Nick Forrington
11th April 2019

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86 64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools
4
arm arm arm
FORGE C/C++ & FORTRAN ALLINEA STUDIO
LDDTJ LMAPJ COMPILER % C/C++ Compiler

+ =

¢ Fortran Compiler
4 0 A % Performance Libraries
. CI rm a rm % Forge (DDT and MAP)
PE RFO RMAN CE PE RLII:SQITA\N‘R'IAEEI CE % Performance Reports
. REPORTS S

2 © 2019 Arm Limited a r m

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86 64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools
4
arm arm arm
FORGE C/C++ & FORTRAN ALLINEA STUDIO
LDDTJ LMAPJ COMPILER

% C/C++ Compiler

- =

¢ Fortran Compiler
4 O A % Performance Libraries
: CI rm a rm % Forge (DDT and MAP)
PERFORMANCE PERLTSQ%GEICE % Performance Reports
L REPORTS S

3 © 2019 Arm Limited a r m

Arm Forge Professional
A cross-platform toolkit for debugging and profiling

The de-facto standard for HPC development

N
5:" - Available on the vast majority of the Top500 machines in the world
- Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

Commercially supported
by Arm

State-of-the art debugging and profiling capabilities
N - Powerful and in-depth error detection mechanisms (including memory

I I I debugging)

e - - Sampling-based profiler to identify and understand bottlenecks
Fully Scalable - Available at any scale (from serial to petaflopic applications)
° [
-a" Easy to use by everyone
!; - Unique capabilities to simplify remote interactive sessions

. - Innovative approach to present quintessential information to users
Very user-friendly

4 © 2019 Arm Limited q r m

Arm Performance Reports

Characterize and understand the performance of HPC application runs

P Gathers a rich set of data
5"’ - Analyses metrics around CPU, memory, 10, hardware counters, etc.
Commercially supported - Possibility for users to add their own metrics
by Arm
Build a culture of application performance & efficiency awareness
@ - Analyses data and reports the information that matters to users
Accurate and astute - Provides simple guidance to help improve workloads’ efficiency
insight
Adds value to typical users” workflows
?x - Define application behaviour and performance expectations

- Integrate outputs to various systems for validation (e.g. continuous
integration)
- Can be automated completely (no user intervention
pletely ’ arm

Relevant advice
to avoid pitfalls

5 © 2019 Arm Limited

Arm Performance Reports

Jace/home/HCEEC002/nnm08/oxp09- Compute
nnmO08/CloverLeaf_OpenMP/clover_leaf

arm i i
PERFORMANCE iznsog?s(% physical, 96 logical cores per node)
REPORTS per node
1 process, OMP_NUM_THREADS was 8
arm2 . 4
Tue Aug 1 2017 14:55:32 (UTC+01) MPI /o
8 seconds

/ace/home/HCEEC002/nnm08/oxp09-nnm 08/
CloverLeaf_OpenMP

Summary: clover_leaf is Compute-bound in this configuration

compute oo |

MPI 0.0%

/10 0.0%

Time spent running application code. High values are usually
good.
This is very high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.

This is very low; this code may benefit from a higher process
count

Time spent in filesystem 1/0. High values are usually bad.

This is negligible; there's no need to investigate 1/O performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU

Metrics section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

MPI

A breakdown of the 0.0% MPI time:

Time in collective calls 0.0%
Time in point-to-point calls 0.0%
Effective process collective rate 0.00 bytes/s

Effective process point-to-point rate 0.00 bytes/s

1/O

A breakdown of the 0.0% /O time:

Time in reads 0.0%
Time in writes 0.0%

Effective process read rate 0.00 bytes/s

Effective process write rate 0.00 bytes/s

No time is spent in MP| operations. There's nothing to No time is spent in /O operations. There's nothing to

optimize here!

optimize here!

OpenMP Memory

A breakdown of the 99.7% time in OpenMP regions: Per-process memory usage may also affect scaling:
Computation 85.6% N Mean process memory usage 312 MiB [
Synchronization 14.4% 1 Peak process memory usage 314 MiB N
Physical core utilization 8.3% | Peak node memory usage 2.0% |

System load 7.8% |

Physical core utilization is low and some cores may be

The peak node memory usage is very low. Larger problem
sets can be run before scaling to multiple nodes.

unused. Try increasing OMP_NUM_THREADS to improve

performance.

6 © 2019 Arm Limited

No source code needed

Less than 5% runtime overhead

Fully scalable

Run regularly — or in regression tests

Explicit and usable output

arm

MAP Capabilities

MAP is a sampling based scalable profiler

 Built on same framework as DDT
- Parallel support for MPIl, OpenMP
- Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis

- Stack traces

- Augmented with performance metrics

* Adaptive sampling rate

7

- Throws data away — 1,000 samples per process
- Low overhead, scalable and small file size

© 2019 Arm Limited

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s

Application activity

CPU floating-point g 1L 1L = B = _ N I
31.9% N I N T T e)
0 ~ ~ P gl s — Ny _— = -__ __-_ Bl B e i
Memory usage HeD
149 MB
of

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation

F hydro.fo0 X

0 %, OpenMP overhez

51
18.1% A - 52 CALL timestep()
93
e 54 CALL PdV(.TRUE.)
535
3.1% . . . 56 CALL accelerate()
57
5.0% i e 58 CALL PdV(.FALSE.)
59
2.6% | - . . 60 CALL flux_calc()
A

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |

OpenMP Stacks

Total core time A MPI Overhead Function(s) on line

Source

= & clover_leaf [program]
= # clover_leaf
= hydro

39.7% sumssmesmstn Mestewssnson 6.8% <0.1% advection_module::advection

18.1% [8.3% <0.1% # timestep_module::timestep
7.0% . - 0.7% # pdv_module::pdv
7.0% - <0.1% [# visit
5.0% 1.2% <0.1% # ndv module::ndv
31% » Cycles per instruction
26% .. <0.1% B
2.3% <0.1%] 0.83

Showing data from 32,000 samples taken over 32 processes (1

— U CYclo

51.5G/s

Instructions
615G /s

L2 Cache Accesses
379 M /s

L2 Cache Misses
125 M /s

CALL clover_init_comms

CALL hydro

CALL advection(
CALL timestep()

CALL PdV(.TRUE.)
IF (visit_frequen

Core Principles of Profiling with MAP

A quick start

Sampling in MAP GUI
e Sampling driven profiler * Activity timeline
- Dynamic interval to scale - Percentage of active threads in activity
e On sample collect data » Colour coded
« Current call stack * Activity classified such as:
- Performance metrics - Compute, MPI, I/0, Synchronisation
« Custom metric events - Based on call stack analysis
e Additional metrics added in * Top down source code tree
« Such as MPI events - Drill down into ‘Hotspots’

- Time regions selectable

Application System

Call stack
Memory Usage

Time CPU Usage

Custom Metric

8 Custom Metric a r m

MAP GUI

/scratch/home/dc-perks/hpcg/build3/xhpcg_28p_1n_2t_2019-01-25_17-57.map - Arm MAP - Arm Forge 18.3

File Edit View Metrics Window Help
Profiled: xhpcg on 28 processes, 1 node, 56 cores (2 per process) Sampled from: Fri Jan 25 2019 17:57:48 (UTC) for 18.6s

Application activity

Hide Metrics...

Memory usage
761 MB
0
MPI point-to-point _E
1.80 k calls/s B T S T PP
0 ESSAFN I ER N WORPES SRALD 5 PASNPARAADY. el EARSRNVEAN

17:57:48-17:58:06 (18.578s): Main thread compute 24.1 %, Pthreads 4.5 %, OpenMP 54.2 %, MPI in OpenMP 0.7 %, MPI 7.7 %, Synchronisation

™ main.cpp X

%, OpenMP overhead 5.0 %, SleZoom '&\\ H—O)

A/ 7))

(D

73 B Ent main.(‘.:t argc, char * argv[]) {

74
75 #ifndef HPCG_NO_MPI (. ..f)
78
79 HPCG_Params params;
80
<0.1%, 81 HPCG_Init (&argc, &argv, params);
82
83 / Check if QuickPath option is enabled. E
Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks ®
Total core time A MPI Overhead Function(s) on line Source Position B
= & xhpcg [program]
int main(int argc, char * argv([]) { main.cpp:73
30.2% 3.5% <0.1% # CG_ref(SparseMatrix_STRUCT const&, ... ierr = CG_ref(A, data, b, x, refMaxIters, tolerance, nite. Main.cpp:221
22.4%] 21% 0.2% # CG(SparseMatrix_STRUCT const&, CGD... ierr = CG(A, data, b, x, optMaxIters, refTolerance, niter.. Main.cpp:284
22.3% Ml 2.0% 0.2% # CG(SparseMatrix_STRUCT const&, CGD... ierr = CG(A, data, b, x, optMaxIters, optTolerance, niter.. Main.cpp:336
3.4%] 0.3% <0.1% [+ TestCG(SparseMatrix_STRUCT&, CGDat... TestCG(A, data, b, x, testcg_data); main.cpp:251
2.9%) # SetupHalo_ref(SparseMatrix_STRUCT&) setupHalo(R); main.cpp:138 —
2.7% 1 [+ OptimizeProblem(SparseMatrix_STRUC... OptimizeProblem(A, data, b, x, xexact); main.cpp:230
1.0% i <0.1% <0.1% # TestSymmetry(SparseMatrix_STRUCT&... TestSymmetry(A, b, xexact, testsymmetry_data); main.cpp:254
2.8%| | \ 19 others

= # thread start

(]

Showing data from 27,272 samples taken over 28 processes (974 per process)

Arm Forge 18.3 Connected to: dc-perks@arm-loginO1l.rcs.le.ac.uk < OpenMP View

9 © 2019 Arm Limited

arm

Profiling in MAP

 MAP is built for HPC applications

« MPI communications are a crucial component

Profiled: xhpcg on 28 processes, 1 node, 56 cores (2 per process) Sampled from: Fri Jan !

Application activity

MPI call duration
0.21 ms A)

e Tracks the communication volume s s
- Rates and bandwidths of communications ""':‘_;:‘;‘B‘I’S
- Both collective and point-to-point MPI calls

2.73 k calls/s

MPI point-to-point
1.80 k calls/s

0 Midindetdpliilibidi bttt bilad id
° ° ° ° ° . 850 |
* Line shading helps to identify imbalance P cllectives
> calsls 0l o opdibiadadididiesidisdidiidadditaineinds
MPI point-to-point bytes 2*°
9.7 MB/s L , " | -
MPI call duration 2= | ; ol il T g e
3795 ‘g MPI collectives bytes ' '
o - 0.49 kB/s - . '

0 dadidiadilsditesitasiicedinasidizainsieds
17:57:48-17:58:06 (18.578s): Main thread compute 24.1 %, Pthreads 4.5 %, OpenMP 54

1 rank waiting in MPI_Finalize whilst other rank does I/0

10 © 2019 Arm Limited q r m

GPU Profiling

* GPU support for CUDA
« Using NVIDIA CUPTI interface

* Supported on x86 and Power systems

e How much time on a line of code
« Also stall reasons

e Other GPU metrics collected such as: Energy and
memory

* Overhead can be high for profiling

- Depending on the level serialisation
- Comparable to running NVProf

11 © 2019 Arm Limited

Profiled: clover leaf on 1 process, 1 node, 2 cores (2 per process) Sampled from: Tue Jun 13 2017 18:06:54 (UTC+01) for 186.1s

GPU activity

CPU floating-point
0%

Memory usage
299 MB

100

0
415

0

B _
T — - — — — —

18:06:54-18:10:00 (186.050s): MPI 0.1 %, Accelerator 99.8 %, Sleeping 0.1 %

¥ clover_leaf.fo0 [}] H cuda_task.hpp [read-only] [}] H execution_policy.hpp [read-only] [I H triple_chevron_launcher.hpp [read-only] [
3.8% s e 73 const int row = glob_id / depth;
<0.1% 74 const int column = glob_id % depth;
75
0.8% 76 if (row >= 2 - depth && row <= (y_max + 1) + y_extra + depth)
77 {
78 // first in row
<0.1% 79 const int offset = row * (x_max + 4 + x_extra);
80
8.1% 81 cur_array[offset + (1 - column)] = x_invert * cur_array[offset + 2 +
82 }
0.2% 83 }
84

85 _ global__ void device_update_halo_kernel_right_cuda

86 (int x_min, int x_max, int y_min, int y_max,

87 cell_info_t grid_type,

22 danhle* Fur arrav

Time spent on line 81

F X

| | Breakdown of the 8.1% GPU

activity on this line:

Selected

Not selected

Thread or memory barrier
Pipe busy

Instruction fetch
Execution dependency
Memory throttle
__constant__ memory
Memory dependency
Texture sub-system
Dropped samples
Other

Unknown

2.2%]
0.4%

0.3%

2.9%]

0.0%
0.0%

86.5% M

0.0%

0.0%

arm

New in 19: Python Profiling

: Profiled: python3.5 on 2 processes, 1 node, 2 cores (1 per process) Sampled from: Wed Jan 30 2019 18:49:21 (UTC) for 45.1s

* Adds support for Python
Call stacks Py foatingpoint
« Time in interpreter PosI o writerate
* Works with MPI4PY oo

3.77 k calls/s

Usual MAP metrics

Main thread activity

| 18:49:21-18:50:06 (45.068s): Main thread compute 42.5 %, MPI 48.4 %, File I/O 3.8 %, Python interpreter 5.4 %

diffusion-fv-2d.py X

Hide Metrics...
100
0 == o i S sLEE— & = s B 1 =1 = = B s sm ek s (HEs =
102 i
0 g i 81 O i U R i B 0) Sl
78.6

b

Vs Jmtbanoh i 3 op dud W abif b e vt s ol Wi IR
o | PN v‘n%\'T"M N",vsf,‘/ " h‘lg"6;f&"l‘.!i-\‘-,‘._‘\/iﬂ."ﬁw\’\,"‘!I-"_;'-‘ “if.-ﬂ;‘;.‘i"._-!‘pﬂfy\'“" u‘ﬂ“*&”L g\‘./ SR A

fiah "fy.k. Y ' gy i

Zoom AI = 0

Time spent on line 74 [£3]

. -~/ Breakdown of the 38.3% time
| o0.2% | J spent on this line:
[1 0.2% 70 2 P 2 7
° S d , 0.2% |, | o i-1]) + (ax/dy) Executing instructions 0.0%
ource code view - el) Caling ther functions 91,6
| 73 : 1) * (dy/dx) : o
Mlxed Ian uage su Ort 5 i il et 74 = (un[xlow xxhiqh Ti2] —unlxIowsxsRIoh. Ti=TT] 1ay/ax] 7 @y ax]] Executing Python code 8.2%I
g g pp LeA% o w "A : —
b el mekbien et s it :‘ ﬁa'l';‘(\:l,) r xhigh, nx, ny, comm, rank, size)
7 loc_sum = np.sun ('.::xlow:xx?‘.ic:'.".,i:—‘:
loc_min = np.mir 1 1:-1]
81 loc_max = np.rn H s1:-1
82 glo_min = comm. 1_educ:e(oc_min, op =MPI.MIN) [
83 glo_max = comm.allreduce(loc_max, op=MPI.MAX) A
[*)

| Input/Output | Project Files | Main Thread Stacks | Functions |

Note: Green as operation is on numpy

Main Thread Stacks ®
. Total core time A MPI Function(s) on line Source Position E
= & python3.5 [program]
a rray’ SO ba Cked by C ro Utl n e’ E‘ ¢ diffusion-fv-2d.py #!/usr/bin/env python diffusion-fv-2d.py:1
= main main(sys.argv[1:]) diffusion-fv-2d.py:169
H H r Y array_subtract, array_multiply, array... - (un[xlow:xxhigh,0:-2] - un[xlow:xxhigh,1:-1]) * (dy/dx)) / (dy*dx)) diffusion-fv-2d.py:74
n Ot Pyt h O n (Wh IC h WO u Id be pl n k) 28. S%Mhm_ 27.2% [+ halo halo(u, xlow, xhigh, nx, ny, comm, rank, size) (i_ifftjs@on-f_v-zq.py77 =

Showing data from 2,000 samples taken over 2 processes (1000 per process)

-np 2 python3 ./diffusion-fv-2d.py

12 © 2019 Arm Limited

map --profile mpirun

Arm Forge 19.0.2 * Main Thread View

arm

MAP and Performance
Reports on Stampede2

Quick Comparison
Using the right tool for the job...

* Easy to configure / use
- No compiler wrappers / instrumentation / tracing
- Minimal configuration (almost-all features enabled all the time)
- Adaptive sampling to automatically keep overhead down
- Aggregated data across processes/threads
- Low overhead
- One size fits all - tradeoffs...

* Potential workflow: MAP first and then dig deeper with other tools
- Understand overall performance characteristics
- Find hotspots

- If more data is required:
— Within Forge: Profile subset of program, Custom metrics, DDT
— Other tools mentioned this week
— Specialist tools - e.g. NVIDIA tools for GPUs, 10 profilers, etc

14 © 2019 Arm Limited q r m

Collecting a profile / performance report

15

MAP

- Prepare application by compiling with “-g” (leave optimization enabled)
- In general

- map --profile mpirun ..
- On stampede?2, need extra flags to deal with “ibrun” script

- map --profile --mpi=“Intel MPI (MPMD)” --mpiexec ibrun ..

Performance Reports

- No preparation required
- Collect directly

- perf-report --mpi=“Intel MPI (MPMD)” --mpiexec ibrun ..
- Convert from a MAP file

- perf-report myfile.map

© 2019 Arm Limited

arm

Opening a MAP file on a remote system

* Openvia X11 forwarding
- ssh -X user@stampede2.tacc.utexas.edu
- source ~tg857101/setup.sh (module load forge)
-map ./file.map
- Likely slow

* Install Forge/MAP locally

« Copy profile and open locally
- scp user@stampede2.tacc.utexas.edu:/path/to/file.map .
— Source files must be available locally
- Open remotely
— Configure MAP to connect to remote system
— Can open file remotely
— Remote source files used
— (Setup can also used for debugging with DDT)

16 © 2019 Arm Limited a r m

Remote Connect

17

/ Local Machine \

Forge GUI

Profile Data

Source Files

Application

/ Remote Machine (Stampede2) \

Forge Remote

N

© 2019 Arm Limited

Profile Data

Source Files

Application

/

arm

Demo / Exercises

Demos / Exercises source ~tg857101/setup.sh

* Setup
- source ~tg857101/setup.sh
- tar -xf $EXERCISES TAR

* Exercises
- Download Forge and set up remote connection (info displayed by setup. sh)

- NPB
— NAS Parallel Benchmarks, as seen earlier in the week (with added jobscript/map.sbatch file)
-~ Examine a performance report on this code
— Explore. See how MAP displays the information we’ve seen already this week.
— Increase efficiency by changing run configuration?
- Slow
— MAP example code with various performance issues
— See how these performance issues appear in MAP
- map-performance-improvement
— Iterative improvements to a matrix multiple code
— Start at step 1 and improve the code yourself, or:
- explore the code differences at each step, and how they appear in the profiler

19 © 2019 Arm Limited a r m

Download and Install a local copy of Forge

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

* source ~tg857101/setup.sh : _ :
. Should outpur the URL abave Remote client for OS/X, Windov
¢ OI" SearCh for ”Arm Forge Download” Windows and OS/X builds are remote clients only - they allow you to connect to a clus
Windows or OS/X.

Platform Operating System/Distribution Version

 Download and install Forge

« On your local machine Mac OS/X Mountain Lion+ 64-bit (AMD/Intel)

XP+ 64-bit (AMD/Intel)

Windows Note: For more information, see Installing Arm Forge Remo

e Linux —Standard download

Linux Use the Full Install section above. All Linux installs also func

* Remote Client Only .
- Versions for Windows, Mac OS Remote client downloads for olc

- Only remote connect — no other functionality

If you are connecting to a system that's running a previous version of Arm Forge, you'l
Download older versions of the remote client software for Arm Forge.

* No Licence needed

« Uses licence on remote site

20 © 2019 Arm Limited a r m

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Getting Set Up

21

In either DDT or MAP select:
- “Remote Launch” -> “Configure...”

“Add” a new connection
- Enter the host details as you would SSH

Remote directory is where Forge is installed
- source ~tg857101/setup.sh
- SFORGE_DIR

“Test Remote Launch” and “OK”
« Will prompt for passwords if needed

© 2019 Arm Limited

arm
FORGE

arm
DDT

arm
MAP

Connection Name:

Host Name:

Remote Installation Directory:

Remote Script

KeepAlive Packets:

Help

Interval:

PROFILE
Profile a program.

LOAD PROFILE DATA FILE

Load a profile data file from a previous run.

OPTIONS

Remote Launch:

off

QuIT

" Remote Lalnch Settings

Stampede2

tg857101 @stampede?2.tacc.utexas.edu

How do | connect vi teway (multi-hop)?

~tg857101/apps/forge/19.0.4

Optional

Always look for source files locally

~ Enable

30 seconds

Proxy through login node

Test Remote Launch

Cancel

arm

Opening a MAP Profile

 Select our new connection
- Enter password when prompted

e Select “Load Profile Data”

- Navigate to remote MAP file
- Open

* View files as normal

« Source code visible
— From remote files

- Fast response time

22 © 2019 Arm Limited

Load Profile Data

Look in: [Edeperks@arm-logino1..../dc-perks/hpcg/build3 s] o (5) 0 ﬁ E]
PROFIL —
FROFILE i B] Nme 28p_1n_2t 2019-01-25_17-57 !
Profile a program. ml S 22 o D) s Al o) S I T
prog LOADF [testing
Load a| | 5 src
LOAD PROFILE DATA FILE pr— 5 setup
Load a profile data file from a previous run. OPTION # bin
off Remote Li |
Configure... @ =~ B
Catalyst QuiT =
—
Quir =
G | (@ [»]
File name: [xhpcg_28p_1n_2t_2019-01-25_17-57.map |
Files of type: [MAP Profile File (*.map)

/scratch/home/dc-perks/hpcg/build3/xhpcg_28p_ £_2019-01-25_17-57.map - Arm MAP - Arm Forge 18.3
File Edit View Metrics Window Help
Profiled: xhpcg on 28 processes, 1 node, 56 cores (2 per process) Sampled from: Fri Jan 25 2019 17:57:48 (UTC) for 18.6s Hide Metrics...

Application activity

Memory usage

761 MB

17:57:48-17:58:06 (18.578s): Main thread compute 24.1 %, Pthreads 4.8 %, OpenMP 54.2 %, MPI in OpenMP 0.7 %, MPI 7.7 %, Synchronisation %, OpenMP overhead 5.0 %, SleejZoom

main.cpp X

—

=9

Time spent on line 221 ®

int refMaxIters

numberOfCalls = 1; *| Breakdown of the 20.8% time

spent on this line:
Executing instructions 0.0%
Calling other functions 100.0% s

i i< numberOfCalls; ++i) {
ZeroVector (x);
ierr =

refMaxIters
int the number

0 && err_count)
lerance = nor

2

Kl

I D}

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |

OpenMP Stacks (3]
Total core time A MPI Overhead Function(s) on line Source Position E
= & xhpcg [program]
= # main main(int arge, char * argv(]) { main.cpp:73
30.2% (- 3.5% <0.1% CG_ref(SparseMatrix STRUCT consté, ... ef(A, data, b, x main.cpp:221
22.4% A 21% 0.2% [+ CG(SparseMatrix_STRUCT const&, CGD... ier: CG(A, d b, x, op s, refTolerance, niter main.cpp:284
22.3% MR 2.0% 0.2% # CG(SparseMatrix_STRUCT const&, CGD... ierr = CG(A, data, b, x, optMaxIters, optTolerance, niters. Main.cpp:336 E

Showing data from 27,272 samples taken over 28 processes (974 per process)

Arm Forge 18.3 Connected to: dc-perks@arm-login01.rcs.le.ac.uk & OpenMP View

Demos / Exercises source ~tg857101/setup.sh

* Setup
- source ~tg857101/setup.sh
- tar -xf $EXERCISES TAR

* Exercises
- Download Forge and set up remote connection (info displayed by setup. sh)

- NPB
— NAS Parallel Benchmarks, as seen earlier in the week (with added jobscript/map.sbatch file)
-~ Examine a performance report on this code
— Explore. See how MAP displays the information we’ve seen already this week.
— Increase efficiency by changing run configuration?
- Slow
— MAP example code with various performance issues
— See how these performance issues appear in MAP
- map-performance-improvement
— Iterative improvements to a matrix multiple code
— Start at step 1 and improve the code yourself, or:
- explore the code differences at each step, and how they appear in the profiler

23 © 2019 Arm Limited a r m

