VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MPI Runtime Error Detection with MUST

At the 30th VI-HPS Tuning Workshop

Joachim Protze
IT Center RWTH Aachen University
January 2019

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

How many issues can you spot in this tiny example?

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);

MPI_Recv (buf, 2, MPI INT, size - rank, , MPI_COMM WORLD, MPI_STATUS_ IGNORE) ;
MPI Send (buf, 2, type, size - rank, , MPI _COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);

return 0O;

} At least 8 issues in this code exampl_e!

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 2

< X K ANMIRTYALAINSTITYUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Content

= Motivation
= MPI usage errors
= Hands-on

= Examples: Common MPI usage errors
» Including MUST's error descriptions

» Correctness tools
» MUST usage
= NPB Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 3

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Motivation

= MPI programming is error prone
= Portability errors

(just on some systems, just for some runs)
» Bugs may manifest as:

= Crash
= Application hanging Error more
» Finishes ObVIOUS

= Questions:

= Why crash/hang?
= Is my result correct?
= Will my code also give correct results on another system?

= Tools help to pin-point these bugs

VIR-"TUA-L INSTITYTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Common MPI Error Classes

~

\
>

.

~
= Common syntactic errors: Tool t .
» Incorrect arguments 001 10 US€.
= Resource usage MUST,
= Lost/Dropped Requests . .
. Buffer usage Static analysis tool,
= Type-matching
= Deadlocks (DEbugger)
<
» Semantic errors that are correct in terms of MPI standard, but do not
match the programmers intent:
= Displacement/Size/Count errors
Tool to use:
Debugger)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

01/24/2019

5

< X K ANMIRTYALAINSTITYUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Content

= Motivation
= MPI usage errors
» Hands-on

= Examples: Common MPI usage errors
» Including MUST's error descriptions

» Correctness tools
» MUST usage
= NPB Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 6

Hands-on (part 1)

VIR-"TUA-L INSTITYTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

$ cp -r ~nctovoO9/tutorial/must ~/must-examples
$ source ~/must-examples/load-must.sh

= Compile with debugflag

» Load must module

= Run interactive debug
session

= Launch with mustrun

= Abort with Ctrl + C
= Open MUST_Output.html
in browser ("links")

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

$ cd ~/must-examples

$ mpicc -g example.c

$. ./load-must

$ salloc -t ©00:10:00 -n 5 -J debug srun --pty /bin/bash

$ mustrun -np 4 ./a.out

[MUST] MUST configuration ... centralized checks with fall-back
application crash handling (very slow)

[MUST] Using prebuilt infrastructure at ../modules/model-layer2

[MUST] Executing application:

ERROR: MUST detected a deadlock, detailed information is available in
the MUST output file. You should either investigate details with a
debugger or abort, the operation of MUST will stop from now.

~C
[MUST] Execution finished, inspect "../MUST Output.html"!
$ links MUST Output.html

01/24/2019 7

Hands-on (part 1)

VIR-TUA-L INSTITYTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

$ source ~/must-examples/load-must.sh

$ cp -r ~nctoove9/tutorial/must ~/must-examples

= Fix the identified issue(s)
= Recompile

= Launch with mustrun

= Abort with Ctrl + C
= Open MUST_Output.html
in browser ("links")

= Start over

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

$ vim example.c Some MPI

$ mpicc -g example.c implementations check
for errors and abort.

$ mustrun -np 4 ./a.out
[MUST] MUST configuration ... centralized
application crash handling (very slow)
[MUST] Using prebuilt infrastructure

ith fall-back
~/modules/model-layer2

[MUST] Executing application:
Invalid datatype, error stack:
MPI Send(201): MPI_Send(buf=0x7fffe77c58cc, count=2,
dtype=USER<contig>, dest=1, tag=123, comm=0x84000004) failed
MPI Send(135): Datatype has not been committed

Waiting up to 30 seconds for analyses to be finished.

~C

[MUST] Execution finished, inspect "../MUST Output.html"!
$ links MUST Output.html

01/24/2019

< X K ANMIRTYALAINSTITYUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Content

= Motivation
= MPI usage errors
» Hands-on

= Examples: Common MPI usage errors
= Including MUST’s error descriptions

» Correctness tools
» MUST usage
= NPB Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 9

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Already fixed missing MPI_Init/Finalize:

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_ COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);

MPI_Recv (buf, 2, MPI INT, size - rank - 1, , MPI_COMM WORLD, MPI_STATUS_ IGNORE) ;
MPI Send (buf, 2, type, size - rank - 1, , MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ()

return ;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 10

C NVIRTYALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

Must detects deadlocks

Who? What? Where? Details

MUST O 7 starting date: Fri Mar 24 11:59:41 2
li//ﬂ'((s) \ / Message
Error he application issued a set of MPI calls that can cause a deadlock! A graphical representation™._ s situation is available in § ailed de...
Details:
Message |References
References of a
representative process:
reference 1 rank 0:
The application issued a set of MPI calls that can cause a deadlock! A graphical representation of this situation is available in a defailed MPI_Recv (1st occurrence)
deadlock view (MUST Output-filessMU{I Deadlock.html). References 1-2 list the involved calls (limited to the first 5 calls, further calls may called from:
be involved). The application still run the deadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the #0 main@example.c:15
invol nks with a debugger or abort the application (if necessary).
reference 2 rank 3:
MPI_Recv (1st occurrence)
called from:
#0 main@example.c:15

N

Click for graphical representation of
the detected deadlock situation.

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 11

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Message

MPI COMM WORLD

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows active wait-for
dependencies between the processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend
details the wait-for graph components in addition , while a parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a
message queue graph shows active and unmatched point-to-point communications. This graph only includes operations that could have been intended to match a point-to-poinf]
operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation in the parallel call stack. The leafs of this call stack graph
show the components of the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this MPI implementation) you

can attach to the involved ranks with a debugger or abort the application (if necessary).
|C0mm: |! |

Legend

Active MPI Call

Sub Operation

A waits for B and C

0: MPI_Recv Ra nk O WaItS
(. — for rank 1
and vv.
3: MPI_Recv
Call Stack

T

main @ /rwthfs/rz/cluster/home/pj416018/must-example/VI-HPS/example.c: 15

R

MPI_Recv

Simple call
stack for this
example.

Message queue

C
A waits for B or C
A F--=-=-=-=--- » B
T
C

Active and Relevant Point-to-Point Messages: Callstack-view

stack

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

01/24/2019

12

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix1l: use asynchronous receive

int main (int argc, char** argv)

{

int rank, size, buf[8];
Use asynchronous

MPI_Init (&argc, &argv); receive: (MPI_lrecv)

MPI Comm rank (MPI_ COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER,

MPI Request request;

MPI Irecv (buf, , MPI_INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, 2, type, size - rank - 1, , MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ()

return ;

}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 13

NVIRTYALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects errors in transfer buffer sizes / types

Rank(s)

2(28793)

Error

receive operation uses a (datatypd Size of sent message la FSEr Py the send it matches! The first element of the send...

Details:

.

Mossag than receive buffer From [Reforences

A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first
element of the send that did not fit into the receive operation is at (contiguous)[0](MPI INTEGER) in the send type (consult
the MUST manual for a detailed description of datatype positions). The send operation was started at reference 1, the
receive operation was started at reference 2. (Information on communicator: MPI COMM WORLD) (Information on send of

count 2 with type:Datatype created at reference 3 is for Fortran, based on the following type(s): { MPI INTEGER}) #0 maigégl}:cam le- ;ggtn?;f#égexr;ﬁ} f;gf{? (f:r;)ga
(Information on receive of count 2 with type:MPI INT) fixl.c:18 p p o

) References of a representative
[process:

reference 1 rank 2: MPI_Send
Representative |[(1st occurrence) called from:
location: #0 main@example-fixl.c:18
MPI_Send (1st
occurrence) called |reference 2 rank 1: MPI_Irecv

reference 3 rank 2:
MPI_Type_contiguous (1st
occurrence) called from:
#0 main@example-fixl.c:13

1(28792) Error A receive operation uses a (datatype,count) pair that can not hold the data tfransfered by the send it matches! The first element of the send...

0-3 Error IArgument 3 (datatype) is not commited for transfer, call MPI Type commit before using the type for transfer!(Information on datatypeData...
2(28793) Error [The memory regions to be transfered by thls send operation overlap w1th reglons spanned by a pendlng non- b]ocklng receive operation!(In...
1(28792) Error [The memory regions to be transfered b nd operation overla * == receive operation!(In...
3(28795) Error [The memory regions to be transfered by this s receive operation!(In...
3(28795) Error A receive operation uses a (datatype,count) pair that can Mowe. A” deteCted €rrors are [element of the send...
0(28794) Error The memory regions to be transfered by this send operation overla) H — receive operation!(In...
0(28794) Error A receive operation uses a (datatype,count) pair that can not hold COl la psed for Ooverview L element of the send...

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

k click to expand y

01/24/2019

14

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix2: use same message size for send and receive

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_INTEGER, &type);
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI_COMM WORLD, &request);
MPI Send (buf, 1, L¥pe, size - rank - 1, , MPI_COMM_WPPTﬁ\'
printf ("Hello, I am rank %d of %d. n", rank, size); REC“JCE'U1€

| message Size
MPI Finalize ()

return ;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 15

C -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects errors in handling datatypes

Rank(s) Message
2(17250) Error send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous)[0](MPI INTEGER) in the send type and a...
Details:

Message |_|References

References of a
representative process:

reference 1 rank 2:
MPI_Send (1st occurrence)
Representative |called from:

location: #0 main@example-fix2.c:18
MPI_Send (1st

A send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous)[0](MPI INTEGER) in the
send type and at (MPI INT) in the receive type (consult the MUST manual for a detailed description of datatype positions). A
graphical representation of this situation is available in a detailed type mismatch view (MUST Output- B) reference 2 rank 1:

files/MUST Typemismatch 74088185856002.html). The send operation was started at reference 1, the receive operation was called from: 0L o (L amererEmes)|
started at reference 2. (Information on communicator: MPI COMM WORLD) (Information on send of count 1 with #0 ’ called from:

type:Datatype created at reference 3 is for Fortrce)lfnécl))liljfg "ovrilt;tlh%c;].]&v;;nlgNt%e(s}: { MPI INTEGER}) (Information on receive main@example- |#0 main@esample-fix2.c:16
: = fix2.c:18

reference 3 rank 2:
MPI_Type_contiguous (1st
(occurrence) called from:

. ~ N\ #0 main@example-fix2.c:13
Use of Fortran type in C,
0(17249) Em . that do not nf Use Of uncomm |ted |(MPI INTEGER) in the send type and a...
1(17248) tql datatype mismatch between [matdonots 4 |(MPI INTEGER) in the send type and a...
3(17251) Ert . that do no atatvpe: t e |(MPI INTEGER) in the send type and a...
0-3 Emm Sender d nd receiver hnsfer, c yp yp transfer!(Information on datatypeData...
Details: _/
Message References
Argument 3 (datatype) is not commited for transfer, call MPI Type commit before Representative location: SASHET 2R 01 AL e B RS [ED B
using the type for transfer! MPI_Send (1st occurrence) .
(Information on datatypeDatatype created at reference 1 is for Fortran, based on the called from: g?:f:?lrfrréi?:el} Iéaarﬁz?l.fll\nfcl)gll._]ype_contiguous LI
following type(s): { MPI INTEGER}) #0 main@example-fix2.c:18 :

#0 main@example-fix2.c:13

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 16

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects errors in handling datatypes

Message
The application issued a set of MPI calls that mismatch in type signatures! The graph below shows details on this situation. The first differing item of each involved

communication reiuest is hii;h]ii;hted.

MPI_Send:send

Y

MPI_Type_contiguous(count=2) MPI_Irecv:recv

S

MPI_INTEGER | MPI_INT

Graphical representation of the type
missmatch

R R ———————————— —
JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 17

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix3: use MPI_Type_commit
Fix4: use C integer type

int main (int argc, char** argv)

{

int rank, size, buf[8];

Use the integer
datatype intended
for usage in C

MPI Init (&argc, &argv);
MPI Comm rank (MPI_ COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;

MPI_Type contiguous (2, MPI INT, &type); (Commit the
MPI Type commit (&type); — datatype before
MPI Request request; - usage

MPI Irecv (buf, , MPI _INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, 2, type, size - rank - 1, , MPI_COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);
MPI Finalize ()

return ;

JOACHIM F}ROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 18

C NVIRTYALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects data races in asynchronous communication

0(1605) Error he memory regions to be transfered by
Details:

Data race between send and
Rank(s) =~ ascynchronous receive operation

Message

The memory regions to be transfered by this send operation overlap with regions spanned by a
pending non-blocking receive operation!

(Information on the request associated with the other communication:
Point-to-point request activated at reference 1)
(Information on the datatype associated with the other communication:
MPI INT)
The other communication overlaps with this communication at position:(MPI INT)

(Information on the datatype associated with this communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the following
type(s): { MPI INT})
This communication overlaps with the other communication at position:(contiguous)
[0O](MPI INT)
A graphical representation of this situation is available in a detailed overlap view
(MUST Output-files/MUST Overlap 6893422510080 0.html).

Representative location:
MPI_Send (1st occurrence)
called from:

#0 main@example-fix3.c:19

receive operation!(In...

From " TReferences

References of a representative process:

reference 1 rank 0: MPI_Irecv (1st occurrence)
called from:
#0 main@example-fix3.c:17

reference 2 rank 0: MPI_Type_contiguous (1st
occurrence) called from:
#0 main@example-fix3.c:13

reference 3 rank 0: MPI_Type_commit (1st
occurrence) called from:
#0 main@example-fix3.c:14

3(1610) Error [The memBry regio-ns to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation!(In...

2(1608) Error [The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation!(In...

1(1606) Error [The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation!(In...
0-3 Error [There are 1 datatypes that are not freed when MPI Finalize was issued, a quality application should free all MPI resources before calling ...
0-3 Error [There are 1 requests that are not freed when MPI Finalize was issued, a quality application should free all MPI resources before calling M...

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

01/24/2019

19

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Graphical representation of the race condition

Graphical representation of the data
race location

Message
The application issued a set of MPI calls that overlap in communication buffers! The graph below shows details on this situation. The first colliding item of each involved
communication request is highlighted.

MPI_Send:send(buf= 0x7ffe1308ebcc)

Y
MPI_Type_contiguous(count=2) | MPI_Irecv:recv(buf= +0x0)

o

MPI_INT

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 20

\/IR-TUAL INSTITYTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes - Overview

= Derived datatypes use constructors, example:

{\V\\ /IVI Pl_Type_vector (\
\\ NumRows /*count*/,
\ 1 /*blocklength*/,
. \/ NumColumns /*stride*/,
2D Field MPI_INT /*oldtype*/,
(of integers) k &newType); /

= Errors that involve datatypes can be complex:
= Need to be detected correctly
= Need to be visualized

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 21

: -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes — Example

= C Code:

MPI Isend(buf, 1 & >
MPI COMM WORLD, ‘

MPI Recv (buf, 1 &
MPI COMM WORLD,

MPI Wait (&request, é&status);

y
= Memory: / / \

e Y / A tool must:
Error: buffer overlap B D_etec_t the error
MPI_Isend reads, MPI_Recv writes at the - Plpeline die WEEr 10 @t
same time problem

_ 2D Field K /

(of integers)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 22

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes — Error Positions

= How to point to an error in a derived datatype?
» Derived types can span wide areas of memory
= Understanding errors requires precise knowledge
= E.g., not sufficient: Type X overlaps with type Y [Contiguous datatype to span a row

= Example:
b £
I

= We use path expressions to
point to error positions
2D Field
(of integers)

= FQ e example, overlap at:
)[2][0](MPI_INT)
~ FO(MPI_INT)

[Vector datatype to span a column

[Error: buffer overlap

T — e
JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 23

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix5: use independent memory regions

int main (int argc, char** argv)
{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_INTEGER, &type);
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI_COMM WORLD, &request);
MPI_Send (buf + 4, L, _type, size - rank - 1, , MPI_COMM JHORLD\. :
Offset points to
printf ("Hello, I am rank %d of %d. ", rank, size); 1 independent
MPI Finalize (); memory

return ;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 24

C NVIRTYALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects leaks of user defined objects

Rank(s) Message
0-3 Error here are 1 datatypes that are not freed when MPI Finalize was issued, a quality application should free all MPI resources before calling ...

Message [From = [References

References of a representative process:

Details:

There are 1 datatypes that are not freed when MPI Finalize was issued, a quality application
should free all MPI resources before calling MPI Finalize. Listing information for these Representative location:
datatypes: MPI_Type_contiguous (1st
occurrence) called from:
main@example-fix4.c:13

reference 1 rank 1: MPI_Type_contiguous
(1st occurrence) called from:
#0 main@example-fix4.c:13

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the

following type(s): { MPI INT} reference 2 rank 1: MPI Type_commit (1st

occurrence) called from:
#0 main@example-fix4.c:14

lication should free all MPI resources before calling M...

0-3 | Error [There are 1 requests that are not freed when MPI Finalize was issued, a qu

Details:

Message

There are 1 requests that are not freed when MPI Finalize was issued, a quality application should free all
MPI resources before calling MPI Finalize. Listing information for these requests:

Representative loca
MPI_Irecv (1st occurrenc
called from:
-Request 1: Point-to-point request activated at reference 1

= User defined objects include Unfinished non-blocking
= MPI_Comms (even by MPI_Comm_dup) receive is resource leak and
= MPI_Datatypes missing synchronization
= MPI_Groups

Leak of user defined
datatype object

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 25

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix6: Deallocate datatype object
Fix7: use MPI_Wait to finish asynchronous communication

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_INT, &type);
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI_COMM WORLD, &request);

MPI Send (buf + 4, 1, type, size - rank - 1, , MPI_COMM_WOREB;' —

MPI_Wait (&request, MPI_STATUS IGNORE) ; === Finish the
L asynchronous

printf ("Hello, I am rank %d of %d. n", rank, size); . .

MPI Finalize (); Deallocate the

return 0; created datatype

= ——
JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 26

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Finally

Rank(s) ! Message
Information MUST detected no MPI usage errors nor any suspicious behavior during this application run.
Details:
Message |- References
MUST detected no MPI usage errors nor any suspicious behavior during this application run.|

No further error
detected

Hopefully this message
applies to many
applications

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 27

< X K ANMIRTYALAINSTITYUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Content

= Motivation
= MPI usage errors
» Hands-on

= Examples: Common MPI usage errors
» Including MUST's error descriptions

= Correctness tools
» MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 28

: -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Tool Overview - Approaches Techniques

= Debuggers:
v'Helpful to pinpoint any error
» Finding the root cause may be hard
= Won't detect sleeping errors
= E.g.: gdb, TotalView, Allinea DDT)
« Static Analysis: MPI_Recv (buf, 5, MPI_INT,

. i
. Compllers and Source analyzers >3, MPI_COMM_WORLD, &status);
v Typically: type and expression errors y
= E.g.: MPI-Check “-1” instead of “MPI_ANY_SOURCE”
= Model checking:
»= Can find hidden errors if (rank == 1023)]
= Requires a model of your applications crash ();

= State explosion possible
= E.g.: MPI-Spin

Only works with less than 1024 tasks

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 29

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

Tool Overview - Approaches Techniques (2)

= Runtime error detection:

v Inspect MPI calls at runtime
= Limited to the timely interleaving that is observed
= Causes overhead during application run
= E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

MPI_Send(to:1, type=MPI_INT)

MPI_Recv(from:0, type=MPI_FLOAT)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

AN

Type mismatch

01/24/2019

30

< X K ANMIRTYALAINSTITYUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Tool Overview - Approaches Techniques (3)

» Formal verification:
= Extension of runtime error detection
Explores all relevant interleavings (explore around nondet.)
Detects errors that only manifest in some runs
Possibly many interleavings to explore
E.g.: ISP

spend_some_time() MPI_Recv (from:ANY)

MPI_Send (to:1) MPI_Recv (from:0) MPI_Send (to:1)
MPI_Barrier () MPI_Barrier () MPI_Barrier ()

[Deadlock if MPI_Send(to:1)@0 matches MPI_Recv(from:ANY)@1

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

01/24/2019

31

< X K ANMIRTYALAINSTITYUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Content

= Motivation
= MPI usage errors
» Hands-on

= Examples: Common MPI usage errors
» Including MUST's error descriptions

» Correctness tools
= MUST usage
= NPB Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 33

C -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST - Basic Usage

= Apply MUST as an mpiexec wrapper, that's it:

mplcc —g sSource.c —-O exe
mustrun --must:mpiexec S$SMPIRUN -n 4 ./exe

0
©°
0
©°

% mMplCcC source.Cc —-O exe
o
[©)

SMPIRUN -n 4 ./exe .
or simply

[¢)

% mustrun —n 4 ./exe

= After run: inspect "MUST_Output.html”

= *mustrun” (default config.) uses an extra process:
= I.e.: "mustrun —np 4 ...” will use 5 processes
= Allocate the extra resource in batch jobs!
» Default configuration tolerates application crash; BUT is slower (details later)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 34

C -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST - Usage on frontend - backend machines

= Compile and run using a batch script

mplcc source.c —0O exe
mpiexec -np 4 ./exe

mplcc —g source.c —O exe
mustrun -np 4 ./exe

[©) o
= =
[©) o
= —=

» If you see messages about missing dot on the backend, run on frontend:

o)

$ mustrun --must:dot

= Open MUST_Output.html| with a browser

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 35

C -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST - At Scale (highly recommended for >10 processes)

» Provide a branching factor (fan-in) for the tree infrastructure:

% mustrun -np 40 ./exe --must:fanin 8

= Get info about the number of processes:

[©)

% mustrun -np 40 ./exe --must:fanin 8 --must:info

- This will give you the number of processes needed with tool attached

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 36

¢ -VIR-TUAL INSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST - Multithreading Support

= By default, MUST supports up to MPI_THREAD_FUNNELED
= For higher threading levels:

$ mustrun -np 40 ./exe --must:hybrid

= This will raise the required level to MPI_THREAD_MULTIPLE!
» Get info about the resources needed:

$ mustrun -np 40 ./exe --must:hybrid --must:info

- This will give you the number of processes needed with tool attached

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 37

VIRTYALANSTITYUTE = HIGH-PRODUCTIVITY SUPERCOMPUTING

S FEEEE 5 M UST

= MPI runtime error detection tool
= Open source (BSD license)
http://www.itc.rwth-aachen.de/MUST/

= Wide range of checks, strength areas:
= Qverlaps in communication buffers
= Errors with derived datatypes
= Deadlocks

= Largely distributed, able to scale with the application

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 01/24/2019 38

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

