Software

NTEL ADVISOR
AND ROOFLINE MODEL

Part of Intel® Parallel Studio XE

Roadmap Notice: All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

https://software.intel.com/en-us/articles/optimization-notice#opt-en

Contacts

Advisor Support Mail List vector.advisor@intel.com

Zakhar Matveev zakhar.a.matveev@intel.com

Intel Advisor Product Architect

Kirill Rogozhin kirilL.rogozhin@intel.com

Intel Advisor Project Manager

Egor Kazachkov egor.kazachkov@intel.com

Intel Advisor Senior Developer

Optimization Notice

Copyright © 2015, Intel Cor, i i rved. Intel Confidential
*Other names and brands m

mailto:vector.advisor@intel.com
mailto:zakhar.a.matveev@intel.com
mailto:kirill.rogozhin@intel.com
mailto:egor.kazachkov@intel.com

What is Intel® Advisor

Vectorization analysis

Function Call Sites | why Mo ___|Total Vectorized Loops
= and Loops Weactorization? Self Time Tirme T Type vac,.. | Efficiency | Gain...
= _tmainCRTStartup 0.000s1 1.669: @ Function

=) f main

0.000s |
0.000s |

in main at oo = inner loop wa ...

1.669s B Function
1.2373s O |Scalar

Roofline

[loop in main at Aoops.: 1.139:@ 1,373 @ Vectori., AVX2 4,70y

= (0 [loop in f at Sloops.cpp: | B inner loop was ... 0.000s1 0.29650 Scalar
4% [loop in f at Sloops.cpp:| B inner loop was ... 0.000s1 0.29650 Scalar y L]
[loop in f at Joops.cpp: 029650 029650 vectori,., AV2 6.12x -
al f f 000051 020650 Inlined... -
=I5 [loop in main at 3loops.d 023450 023450 Inside ...

FCollisionBGK IbpGET opp212

Padomance: 4. 75 OFLOFS
Anthmetc Ingeraity. 0.35 FLOPByie

So¥ Elnpsed Time: 0,357 5

Tetal Teng: 0,354

Cache Simulator and MAP

Site Location

| Strides Distribution & ‘ Access Pattern

Python API

import advisor

[loop in ComputeTimeStep ..

8052/ 0%/ 20 Mixed strides

project = advisor.open_project{sys.argv[1])
data = project.load({advisor.SURVEY)

roofs = data.get roofs(4, advisor.RoofsStrategy.MULTI THREAD

for roof in roofs:
memory roofs

if 'bandwidth' in roof.name.lower():
bandwidth = roof.bandwidth / math.pow(1®, 9) # conve

[loop in pricePath_Coreat ... | 92%/0%/8% [Mixed strides
L4
Memory Access Patterns Report | Dependencies Report | '4' Recommend:
D | ‘Stride ‘T}rpe Source ¥
Ep53 @ 1 Unit stride ch_4 v233.cppT6
o Gather stride ch_4 v253.cpp:
mp2 @ 1 Unit stride ch_4 v233.cpp:218

print "{} {:.8f} GB/s'.format(roof.name, bandwidth)
compute roofs
else:
bandwidth = roof.bandwidth / math.pow(1@, 9) # cony
print '{} {:.0f} GFLOPS'.format{roof.name, bandwidth

321

16+

B

i

21

Threading prototyping

Scalability of Maximum Site Gain

Tasks Modeling

Avg. Number of Avg. Task
s Tasks: Duration:
; I 50000000 < 0.001s
(@) 0.008x 0.008x%
0.040x 0.040x%
Q 0.200x 0.200x
g 1x (10000000} 1x (< 0.001s)

2 4 g 6 32 o4
CPU Count

T
23%
125

S
25x
123x

Optimization Notice

Intel Confidential

What is Intel® Advisor - Collectors

Take Compiler info Re-compilation >

finalization
time Binary Static Analysis

~0 overhead >

Surve

Trip Counts, FLOPs
Trip Counts/FLOPs + Stacks

Optimization Notice
Intel Confidential

Collections vs Analysis

Vectorization (basic) Survey + Trip Counts

Vectorization (advanced) As above + MAP + Dependencies

Roofline (CARM) Survey + Trip Counts with FLOP

Roofline (Integrated) Survey + Trip Counts with FLOP and
Cache Simulator

Threading Survey + Suitability + Dependencies

Custom Analysis (Python API) Depends

Mix and match as More data come
you wish with a cost

Optimization Notice

Intel Confidential

experience
what’s inside”

VEGTORIZATION

5 Steps to Efficient Vectorization

Intel® Advisor — Vectorization Advisor

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it
|V“t””ZEd Loops | Instruction Set Analysis Al Advisor-detectable issues: C+= | Fortran
[=] Function Call Sites and Loops || Self Time |Vect.‘. ‘ T |Ga|n..“VL(H. |Tra|ts |Data T - L= . X
[loop in looplnit at LCALSSuite.coe| 0.0168s1 AVX T3% 29% 4 Divisions; Type C... Float64 Recommendation: Add data paddmg
[loop in loaplnit at LCALSSuite.cos| 0.016s1 | AVX 298 4 Divisions; Type C... Float64 :”‘f‘ﬂ%"“‘s”“am““‘”'e of yector length, To fix: Do one of the 1SSUE Incffectve seclediremaind
[loop in runCFerallLambdaloops | 0.672s1 AV .. 560¢ 248 Extracts FMA: Ty... Float64: ellewing: e p'rez:m e peelediremainder
[loop in runCRawLoops at runCRav| _ 0.578s1 All or some source loop iterations are not
[loop in runOMPRawLoopsSompSy| 0.953s) 1 £l ili H executing in the loop body. Improve
Bt eome] Tome 3. Trip Counts + FLOP: understand utilization, e
lloop in runARawloops at runARay 0.734s) paral[e[ism granu[arity & overheads (e e e e el
[loop in runAForallLambdaloops 3| 0.578s] o
Trip Counts FLOPS © 14 ata pasing
[=] Function Call Sites and Loops
HAverage | Call Count | Self GFLOPSw | Self Al
410 [loop in runOMPRawLoopsSomp| 111 5712000 4275160 0.22794
[leop in runOMPRawloopsSomp| 124 1; 13; ... 46816000; ... 204.293 03D 0.17103
4. Memory Access Patterns Analysis 5. Loop-Carried Dependency Analysis
Site Location | Strides Distribution & | Access Pattern
[locp in ComputeTimeStep.. | 80%/ 0%/ 20580 Mixed strides D W Type Site Name Sources Modules State
[loop in pricePath_Core at ... Q2% /0% /8% Mixed strides P1 @ Parallel site information site2 datest2.cpp dgtest2 v Not a problem
£ F2 @ Read after wiite dependency site2 dqtest2.cpp dqtest2 R New
P @ Read after wite dependency site2 dqtest2.cpp dgtest2 R Hew
Memory Access Patterns Report | Dependencies Report ‘ ' Recommend:| [N AT dgtest2.cpp
PS @ Wiite after write dependency site2 dqtest2.cpp dgtest2 R New
D | | Stride | Type | Sourcew P @ Wiite after read dependency site2 dotest2.cpp dotest2 P New
Ps3 @ 1 Unit stride ch_4_v253.cpp:T6 P7 @ Wiite after read dependency site2 dgtest2.cpp: idie.h dgtes2 R New
EP1 = Gather stride ch_4 w233,
mps2 @ 1 Unit stride ch_4 v233.cpp218

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

[2| Instruction Set Analysis
[=] Function Call Sites and "
VL(..

=
28|58 | &%

e e
Ed 2| 2] a2 |a8 | a8 | e8| o
2
4

[
[
[
[
[
[
[
[

ysis

+ Binary Ana

Vector Efficiency: All The Data In One Place

My “performance thermometer”

Vectorized Loops Instruction Set Analysis
[=] Function Call Sites and Loops Self Time — i -
Vect... ‘ Efficiency « ‘ Gain... | VL (... | Traits
[loop in runCForalllambdaloops at runCForalllar 0.734s) AVX: .. | 26% 211k 48 Extracts; Inserts; Type Conversions
[loop in runCRawloops at runCRawloops.cee 70| 062351 AV .. 2% 48 Extracts; Inserts; Type Conversions
[loop in runCForalllambdaloops at runCForallLag 270350 AVX2 250 |48 FMA; Inserts; Permutes; Unpacks
[locp in runCRawloops at runCRawloops.cce117| 2609s0 AVK2 250 |4:8 FMA: Inserts: Permutes; Unpacks
[loop in runOMPRawloopsSompSparallel@1353 at) 0433s1 AVK2 180 4 Blends; Divisions; FMA; Masked Stores; Square Roots
[locp in runAForalllambdaloops at runAForalllag 023451 AVXZ 1.82x |4 Blends; Divisions; FMA; Masked Stores; Square Roots
505 * Auto-vectorization: affected <3% of code
* With moderate speed-ups
* First attempt to simply put #pragma omp simd:
* Introduced slow-down
Original (scalar) Achieved Upper bound: * Look at Vector Issues and Traits to find out why
code efficiency. Efficiency 100% » All kinds of “memory manipulations”
Corresponds efficiency « Usually an indication of “bad” access pattern
to 1x speed-up. 4x gain

(VL=4)

Survey: Find out if your code is “under vectorized” and why

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Details for any piece of code

Elapsed fime: 1462.355

[o]
FILTER:| Al Modules ~|| AllSources ~|[Loops = || AllThreads ~ INTELADVISOR 2018
Summary % Survey & Roofline ™ Refinement Reports

[=] Function Call Sites and Loops

Vectorized Loops =
Self Time | & Perfformance Issues

Trip Counts FLOPS ~

Vect...| Efficiency | Gain...| VL (.. | Com..
1 Ineffective peeledyremainder loop(s) .. AVX 275 4 3.87x
[leep in runOMPRawlLoopsSompSp 1.933s1

@ 1 Ineffective peeled/remainder loop(s) .. AVX 2.74x
|@ [loop in runARawLoops at runARa * 3 Ineffective peeled/remainder loo ...

[loop in runOMPRawlLoopsSempSy 0.953s)

Average | Call Count | Self GFLOPS| Self A1
14272 113232000.. 482470 |0.12500
<308« 2722 2 B176000;8... 151001 |0.01880

4
4

[loop in runAForalllambdaloeps all 0.578s! ' 3 Ineffective peeled/remainder loop(s) .. AVX2 lﬂ'_'ﬁ- 267x 4 2.66x
[loop in runOMPRawlLoopsSompSp| 1.578s) 4
4

6128:3 | 2045000; 2 7.2551 0.10232
Q' 3 Ineffective peeled/remainder loop(s) .. AVX2 2.62x 2.66x 2:110:2 113225000:... 268451 0.12934
[loop in runBRawloops st runBRaw| 2.437s1 7' 3 Ineffective peeled/remainder loop(s) .. Avx2 [B4% | | 2.58« 257« 61283 1840000;1.. 1.538 015299 v
< 3|« >
Source | Top Down ‘ Code Analytics | A bly | ‘¢ Rec dati & Why No Vectorization?
Line | Source Tuta\Time‘ % ‘ Loop/Function Time| % | Traits 2
150 B for (Index type i=0 ; i<len ; i++) [0.078s 0.734s
[loop in rundRawLoops at runARawloops.cxx:150]
Vectorized AVK: AVXZ; FMA loop processes Floaté4; Int32:; UInt32: UInté4 data tvpe(3) an|
No loop transformations applied
] [loop in runiRawLoops at runARawlLoops.cxx:l150]
Scalar remainder loop with instructicns that use AVE registers
use AVX registers
151 Blends
152
153 if (delvc[i] > 0.0} [0.047s |
154 gq_tilde = 0. ; 0.062s |
155 }
Selected (Total Time): 0.078s v
< >
Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

2. Guidance: detect problem and
recommend how to fix it
isor-detectable issues:

Recommendation: Add data padding

Issue: meffective peelediremainder
loop(s) present

executing in the |
performance by moving
from
body.

0 ‘Add data padding

and autemnatic objec
dding

Get Specific Advice For Improving Vectorization

Intel® Advisor — Vectorization Advisor

10

[=] Function Call Sites and Loops ' Performance Issues Self Timew | Type

=
o
m

=" [loop in runCForallLambdal oops at runCFoi %' 2 Ineffective peeled/remainder loop(s).. 2.703s! Vectorized (Body; Peeled; Remainder)
=0 [loop in runCForallLambdaloops at runCl| & 1 Pz efficient memory access patt., 2.109:0 Vectorized (Body)

a0 [loop in . . 0.500=1 Vectorized (Remainder)
g% Click to see recommendation _
=0 [loop in 0,094 | Rermainder
4|0 [loop in runCForallLambdaloops at runC 0.000s1 Peeled
< > (< >
Source | Top Down | Code Analytics | Assembly @ Recommendations & Why Mo Vectorization?

All Advisor-detectable issues: C++| Fortran AdViSOF ShOWS h i nts to move
@ Issue; Ineffective peeled/remainder loop(s) present iterations to vector bOdy

All or some source loop iterations are not executing in the [oop body. Improve p,
remainder loops to the loop body.

o Add data padding

The trip count is not a multiple of vector lenath. To fix: Do one of the following:

% by moving source loop iterations from peeled!

» |Increase the size of objects and add iterations so the trip count is a multiple of vectar length.
|ncrease the size of static and automatic objects, and use a compiler option to add data padding.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

1. Compiler diagnostics + Performance 2. Guidance: detect problem and

016s|
0.016s|

p in runCRawl
p in runOMPR;

p in runARawLoops at runARay
loop in runAForallLambdaloops a

recommend how to fix it

All Advisor-detectable issues™ C:
Recommendation: Add data padding @

The Irip count is not a multiple o ength. To fixx Do one of the

Issue: meffective peelediremainder
loop(s) present
All or s iterations are not

3. Trip Counts + FLOP: understand utilization, e
parallelism granularity & overheads o SR

0 ‘Add data padding

Critical Data Made Easy

Loop Trip Counts

Knowing the time
spentin a loop is not

enough!

Trip Counts

[=] Function Call Sites and Loops | Self Timew | Type

Average | Min Mazx Call Count

(= [leop in runOMPRawlLoopsSompsgy 4190s8 Vectorized+ Threaded (Body; Peeled; Remainder) 2 1102 1,171 3 111, 3 112590000...

4|00 [loop in runOMPRawlLoopsSormn) 376858 Remainder+ Threaded (OpenMP) 2 1 3 1125900000
(0 [leop in runOMPRawloopsiom 0.406= | Vectorized (Body)+ Threaded (OpenMP) 110 17 111 12320000
4|0 [loop in runOMPRawLoopsSom| 0.016s] Peeled+ Threaded (OpenMP) 2 1 3 220000

Check Find trip counts for
actual trip each part of a loop

counts

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Precise Repeatable FLOP Metrics

Intel® Advisor — Vectorization Optimization

= FLOPS by loop and function » |[nstrumentation (count FLOP) plus

= All recent Intel processors sampling (time with low overhead)

= Adjusted for masking
with AVX-512 processors

Vectorized Loops FLOPS
Vect... | Efficiency Gain..| VL (.. | 5elf GFLOPSw | Self Al
= [loop in runOMPRawloopsSompSy| 1.984s0 AV ... | 100% | 430x 4 204,258 @ 017103

[=] Function Call Sites and Loocps || Self Time

=0 [leop in runOMPRawloopsiom) 146891 AVE2 4 398,921 3 017574
a0 [loop in runOMPRawLoopsiom) 0.078s1 AVX 4 20,6330 0.06250
3|00 [loop in runOMPRawlLoopsSom| 0.141s] 13.1521 0.06250
3|00 [loop in runOMPRawlLoopsSom| 0.234s| 12,7971 014315
4|00 [loop in runOMPRawLoopsSorm| 0.063s| 0.1041 0.06250
lloop in runOMPRawLoopsSompSy 140651 AVH2 105 2 107.057 @ 0.22428
lloop in runOMPRawLoopsSompSy 117250 AVX 322 4 63.3540 0.07500

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. Memory Access Patterns Analysis

Site Location
[loop in ComputeTimeStep .. [80/ 0%/ 20800
[loop in pricePath_Coreat ... | 92% /0% /8% ¢

Sourcew

ch_4 v233.cpp:76

ch_4 v233 76
J.cppi218

Unit stride
Gather stride

EP1
Unit stride

HP52

Improve Vectorization
Memory Access pattern analysis

Summary &5 Survey & Roofline ™ Refinement Reports

0y

[=] Function Call Sites and Loops &~

Self Time

‘&' Performance lssues

[locp in pricePath_Core at ch_3_1_5_kernel.c
[loop in ComputeTimeStepKernel at ch_d v

[
-
s
=
m

7.828=0
ds |

4]0 [locp in maxPriceCore at ch_3_1_5_kernel_rr L] | 34565
5| (5 [locp in maxPriceCore at ch_3_1_5_kernel_m (] 26027-@8 & 4A scndency present

& 2 Unoptimized floating point operati ...
@ 1 Inefficient gather/scatter instructio ...
lssumed dependency present

Select loops of
interest

Run Memory Access Patterns analysis,
just to check how memory is used in
the loop and the called function

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor Memory Access Pattern (MAP):
know your access pattern

Site Location |L00p-[arried Dependencies ‘Strides Distribution ‘Access Pattern | Site Name
[loop in fPropagationSwap at IbpSUB.cpp:1247] No information available 33%_ Mixed strides loop_site_60
[
blue color: ﬂlwﬂ red color:
fraction of unit stride “fixed" stride fraction of iregular (variable stride) accesses
16% /84% /0% Mixed strides ” I
. . Memor]f Access Patterns REDD[T @ 16%:percentage of memery instructions with unit stride or stride 0 accesses
Unlt—Stl’Ide access = - Unit stride (stride 1) = Instruction accesses mermaory that consistently changes
ID Stride by one element from iteration to iteration

for (i=0; i<N; i++)
A[i] = C[i]*D[1i]

Stride 0 = Instruction accesses the same memory from iteration to teration

[@ 284%: percentage of memary instructions with fixed or constant non-unit

1246 #endif stride accesses
. 1247 Fors (it ool o Constant stride (stride M) = Instruction accesses memory
Constant Strlde access ' by M elements from iteration to iteration
: : : 1248 nextx = fCppl Example: for the double floating point type, stride 4 means the memery
for (i=0; i<N; i++) 1249 nexty = fCppk address accessed by this instruction increased by 32 bytes, (4*sizecf(double])
point[i] .x = x[i] 1250 nextz = fCppl e B
@ 09%: percentage of memory instructions with irre ular (variable or random)
p g Ty g
P11 @ 01 stride accesses
. . .) . . Irregular stride = Instruction accesses memory addresses that change by an

Varlable Stl’lde access =P12 -289559; - 274359, - 14477, - 13717, unpredictable number of elements from iteration to iteration

for (i=0; i<N: i++) 1251 e — Typically chserved for indirect indexed array accesses, for example, a[index[i]]

. 2 gather (irregular) accesses, detected for vip)gather” instructions on AVX2
1252 #ifndef SWAP_CVERLAF Instruction Set Architecture

1253 fSwapPair (lbf[il*lbsitelength + L*lbsy.nq + m + half|, Lbf|ilnext*lbsitelength + L*1bsy.nc

A[B[i]] = C[i]*D[i]

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find vector optimization opportunities
Memory Access pattern analysis

Site Location | Strides Distribution | HAccess Pattern | Max. Site Footprint
lleop in ComputeTimeStepKer... [B0SE/ 0 205 Mixed strides 2KB
[loop in pricePath_Coreatch_3.. | 92% /0% /8% Mixed strides 1KE

<

Mernory Access Patterns Report | Dependencies Report | ‘¢’ Recommendations

All Advisor-detectable issues: C++| Eortran

Recommendation: Refactor code with detected regular stride
access patterns

The Memory Access Patterns Report shows the following regular stride accessi{es):

Variable Pattern
plock Ox2e23c404080 allocated at cache aligned allocator.cpp: 196 | Invariant

See details in the Memaory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compiler to a regular stride access.

Sometimes, it might be beneficial to use the ipo/Qipo compiler option to enable interprocedural
optimization (IPQ) between files.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5. Loop-Carried Dependency Analysis

Site Name Sources Modules State
Parallel site information site2 dqtest2.cpp dgtest2 Not a problem
Read after write dependency site2 dqtest2.cpp dqtest2 R New
Read after write d-pendonc\ site2 dqtesr‘* cpp dgtest2 R Hew
El
PS @ Wiite after write depundenr te2 dqtest2.cpp dgtest2 R New
e dqtest2.cpp dqtest2 P Hew
dqtest2.cpp: idle.n dtest2 R New

ENABLING VECTORIZATION

Vector Issues

Self Timew | Total Time

Check dependencies

20.030s! | 20.030s| |Scalar Versions =
13.508s1 13.508s1 Scalar -]

6.895s | 27.750s1 Scalar a2

| * 2 Assumed dependency present
g

rort ﬂ Refinement Reports

Use #pragma simd

[al

h_4 v253.cpp:183]

e E——
_3.1_5_kernel_max.cpp:20] {2 No dependencies found P
Vectorized Loops
Vector Issues Self Timew |Total Time |Type — -
Vector ISA | Efficiency Gain ... VL (V...
10.507s1 22.989s| Scala

® 2 Possible inef... 1.762s

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. ‘ |nte| \ 18
*Other names and brands may be claimed as the property of others.

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

Summary @5 Survey & Roofline ™ Refinement Reports

=]

= [=] Function Call Sites and Loops & |SelfTime | Why Mo Vectorization?

E 5| (0 [locp in maxPriceCore at ch_3_1_5_kernel_m 34.565: B & vector dependence prevents vectorization
40 [loop in maxPriceCore at ch_3_1_5_kernel_m 26,027 @@ & vector dependence prevents vectorization
4|00 [loop in OptionDecision at ch_4_v253.cpp:1 0,360z B vector dependence prevents vectorization
u| (5 [leop in _10<lambdal> at ch_3_1_5_kernel_ 0.01es| B vector dependence prevents vectorization

Select loop for
Correct
Analysis and

Vector Dependence
prevents

Vectorization!
press play!

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Correctness - Is It Safe to Vectorize?

Loop-carried dependencies analysis

% Check for loop-carried dependencies in your application o

nmary < Survey Report [ACETISUMSY IR 4, Annotation Repart '} Suitability Report

SiteMame SiteFunction Sitelnfo Loop-Caried Dependencies Strides Distribution Access Pattem
loop_site 6 rmain main.cppil3 @RAWT AWART Awaw | INSIBAELASEE Mied strides

Detected
dependencies

D Description Source Function Module Stats
EX17 Read [E main.cpp:22 m: test_1 R Hew
20 K 4= a[a]
21 k %= a[8]:
2z k -=al7]:
23 K += al6];
24 k *= a[5]:

EX18 Read main.cppi23main g
Fi pay Source lines with Read and
23 k 4= al6]: .
Write accesses detected

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REAL dependencies
2. Explore dependencies with code snippets

In this example 3 dependencies were detected:

= RAW - Read After Write
= WAR - Write After Read
= WAW - Write After Write

This is NOT a good candidate to force
vectorization!

*Other names and brands may be claimed as the property of others.

Data Dependencies — Tough Problem

Is it safe to force the compiler to vectorize?

Elapsed time: 3,645 [RORE iy Not Vectorized | MKL |FILTER:| Al Modules || AllSources =

Summary 5 Survey & Roofline | ™J] Refinement Reports

Site Locationw ‘ Loop-Carried Dependencies | Recommendations
[loop in maxPriceCore at ch_3_1_5_kernel_max.cpp:103] @ Raw:1
[loop in maxPriceCore at ch_3_1_5_kernel_max.cpp:103] @ Mo dependencies found

[loop in d50MaxKernel at ch_5_2.cpp:708] & Potential WAR:T & Potential WAW:1
[loop in d50MaxKernel at ch_4.h:74] 2 MNo dependencies found
[loop in d50MaxKernel at ch_4.h:66] @ Mo dependencies found

B [loop in _10<lambdal> at ch_3_1_5_kernel_max.cpp:243]| # No dependencies found 1 Assumed dependen

Dependencies Report | & Recommendations
All Advisor-detectable issues: C++ | Fartran

Recommendation: Enable vectorization

The Dependencies analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe to vectorize using the
restrict keyword or a directive:

Directive Outcome
#pragma simd or #pragma omp simd | Ignores all dependencies in the loop
#pragma ivdep lgnores only vector dependencies (which is safest)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ROOFLINE

Questions to answer with Roofline: for your loops / functions

Am | doing well? How far am | from the peak?

(do I utilize hardware well or not?)

Where is the final bottleneck?

(where will be my limit after all optimizations?)
Long-term ROI, optimization strategy

GFlop/s

Peak FP

lﬁ?&ﬁlu%lzatlon gap.
tfor derutilizati
Banc? i (T ¥1n S |za: I?Zompufe

Bound

Flop/byte

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

{8 | Perform

ance (GFLOPS) k(Ql

18 = | O Use Single-Threaded Roofs

el 5871 GFLOPS

?
DP Vector Add Pezk: 18.27 GFLOPS

?
Scalar Add Peak: 441 GFLOPS

18 loops total

:[E' ‘*Memtj?yivhouﬁd mvestmto cache
‘ blocklng etc

Compute bound: invest into

SIMD,..

00825 0,795 =
03905 |
048 1

Intel Confidential

Automated Roofline Chart Generation in Advisor - CARM

Performance (GFLOPS)

Each Roof (slope)
Gives peak CPU/Memory throughput
of your PLATFORM (benchmarked)

4216

k |§| + X B | Use Single-Threaded Roofs © =

OF Vector FMA Peak (single-thteadéd): 42.16.GFLOPS
; Sna e ;
?F’ Vector Add Peak mmgTeF thraaded) 72 89 GFLOPS

- - Scalar Add Peak (single-threaded) 5.37 GFLOPS __
r -
bl)
Each Dot |
represents loop or function in T
YOUR APPLICATION (profiled) 0.72

Arithmetic Intensity (FLOP/Byte)

Legend:
@ - Takes less time
O - Takes considerable time
. - Takes much time

Summarized memory-compute efficiency picture for the application

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

Intel Confidential

*Other names and brands may be claimed as the property of others.

Roofline picture

Roof configuration

Chart configuration

Summary % Survey & Roofline

Performance

100

®i Refinement Reports

I e it i e e i -
106_94@FM@‘—’—'— —————— . EB‘E —————— I
L c _.m=" : =l g=- g-cc DP Vector Add Peak: 56.14 GFLOPS

N

ores used for roof modeling | 4 v - FLOAT; No Callstacks; CARM (L1 + NTS); Loads+Stores ~ §3) =
7

| I Ao SP Vector EMA Pesk- 444 88 GFLOPS,, __

oo N pPvetior FMA Peak: 219.15 GFLOPS,, __

SP Vector Add Peak. 112.3 GFLOPS., |

B2 GFLOPS

3.4 O
e

[loop in matmult_naiveompparallel_for@8 at matmult_naive cpp:11]
Scalar; processes Float64 data type(s)

Performance: 0.53 GFLOPS

CARM (L1 + NTS) Loads+Stores Arithmetic Intensity: 0.083 FLOP/Byte

Self Time: 100.486 s by

Self Elapsed Time: 32 448 s
Total Time: 100.486 s

0.01

Self GB/s: 6.3535
Total GB/s: 0

netic Intensity)

Tooltip with more

data for dots 100

Physical Cores: 4 @ App Threads: 4 @

Switch to grid
represenation

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Integrated Roofline. What is my current limit?

Integrated Roofline for one kernel

e ith traffic for all level
Performance is limited by L ratrie for a memory Ievers
Peak Flop/s

minimum of intercepts
(L2, LLC, DRAM, CPU)

In this case: by DRAM

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved Intel Confidential

*Other names and brands may be claimed as the property of others.

NEW?*: Selecting Integer, Float or Mixed operations

Surnrmary | &% Survey & Roofine ™ Refinernent Reports
k(G - = Eures:1av

100

T FLOAT: Mo Callstacks: CARRA (L1 + NTS: L2; L3: DRAR: Loads+Stares * |*l= 2 Compared Rezults =

AHOS

O perations

& FLOAT & INT & INT+FLOAT

5407449

Callztacks

I ‘with Callstacks &

| 1 emory Level

b emaory Operation Type
" Loads { Stores {+ Loads+Stores
Default I Apply I Cancel

0.01

T
n.om 01 1 10
FPhyzical Cores: 4 @ App Threads: 1 @ Self Elapzed Time: 7. 524 ¢ Total Time: ¥.524 =

Optimization Notice
Intel Confidential

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Integer Operations in Survey Grid and Loop Analytics

Use settings button on the “Compute Performance” column

Surnrmary 8 Survey & Roofline | ™ Refinernent Reports

8 ¢ Performance

TesLios Total Time

Self Tirne

[=] Function Call Sites and Loops

[| | 0.000s | 0.000s |
40 [lnop in Z_SOLWE at z_solve.f:332] [0.040s | 3.699:0
410 [loop in X_SOLWE at x_solve.f:331] O 0.050s | 3.369:0
40 [loop in ¥ _SOLVE at y_saolve,f:326] O 0.070s | 3.690=0
40 [loop in COMPUTE_RHS at rhs.f:273] [0.010s1 0.821s)
40 [loop in X_SOLWE at x_solve.f:384] (| 0.250s) 0.250s 1
=0 [lnop in Z_SOLVE at z_solve.f:396] | 0.2805) 0.280s1
= [laop in COMPUTE_RHS a rhs.f:134] IQ 009051 00905
4 b4

Compute Performance

Type Self GINTOPS
Scalar 14,3820
Scalar 11.4990
Scalar B8.2210
Scalar 2.7971
Scalar 1.1691
Scalar 1.0441
Wectarized (Body) 1.0001

Source | Top Down | Code Analytics | Aszernbly | ‘¢ Recommendations | & Why Mo Vectorization?

H Loop in EXACT AHS af exact s £¥39

<0.001s

dnside vectorized Tofal fime

< 00015

Sefffime

AN AN

Instrucfion Sef

W Stafic fnsfruction Mic Summdg'r'?' -

¥ Dvnamic instruckon Mic Summans

* Memory 41% (4182272, 17) D

* Compute 17% (1722112, 7) @

* Mixed~ 15% (1476096, 6) @
Other 27% (2706176, 11) 0D

CFL Tofal Time

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Ayerage Trip G 54

Statistics for INTOP .

And Data Transfe FLOP

avror” INTOP
GINTOPS = |NT+FLOAT
INT AL

Mask Usitzation 2l Operations
L1685
LT &b

€

Self GINTOR

=)

Show Mixed Compute Operations
0,573 .0 2.5
0.575 0.070s 3.690s
0.0z28 0.010s 0.821s
0.292 0.250s 0.250s
0.292 0.280s 0.2280s
0.000 0.090s 0.090s

Use type selector in
expanded Loop
Analytics section

®

Self Total
Per loop Per leration Per Instance
00072 7.00000e-09 4.48000e-07
03.70670 0.00042 0.02698
0.035877 1.61667e-07 0.00001
0.04330 1.76000e-07 0.00001
2607.48278
0.00002s

Elapzed Tr’mel'?'

|»

Use the rest of the Advisor

See additional info

Run Roofline

} Collect | im|]

+| =] Function Call Sites and Loops |E|0 Advanced

|:| Enable Roofline with Callstacks
=10 [loop in matmult_naiveompparal r

[loop in matmult_transposed$omp! |7 Unrolled by 4
[« Unrolled by 8

1.SurveyTargetJ +
+ [loop in matmult_blocked$Somp$}
@ Collect | | Bm

loop in matmult_blockedomppa

e =10 [loop in matmult_blockedomppa |—
LAl REE AT e =10 [loop in matmult_naiveomppar, |—
Select checkboxes in the Survey & =10 [loop in matmult_naiveSompSpg#fal |
Roo_ﬁne tab to mark loops for other B T im eatenls franermoard € —
Advisor analyses. < > <

R Summary % Survey & Roofline ™ Refinement Reports

r FMA Peak: 42.95 GFLOPS

= 2
tof Add Peak: 19.11 GFL"'IIB

)

Scalar Add Peak: 4.76 GFLOPS

4

0.1+

FLOP/Byte {Arthmetic Intensity)|
T

T T T
0.01 01 1 10
Physical Cores: 2 ® App Threads: 2 © €

() loops are marked
Code §

e E Source ‘ Top Down
1.1 Find Trip Counts and FLOP

< Collect | by | m Address | Line

0x1400016dd 20
0x1400016e4 20

21 chedkeM e 0x14000162e 20
-1 Check Memory Access Patterns O0X140001674

0x1400016fb
Sl d0001702

Select loops for

Trip Counts
FLOP

a

2.2 Check Dependencies

¥; Collect | |]

deeper analysis

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

alytics ‘ Assembly ‘ ‘¥ Recommendations

& Why No Vectorization? ‘

Total Time | % | Self Time | % Traits

0.049s | 0.049s |
0.020s | 0.020s |
0.020s | 0.020s | FMA
0.030s | 0.030s 1 FMA
0.019s | 0.019s| FMA

0.017s| 0.017s| FMA

Examine source or
assembly

~

A few words about callstacks

e
|Number of cores used for roof modeling | |1 | ¥ Roofline with Callstacks ¢

Callstack:
O _start
O _libe_start_main a.

Same function, .
L cEEE O main at matmult.c..
Sam e loo p. .. — o 330 ' o O outer_second at ...

4
[]

1uu o

5407492

O inner at matmult.c.
i QO [loop in inner at m.
= O [loop in inner at m,
" O [loop in inner at m.

But different :3 | ~ ®lownmersin
FLOPS and Al

O n d iffe re nt Physical Cores: 4 ® App Threads:oil'E‘ Self Elapsed Timg CO l‘ leCtI n g Ca“‘StaCks We Can
Cal l p at h S ! op Down | Code Analytics | Assembly | ¥ Recommendat

Function Call Sites and Loops Total Timg o See agg regated dots
HTotal 100.0% . .
=_start * Callees and inner loops included
[=__libc_start_main 100.0% . . .
Eiman woedl ¢ See different dots for different callchains
[Slouter_first 50.3%
50.3% =1} TUUTST FOTTCITOTT
[Houter second 49.6% I 5.510s 0.000s!(Function
49.6% BB 5510s 0.000s[Function
= O [loop in inner at matmult.cpp:10] 49.6% HE 5.510s 0.000s! Scalar vector deg
= [loop in inner at matmult.cpp:11] 49.6% N 5.510s 0.010sl Scalar vector dep
=IO [loop in inner at matmult.cpp:12] 49,5% N 5.500s 0.000s! Scalar Versions 1 vector d
O [loop in inner at matmult.cpp:12]| 49.5% HEE 5.500s 5.500sH Scalar vector de

Available in current product version, does not work with hierarchical roofline yet

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. ‘ |nte‘ . 33

*Other names and brands may be claimed as the property of others.

In a few words

Using Intel® Advisor, you can

Collect the data for the Hierarchical and Integrated Roofline

Analyze the roofline picture

Focus on data you are interested in

Compare roofline for different runs

Share roofline results

= and more

Optimization Notice

Copyright ©® 2017, Intel Co

PYTHON API

Python API

* Small library and Python module to access all Advisor-collected data.
Actively used internally at Intel.

* About 200 metrics for each loop/function + about 500 instruction mix
metrics.

e Supports:
* Python 2.7
* Linux: external and internal Python
* Windows: internal Python only (advixe-python)

See examples at <advisor_install_dir>/pythonapi/examples

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved Intel Confidential

*Other names and brands may be claimed as the property of others.

Python API - example

import advisor

project = advisor.open project(sys.argv[1])
data = project.load(advisor.SURVEY)

roofs = data.get roofs(4, advisor.RoofsStrategy.MULTI THREAD)

for roof in roofs:

memory roofs

if 'bandwidth® in roof.name.lower():
bandwidth = roof.bandwidth / math.pow(10, 9) # converting to GByte/s
print '{} {:.0f} GB/s'.format(roof.name, bandwidth)

compute roofs

else:
bandwidth = roof.bandwidth / math.pow(1l®, 9) # converting to GFLOPS
print "{} {:.8f} GFLOPS'.format(roof.name, bandwidth]l

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

QUESTIONS?

Read more

Intro on [integer] roofline usage:

https://software.intel.com/en-us/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor

Short intro on Python APl usage:

https://software.seek.intel.com/LP=18275

Optimization Notice

Intel Confidential

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor
https://software.seek.intel.com/LP=18275

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

