
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

(continued)

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

 If you made it this far, you successfully used Score-P to
 instrument the application

 analyze its execution with a summary measurement, and

 examine it with one the interactive analysis report explorer GUIs

 ... revealing the call-path profile annotated with
 the “Time” metric

 Visit counts

 MPI message statistics (bytes sent/received)

 ... but how good was the measurement?
 The measured execution produced the desired valid result

 however, the execution took rather longer than expected!
 even when ignoring measurement start-up/completion, therefore

 it was probably dilated by instrumentation/measurement overhead

2 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

 Report scoring as

textual output

 Region/callpath

classification

 MPI pure MPI functions

 OMP pure OpenMP regions

 USR user-level computation

 COM “combined”

USR+OpenMP/MPI

 ANY/ALL aggregate of all

region types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 40 GB

Estimated requirements for largest trace buffer (max_buf): 2365 MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 2373 MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=2373MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 2,479,514,724 1,634,202,275 11031.37 100.0 6.75 ALL

 USR 2,477,923,488 1,631,143,401 4383.44 39.7 2.69 USR

 OMP 4,129,716 2,743,808 4895.09 44.4 1784.05 OMP

 MPI 372,431 128,436 1738.54 15.8 13536.22 MPI

 COM 225,290 186,630 14.30 0.1 76.61 COM

40 GB total memory

2.3 GB per rank!

4

USR

USR

COM

COM USR

OMP MPI

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

 Score report breakdown by region

5

% scorep-score -r scorep_bt-mz_sum/profile.cubex

 [...]

 [...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 2,479,514,724 1,634,202,275 9402.51 100.0 5.75 ALL

 USR 2,477,923,448 1,631,143,401 3694.84 39.3 2.27 USR

 OMP 4,129,716 2,743,808 4200.62 44.7 1530.94 OMP

 MPI 372,430 128,436 1494.89 15.9 11639.21 MPI

 COM 225,290 186,630 12.16 0.1 65.15 COM

 USR 800,074,470 522,844,416 924.44 9.8 1.77 matvec_sub_

 USR 800,074,470 522,844,416 1593.32 16.9 3.05 binvcrhs_

 USR 800,074,470 522,844,416 1030.22 11.0 1.97 matmul_sub_

 USR 26,365,170 22,692,096 60.65 0.6 2.67 lhsinit_

 USR 26,365,170 22,692,096 55.60 0.6 2.45 binvrhs_

 USR 24,964,368 17,219,840 30.58 0.3 1.78 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

2.2 GB just for these 6

regions

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

 Summary measurement analysis score reveals

 Total size of event trace would be ~40 GB

 Maximum trace buffer size would be ~2.3 GB per rank

 smaller buffer would require (unsynchronized) flushes to disk during measurement resulting in substantial perturbation

 99.8% of the trace requirements are for USR regions

 purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

 These USR regions contribute around 39% of total time

 however, much of that is very likely to be measurement overhead for frequently-executed small routines

 Advisable to tune measurement configuration

 Specify an adequate trace buffer size

 Specify a filter file listing (USR) regions not to be measured

6 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Report scoring with

prospective filter

listing 6 USR regions

7

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

% scorep-score -f ../config/scorep.filt –c 2 \

 scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 242 MB

Estimated requirements for largest trace buffer (max_buf): 12 MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 20 MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=20MB to avoid \

>intermediate flushes

 or reduce requirements using USR regions filters.)

242 MB of memory in total,

20 MB per rank!

(Including 2 metric values)

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Score report

breakdown by region

8

% scorep-score -r –f ../config/scorep.filt scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/ region

 visit[us]

 - ALL 2,479,514,724 1,634,202,275 9402.51 100.0 5.75 ALL

 - USR 2,477,923,448 1,631,143,401 3694.84 39.3 2.27 USR

 - OMP 4,129,716 2,743,808 4200.62 44.7 1530.94 OMP

 - MPI 372,430 128,436 1494.89 15.9 11639.21 MPI

 - COM 225,290 186,630 12.16 0.1 65.15 COM

 * ALL 4,732,090 3,064,245 5707.70 60.7 1862.68 ALL-FLT

 + FLT 2,477,918,768 1,631,138,030 3694.81 39.3 2.27 FLT

 - OMP 4,129,716 2,743,808 4200.62 44.7 1530.94 OMP-FLT

 - MPI 372,430 128,436 1494.89 15.9 11639.21 MPI-FLT

 * COM 225,290 186,630 12.16 0.1 65.15 COM-FLT

 * USR 4,680 5,371 0.03 0.0 5.59 USR-FLT

 + USR 800,074,470 522,844,416 924.44 9.8 1.77 matvec_sub_

 + USR 800,074,470 522,844,416 1593.32 16.9 3.05 binvcrhs_

 + USR 800,074,470 522,844,416 1030.22 11.0 1.97 matmul_sub_

 + USR 26,365,170 22,692,096 60.65 0.6 2.67 lhsinit_

 + USR 26,365,170 22,692,096 55.60 0.6 2.45 binvrhs_

 + USR 24,964,368 17,219,840 30.58 0.3 1.78 exact_solution_

Filtered
routines

marked with
‘+’

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

9

 Set new experiment

directory and re-run

measurement with

new filter

configuration

 Submit job

% cd bin.scorep

% cp ../jobscript/mn4/scorep.sbatch .

% vim scorep.sbatch

[…]

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

[…]

% sbatch ./scorep.sbatch

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

 Filtering by source file name

 All regions in files that are excluded by the filter are

ignored

 Filtering by region name

 All regions that are excluded by the filter are ignored

 Overruled by source file filter for excluded files

 Apply filter by

 exporting SCOREP_FILTERING_FILE environment

variable

 Apply filter at

 Run-time

 Compile-time (GCC-plugin only)

 Add cmd-line option --instrument-filter

 No overhead for filtered regions but recompilation

10 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name
filter block

using wildcards

Apply filter

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

11 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

This is a comment

SCOREP_FILE_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE */foo/bar*

 INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

 Define the source file name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated source file names

 Names can contain bash-like wildcards *, ?, []

 Unlike bash, * may match a string that contains slashes

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions in source files that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

12 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

This is a comment

SCOREP_REGION_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE *

 INCLUDE bar foo

 baz

 main

SCOREP_REGION_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

 Define the region name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated region names

 Names can contain bash-like wildcards *, ?, []

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block, mangling

13 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

void bar(int* a) {

 *a++;

}

int main() {

 int i = 42;

 bar(&i);

 return 0;

}

 Name mangling

 Filtering based on names seen by the measurement

system

 Dependent on compiler

 Actual name may be mangled

 scorep-score names as starting point

(e.g. matvec_sub_)

 Use * for Fortran trailing underscore(s) for

portability

 Use ? and * as needed for full signatures or

overloading

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Advanced Measurement Configuration

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

 15 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

21 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019) 22

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019) 23

Memory leaks Memory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced measurement configuration: Metrics

 SCOREP_METRIC_PAPI=PAPI_TOT_CYC,PAPI_TOT_INS

 Available PAPI metrics
 Preset events: common events deemed relevant and useful for application performance tuning

 Abstraction from specific hardware performance counters, mapping onto available events done by PAPI internally

 Native events: set of all events that are available on the CPU

(platform dependent)

26

% papi_avail

% papi_native_avail

Note:

Due to hardware restrictions

- number of concurrently recorded events is limited

- there may be invalid combinations of concurrently recorded events

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced measurement configuration: Metrics

 SCOREP_METRIC_RUSAGE

=ru_stime,ru_utime

 (“all” for complete set)

 Available resource usage

metrics

 Note:
(1) Not all fields are maintained on

each platform.
(2) Check scope of metrics

(per process vs. per thread)

27

% man getrusage

struct rusage {

struct timeval ru_utime; /* user CPU time used */

struct timeval ru_stime; /* system CPU time used */

long ru_maxrss; /* maximum resident set size */

long ru_ixrss; /* integral shared memory size */

long ru_idrss; /* integral unshared data size */

long ru_isrss; /* integral unshared stack size */

long ru_minflt; /* page reclaims (soft page faults) */

long ru_majflt; /* page faults (hard page faults) */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* IPC messages sent */

long ru_msgrcv; /* IPC messages received */

long ru_nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

};

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 Can be used to mark initialization, solver & other phases

 Annotation macros ignored by default

 Enabled with [--user] flag

 Appear as additional regions in analyses

 Distinguishes performance of important phase from rest

 Can be of various type

 E.g., function, loop, phase

 See user manual for details

 Available for Fortran / C / C++

28 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor

29

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

 ! Declarations

 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 do i=1,100

 [...]

 end do

 SCOREP_USER_REGION_END(solve)

 ! Some more code…

end subroutine

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

30

#include "scorep/SCOREP_User.h"

void foo()

{

 /* Declarations */

 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */

 SCOREP_USER_REGION_BEGIN(solve, “<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 SCOREP_USER_REGION_END(solve)

 /* Some more code… */

}

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

31

#include "scorep/SCOREP_User.h"

void foo()

{

 // Declarations

 // Some code…

 {

 SCOREP_USER_REGION(“<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 }

 // Some more code…

}

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with [--user] flag

32

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

 ! Some code…

 SCOREP_RECORDING_OFF()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 SCOREP_RECORDING_ON()

 ! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

 /* Some code… */

 SCOREP_RECORDING_OFF()

 /* Loop will not be measured */

 for (i = 0; i < 100; i++) {

 [...]

 }

 SCOREP_RECORDING_ON()

 /* Some more code… */

}

Fortran (requires C preprocessor) C / C++

30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods)

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under 3-clause BSD open-source license

 Documentation & Sources:

http://www.score-p.org

 User guide also part of installation:

<prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be kept informed

 33 30TH VI-HPS TUNING WORKSHOP (BARCELONA, 21-25 JANUARY 2019)

