ ~	THREAD 1.57.1	94.58 %	0.12 %	0.07 %	0.08 %	0.74 %	0.03 %	0.24 %	3.73 %
inalization phase	es	THREAD 1.58.1	94.43 %	0.17 %	0.09 %	0.12 %	0.57 %	0.02 %	0.26 %	3.91 %
(drag & drap)		THREAD 1.59.1	92.21 %	0.17 %	0.09 %	0.11 %	0.99 %	0.03 %	0.44 %	5.55 %
(urag & urop)		THREAD 1.60.1	93.39 %	0.13 %	0.07 %	0.08 %	0.74 %	0.03 %	0.36 %	4.80 %
		THREAD 1.61.1	89.98 %	0.09 %	0.05 %	0.08 %	1.08 %	0.03 %	0.67 %	7.60 %
		THREAD 1.62.1	89.56 %	0.13 %	0.06 %	0.07 %	0.62 %	0.03 %	0.75 %	8.36 %
		THREAD 1.63.1	90.27 %	0.13 %	0.06 %	0.07 %	1.01 %	0.03 %	0.65 %	7.37 %
		THREAD 1.64.1	87.89 %	0.10 %	0.04 %	0.04 %	1.48 %	0.03 %	0.85 %	9.16 %
call @ lulesh 64p kpl.prv		Taka	E 000 00 02	9.88 %	6.28 %	12.00 %	50.71 %	3.69 %	36.41 %	377.74 %
				0.15 %	0.10 %	0.19 %	0.79 %	0.06 %	0.57 %	5.90 %
				0.36 %	0.18 %	0.55 %	2.62 %	0.11 %	1.09 %	10.04 %
EAD 1.17.1				0.06 %	0.04 %	0.04 %	0.15 %	0.00 %	0.00 %	0.01 %
EAD 1.33.1				0.07 %	0.04 %	0.10 %	0.52 %	0.04 %	0.28 %	2.44 %
				0.43	0.56	0.34	0.30	0.53	0.52	0.59
EAD 1.49.1	الكالة كالأكالة كالأ)) •)
READ 1.64.1			1,144,1	35 us						

Measure the parallel efficiency

2. Right

Paste ->

Click on the "mpi_stats.cfg"

MPI call @ lulesh_64p_knl.prv

THREAD 1.64.1 4,571,617 us

THREAD 1.1.1 THREAD 1.17.1 THREAD 1.33.1 THREAD 1.49.1

s.crg				MPI cal	l profile @	lulesh_64p_k	nl.prv			_
) 🔍 I 🔳 F	ı 🖂 💵 🐓	Υ Σ [*] ε						
		Outside MPI	MPI_Isend	MPI_Irecv	MPI_Wait	MPI_Waitall	MPI_Barrier	MPI_Reduce	MPI_Allreduce	
	THREAD 1.55.1	88.28 %	0.18 %	0.09 %	0.12 %	0.58 %	0.03 %	0.88 %	9.42 %	
Time	THREAD 1.56.1	94.12 %	0.12 %	0.06 %	0.07 %	1.49 %	0.03 %	0.22 %	3.46 %	
lime	THREAD IN TH	94.58 %	0.12 %	0.07 %	0.08 %	0.74 %	0.03 %	0.24 %	3.73 %	
	THREAD 1.58.1	94.45 ~	0.17 %	0.09 %	0.12 %	0.57 %	0.02 %	0.26 %	3.91 %	
	THREAD 1.59.1	92.21 %	0.17 %	>%	0.11 %	0.99 %	0.03 %	0.44 %	5.55 %	
	THREAD 1.60.1	93.39 %	0.13 %	0.07 %	0.08 %	0.74 %	0.03 %	0.36 %	4.80 %	
	THREAD 1.61.1	89.98 %	0.09 %	0.05 %	0.08 %	1.08 %	0.03 %	0.67 %	7.60 %	
	THREAD 1.62.1	89.56 %	0.13 %	0.06 %	0.07 %	0.62 %	0.03 %	0.75 %	8.36 %	
	THREAD 1.63.1	90.27 %	0.13 %	0.06 %	0.07 %	1.01 %	0.03 %	0.65 %	7.37 %	
	THREAD 1.64.1	87.89 %	0.10 %	0.04 %	0.04 %	1.48 %	0.03 %	0.85 %	9.16 %	
	Total	E 000 00 %	9.88 %	6.28 %	12.00 %	50.71 %	3.69 %	36.41 %	377.74 %	
	 		0.15 %	0.10 %	0.19 %	0.79 %	0.06 %	0.57 %	5.90 %	r
			0.36 %	0.18 %	0.55 %	2.62 %	0.11 %	1.09 %	10.04 %	
			0.06 %	0.04 %	0.04 %	0.15 %	0.00 %	0.00 %	0.01 %	Ξ
			0.07 %	0.04 %	0.10 %	0.52 %	0.04 %	0.28 %	2.44 %	
			0.43	0.56	0.34	0.30	0.53	0.52	0.59	ŀ
)) •	ĵ
		14,350,	us							

1. Right click \rightarrow Copy

Measure the parallel efficiency

Click on the "mpi_stats.cfg"

	🔍 🔍 🔳 🕒	• 🛃 📕 🎽	Υ Σ ¹ /ε					
	Outside MPI	MPI_Isend	MPI_Irecv	MPI_Wait	MPI_Waitall	MPI_Allreduce	MPI_Comm_rank	
THREAD 1.55.1	83.88 %	0.23 %	0.11 %	0.15 %	0.81 %	14.74 %	0.07 %	
THREAD 1.56.1	92.06 %	0.16 %	0.07 %	0.09 %	2.12 %	5.41 %	0.07 %	
THREAD 1.57.1	92.73 %	0.16 %	0.08 %	0.11 %	1.03 %	5.83 %	0.07 %	
THREAD 1.58.1	92.52 %	0.23 %	0.11 %	0.15 %	0.81 %	6.12 %	0.07 %	
THREAD 1.59.1	89.40 %	0.22 %	0.11 %	0.14 %	1.38 %	8.68 %	0.06 %	
THREAD 1.60.1	91.04 %	0.17 %	0.08 %	0.10 %	1.03 %	7.52 %	0.07 %	
THREAD 1.61.1	86.25 %	0.12 %	0.05 %	0.11 %	1.53 %	11.89 %	0.06 %	
THREAD 1.62.1	85.66 %	0.17 %	0.07 %	0.09 %	0.87 %	13.09 %	0.07 %	
THREAD 1.63.1	86.64 %	0.17 %	0.07 %	0.10 %	1.43 %	11.53 %	0.07 %	
THREAD 1.64.1	83.37 %	0.13 %	0.04 %	0.05 %	2.01 %	14.33 %	0.07 %	
in the local distance	5,698.23 %	12.04 %	7.73 %	15.76 %	70.74 %	591.10 %	4.41 %	
Average	89.03 %	0.19 %	0.12 %	0.25 %	1.11 %	9.24 %	0.07 %	
Maximu	98.36 %	0.33 %	0.23 %	0.76 %	3.72 %	15.70 %	0.08 %	
Minimum	80.66 %	0.07 %	0.04 %	0.05 %	0.21 %	0.02 %	0.06 %	
StDev	3.94 %	0.07 %	0.05 %	0.14%	0.72 %	3.82 %	0.01 %	
Avg/M_	0.91	0.57	0.53	0.32	0.30	0.59	0.81	

Parallel efficiency	
(89% computing)	

Comm efficiency (<2% communicating)

Load balance (9% process variability)

Computation time and work distribution

The first question to answer winer analyzing a parallel code is now enrichen does in the efficiency of a parallel program can be defined based on two aspects: the parall fficiency and the efficiency obtained in the execution of the serial regions. These tw vould be the first checks on the proposed methodology.	elization wo metrics
 To measure the parallel efficiency load the configuration file <u>cfga/mbi/mbi stats.cfg</u> This configuration pops up a table with %time every thread spends in every MPI call. Look at the global statistics at the bot outside mpi column. Entry Average represents the application parallel efficient Avg/Max represents the global load balance and entry Maximum represents t communication efficiency. If any of those values are lower than 85% is recor to look at the corresponding metric in detail. Open the control window to iden phases and iterations of the code. 	that ttom of the tcy, entry he nmended tify the
To measure the computation time distribution lo d the configuration file <u>ofgs/general/2dh_usefulduration.cfg</u> Th s configuration pops up a histogram of the duration for the computation region . The computation region does not show vertical lines, it indicates the computation time may be not ba Open the control window to look at the time distribution and visually correlate views.	a ns are togram Janced. 9 both
 To measure the computational load (instructions) distribution load the configuration file <u>cfgs/papi/2dh_useful_instructions.cfg</u> This cor pops up a histogram of the instructions for the computation regions. The com regions are delimited by the exit from an MPI call and the entry to the next ca histogram doesn't show vertical lines, it indicates the distribution of the instru- may be not balanced. Open the control window to look at the time distribution correlate both views. 	nfiguration Iputation all. If the Inctions In and
 Correlate both views. To measure the serial regions performance look at the IPC timeline loaded of gal/general / db useful duration. of g. What it's a reasonable IPC 	i with

2DH useful duration correlated with @ lulesh_64p_knl.prv	C) 😣
KE 🗈 30 🔍 🔍 🔳 H Ħ 💵 👷 Σ 🧏		
THREAD 1.21.1 [19,087.1738,164.85) = 0 us		

Computation time and work distribution

Computation time and work distribution

Computation time and work distribution

• To <u>cf</u> ev	measure the parallel efficiency load the configuration file	
ou Av co to ph	<u>rar/mpi/mpi_state.cfg</u> This configuration pops up a table with % time that ery thread spends in every MPI call. Look at the global statistics at the bottom of the tside mpi column. Entry Average represents the application parallel efficiency, entry gMax represents the global load balance and entry Maximum represents the mmunication efficiency. If any of those values are lower than 85% is recommended look at the corresponding metric in detail. Open the control window to identify the ases and iterations of the code.	
• To cf his do Op vie	measure the computation time distribution lo d the configuration file <u>gs/general/2dh.usefulduration.cfg</u> Th s configuration pops up a togram of the duration for the computation region. The computation regions are encoded as the duration for the computation region. If the histogram es not show vertical lines, it indicates the computation time may be not balanced, en the control window to look at the time distribution and visually correlate both ws.	
 To co po reg his ma co 	measure the computational load (instructions) distribution load the figuration file <u>cfcac/papi/2dh_uecful</u> instructions.cfca This configuration so up a histogram of the instructions for the computation regions. The computation ions are delimited by the exit from an MPI call and the entry to the next call. If the togram doesn't show vertical lines, it indicates the distribution of the instructions y be not balanced. Open the control window to look at the time distribution and relate both views.	

Computation time and work distribution

Computation time and work distribution

Computation time and work distribution

Click on "2dh_useful_instructions.cfg" (3rd link) > Shows amount of work

Computation time and work distribution

Click on "2dh_useful_instructions.cfg" (3rd link) > Shows amount of work

Computation time and work distribution

Click on "2dh_useful_instructions.cfg" (3rd link) > Shows amount of work

Where does this happen?

Go from the table to the timeline

Where does this happen?

Go from the table to the timeline

Where does this happen?

Go from the table to the timeline

Where does this happen?

• Hints \rightarrow Callers \rightarrow Caller function

Where does this happen?

• Hints \rightarrow Callers \rightarrow Caller function

Where does this happen?

• Hints \rightarrow Callers \rightarrow Caller function

Save CFG's (2 methods)

useful instructions 2DZoom range [1.78179e+08,2.52766e+08) @ lulesh_64p_knl.prv THREAD 1.3.1	Copy Paste Clone	Ctrl+C	
THREAD 1.14.1 THREAD 1.22.1 THREAD 1.33.1 THREAD 1.51.1 THREAD 1.51.1 THREAD 1.63.1 8,603,947 us	Undo Zoom Redo Zoom Fit Time Scale Fit Semantic Scale Fit Objects Select Objects	Ctrl+U Ctrl+R	
	View Paint As Drawmode Pixel Size Object Labels Object Axis	> > > >	
	Run Synchronize Remove all sync	4	
	Save Info Panel	•	Configuration Image Image Legend Text

Save CFG's (2 methods)

CFG's distribution

Paraver comes with many more included CFG's

😣 🗖 🗊 Paraver	
File Hints Help	
Load Trace	Ctrl+O
Previous Traces	
Unload Traces	
Load Configuration	
Previous Configurations	
Save Configuration	
Load Session	Ctrl+L
Save Session	Ctrl+S
Preferences	
out	chilio
Quit	Ctrl+Q
Files & Window Properties	
R 🕫	
Eracking	
* wxparaver	
 4.0.2 E cfos 	
▼ latest	
Interse	
▼ 📄 cfas	
Englishing	
Eustering	
Counters PA	PI
Paraver files	

Hints: a good place to start!

Paraver suggests CFG's based on the information present in the trace

Cluster-based analysis

Use clustering analysis

Run clustering

```
laptop> ssh -Y <USER>@stampede2.tacc.xsede.org
stampede2> cd $WORK/tools-material/clustering
stampede2> ~tg856590/tools/clustering/bin/BurstClustering
    -d cluster.xml
    -i ../extrae/lulesh_64p_knl.prv
    -o lulesh_64p_knl_clustered.prv
```

If you didn't get your own trace, use as input (-i) a prepared one from:

stampede2> ls \$WORK/tools-material/traces/lulesh_64p_knl.prv

Cluster-based analysis

Check the resulting scatter plot

stampede2> gnuplot lulesh_64p_knl_clustered.IPC.PAPI_TOT_INS.gnuplot

- Identify main computing trends
- Work (Y) vs. Speed (X)
- Look at the clusters shape
 - Variability in both axes indicate potential imbalances

Correlating scatter plot and time distribution

Copy the clustered trace to your laptop and look at it

laptop> scp <USER>@stampede2.tacc.xsede.org:\$WORK/tools-material/clustering/lulesh_64p_knl_clustered.* .

laptop> \$HOME/paraver/bin/wxparaver lulesh_64p_knl_clustered.prv

Display the distribution of clusters over time

Correlating scatter plot and time distribution

Copy the clustered trace to your laptop and look at it

laptop> scp <USER>@stampede2.tacc.xsede.org:\$WORK/tools-material/clustering/lulesh_64p_knl_clustered.* .

laptop> \$HOME/paraver/bin/wxparaver lulesh_64p_knl_clustered.prv

Display the distribution of clusters over time

