### **Performance Analysis with Vampir**

Johannes Ziegenbalg Technische Universität Dresden























#### **Outline**

#### Part I: Welcome to the Vampir Tool Suite

- Event Trace Visualization
- The Vampir Displays
- Vampir & VampirServer
- Part II: Vampir Hands-On
  - Visualizing and Analyzing NPB-MZ-MPI / BT
- Part III: Vampir Analysis Exercise
  - Analysing Four Application Traces





### **Event Trace Visualization with Vampir**

- Visualization of dynamic runtime behaviour at any level of detail along with statistics and performance metrics
- Alternative and supplement to automatic analysis

#### Typical questions that Vampir helps to answer

- What happens in my application execution during a given time in a given process or thread?
- How do the communication patterns of my application execute on a real system?
- Are there any imbalances in computation, I/O or memory usage and how do they affect the parallel execution of my application?

#### Timeline charts

 Application activities and communication along a time axis



#### Summary charts

 Quantitative results for the currently selected time interval



#### **Event Trace Visualization with Vampir**

The value of seeing how an application executes on the machine

- Application code computing coulomb forces
- The workload was distributed evenly across available processes
- The user expected perfect parallelized code
- However the underlying algorithm worked differently than expected

Visualization of the application execution instantly shows a problem in the parallelization approach





### **Main Performance Charts of Vampir**

#### **Timeline Charts**



Master Timeline



**Process Timeline** 



**Summary Timeline** 



Performance Radar



Counter Data Timeline



I/O Timeline



**⇒** single thread's activities

→ all threads' function call statistics

→ all threads' performance metrics

→ single threads' performance metrics

→ all threads' I/O activities

#### **Summary Charts**



**Function Summary** 



Message Summary



I/O Summary



**Process Summary** 



Communication Matrix View



Call Tree



#### **Visualization Modes (1)**

Directly on front end or local machine

% vampir



#### **Visualization Modes (2)**

On local machine with remote VampirServer



# Hands-on: Visualizing and analyzing NPB-MZ-MPI / BT





















### Help! Where is my trace file?

```
% ls <working_directory>/NPB3.3-MZ-MPI/bin.scorep/\
> scorep_bt-mz_C_8x4_trace
profile.cubex scorep.cfg traces/ traces.def traces.otf2

% ls /home/projects/VIHPS/scorep_bt-mz_C_8x4_trace
profile.cubex scorep.cfg traces/ traces.def traces.otf2
```

 If you followed the Score-P hands-on up to the trace experiment

If you did not follow to that point, take a prepared trace

### **Start Vampir**

```
% module vampir/9.5.0

% vampir <working_directory>/NPB3.3-MZ-MPI/bin.scorep/\
> scorep_bt-mz_C_8x4_trace/traces.otf2
```

- Load correct module to add local tool installations to \$PATH (required for each shell session)
- Start Vampir on the current login-node (requires ssh X-forwarding)



#### Visualization of the NPB-MZ-MPI / BT trace



# **Visualization of the NPB-MZ-MPI / BT trace**Master Timeline





Detailed information about functions, communication and synchronization events for collection of processes.

# **Visualization of the NPB-MZ-MPI / BT trace**Process Timeline





Detailed information about different levels of function calls in a stacked bar chart for an individual process.

# **Visualization of the NPB-MZ-MPI / BT trace**Typical program phases



# **Visualization of the NPB-MZ-MPI / BT trace**Counter Data Timeline





Detailed counter information over time for an individual process.

# **Visualization of the NPB-MZ-MPI / BT trace**Performance Radar





Detailed counter information over time for a collection of processes.

#### **Visualization of the NPB-MZ-MPI / BT trace**

Zoom in: Inititialisation Phase



Context View:
Detailed information
about function
"initialize\_".

#### Visualization of the NPB-MZ-MPI / BT trace Find Function



Execution of function "initialize\_" results in higher page fault rates.

# **Visualization of the NPB-MZ-MPI / BT trace**Computation Phase



### Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Computation Phase



MPI communication results in lower floating point operations.

### Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Finalisation Phase



# **Visualization of the NPB-MZ-MPI / BT trace**Process Summary





#### **Function Summary:**

Overview of the accumulated information across all functions and for a collection of processes.

#### **Process Summary:**

Overview of the accumulated information across all functions and for every process independently.

# **Visualization of the NPB-MZ-MPI / BT trace**Process Summary





Find groups of similar processes and threads by using summarized function information.

29TH VI-HPS TUNING WORKSHOP (REIMS, FRANCE)

24

# **Summary and Conclusion**























### **Summary**

- Vampir & VampirServer
  - Interactive trace visualization and analysis
  - Intuitive browsing and zooming
  - Scalable to large trace data sizes (20 TiByte)
  - Scalable to high parallelism (200,000 processes)
- Vampir for Linux, Windows, and Mac OS X



























ITEA2









http://www.vampir.eu

vampirsupport@zih.tu-dresden.de