© 2017 Arm Limited

An introduction to Arm

Arm is the world's leading semiconductor intellectual
property supplier

We license to over 350 partners: present in 95% of smart phones,
80% of digital cameras, 35% of all electronic devices, and a total of
60 billion Arm cores have been shipped since 1990

Our CPU business model:

License technology to partners, who use it to create their own
system-on-chip (SoC) products

* We may license an instruction set architecture (ISA) such as
“Armv8-A”

e or aspecificimplementation, such as “Cortex-A72”

Partners who license an ISA can create their own implementation,
as long as it passes the compliance tests

2 © 2017 Arm Limited

...and our IP extends beyond the CPU
arm

ARM’s mission

» Deploy energy-efficient ARM-based technology, wherever computing happens...

o - ~85% share of | Driving the transformation of |
Leading in wearab.les and laptops, tablets, the network and data center to
I_the Internet of Things I_and I_an Intelligent Flexible Cloud
smartphones

Partnering to deliver_I
Enabling innovation and creativit;I Taking mobile computing L | data center efficiency
| With embedded intelligence to the next four billion people

3 © 2017 Arm Limited q rm

HPC strategy

Enablement

= Address gaps in computational capability
and data movement within Architecture

= Seed the software ecosystem with open
source support for Armv8 and SVE
libraries, tools, and optimized workloads

= Provide world class tools for compilation,
analysis, and debug at large scale

4 © 2017 Arm Limited

Mission:

Strategy:
Enablement + Co-Design + Partnership

Co-Design

= Work with key end-customers in DoE,
DoD, RIKEN, and EU to design balanced
architecture, uArchitecture and SoCs
based on real-world workloads, not
benchmarks

= Develop simulation and modelling tools to
support co-design development with end-
customers, partners, and academia

Enable the world’s first Arm supercomputers

Partnership

= Work with Architecture partners to bring
optimized solutions to market quickly

= Work with ATG & uArchitecture design
teams to steer future designs to be more
relevant for HPC, HPDA, and ML

= Work with key ISVs to enable mid-market

+ + + + + + + + + + +

+ + + + + + + + + + +
. St d.

+ + + + + + + + * + *

+ + + + + + + + + + +

+ + + + + + + + + + +

+ ¢

© 2017 Arm Limited

arm

&+

ArMALLINEA STUDIO | New commercial bundle

Meets the requirements of HPC developers on Arm

Cross-platform debug
and profile tools

arm
ALLINEA STUDIO
A
(,0(& 2 ?\690(‘8
(((\3‘\06 0(’(.&0(% C/C++ Compiler
‘?e(‘\:,\‘\(\ s\“‘:\? @ ¢ Fortran Compiler

Performance Libraries
Forge (DDT and MAP)

Performance Reports

\/
0.0

be

e

S
o

6 © 2017 Arm Limited

Arm-only Compiler
and Libraries

arm

Arm Forge

An interoperable toolkit for debugging and profiling

Commercially supported
by Arm

1

H Bl N
Fully Scalable

° @
Very user-friendly

7 © 2017 Arm Limited

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
« Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unigue capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

DDT

Switch between >

dt_View Control Tools Window Help

w @ BB

I8 1 86-5-

|| current Group: [AT =]

OpenMP threads -

Project Files

CIEEIE]
00000000

Search (Ctri+K

Current Grou

All

Create Group

Project Files

Application Code

./

¥ Headers
3- ¥ Sources
cclockc

© mainc) | ¢ hydro_godunovee [}

=]) d

tnt &, 3, ivar, =;

Focus on current: C Group C Process ((Thread||I™ Step Tnreads ogether |

¢ conservarc |

const int Hnxt,
const int Hnyt,
e int Hoxyt,
const int slices
real_t ueld[Hav

, const

int

ar * Hnxt * Hn

Rank 4: 8.7 k& [
Rank 5 38.71 k& [
Rank 6 38.71 k& [
Rank 7. 871 kB

e allpicks */

Integrate to
continuous

integration tools

8

© 2017 Arm Limited

- Vector3DHemelb.cc 563
- [VelocityField.cc 564
EJ--E Viewpoint.cc 565
1 — ! T 566

STOPTIMER(ctrl, ctrl->AuxTmr2);
STARTTIMER(ctrl, ctrl-»AuxTmr3);

/* Compute the number of elements that

Input/Output | Breakpoints | Watchpoints | Stacks | T

I Tracepoint Output 1 Logbook 1

Stacks

Processes Threads

Function

17220 117220 [|=main (main.cc:37)

17220 1172200 |
17220117220
17220 1172200 |
17220117220
17220 1172200 |

17220 J17220[|

= hemelb :Geometry

lationMaster (SimulationMaster.cc:63)
Initialise (SimulationMaster.cc:154)

= hemelb?:geometr.y.:Geometryﬂeader::omimi

= hemelb::geometry::dec

= hemelb:: rv--dec

Display pending
communications

ite_Partition (

::LoadAndDecompose (GeometryReader.cc:18
seDomainDecomposition (Geometry
p dDecomposition::OptimisedDecom

:0p dDecomposition::CallParmetis (Of
=ParMETIS_V3_PartGeomKway (gkmetis.c:90)

B® [‘= MpiEnvironment.cc 2 I o LatticeData.cc ¥ ‘ L xyzpart.c 3

Search (Ctrl+K)] o 546 if (allpicks[i].val != -1)
547 allpicks[ntsamples++] = allpicks[i];
[+ ™ template.cc - 548
[+ f template_annotator.cc 549
- template cache.cc 550 /* Sort all the picks */
¥ Leak Report es, allpicks);
This repet. o
A8 ramks Logona al splitters. Set thq
Rank 0: 583.11 kB B D e (3139 i++)
Rank 1; 5871 kB amph_free_list_grow picks[i*ntsamples/ng
Rank 2 5871 kB wverit_del internal imisheap-internalny | = IDX MIN;
Rank 3 S8.71 kb I B Other = IDX MAX;

Me

¥| Unexpected
284 127 © Show local ranks
® Show global ranks
[] only ranks with messages
Select communicator
B
MPI_COMM_WORLD I
MPI_COMM_SELF
MPI_COMM_NULL
Ll 1[+]
256 Show Diagram Key]
Update]
Text Communicator Queue Pointer From (local) | From (global) T (local) o (global)
1 |Receive: 0xB... MPI COMMUN... Receive ox0 149 405 113 369
2 |Receive: 0xB... MPI COMMUN... Receive 0x0 16 272 193 249
3 |Receive: 0xB... MPI COMMUN... Receive ox0 111 111 aa aa
4 | Receive: 0x@... MPI COMMUN... Receive ox0 174 430 252 508
g Bece D4 MPLCOUMIN R nen 130 . 151
<

<value optimized out>
——1065353216
<value optimized out>

L EFFE]

Visualise data

structures

rm

Arm MAP

Fle Edt View Metics Window Hebp

Profied: b ©on 64 processes, 4 nodes, 64 cores (1 per process) Sampled from: Fri 9. Sep 15:09:25 2016 for 59.3s
i _
MPI calls LN — i 7 et ¥ pes— e i — —— —_—

./hemelb_256p_2014-01-26_19-37.map - Allinea MAP - Allinea Forge 5.1-43967 21.9 k calls/s
File Edit View Metrics Window Help
Profiled: hemelb on 256 processes, 0 nodes Sampled from: Sun Jan 26 19:37:21 201<

0
MPI point-to-point [S— " e — —
20.7 k calls/s >

Main thread activity o .
15:09:55 (+30.791s, 52.0%): MPI point-to-point ranged from 10.0 k calis/s (rank 57) to 673k calis/s (rank 0) with mean 21.2 k calls/s and 5.d. 82.1k cals/s

CPU floating-point
149 %

Detect MPI load
imbalance

0
72|

Mamarv usana

Apphcation actinty

Main thread activity

Instructions e e e e e I - [«
164G /5 - - - . - - . s s o T R - e
° —_
L2 Cache Accesses e o e e e e i e T, e L -
3376/s - N e - T - - ~ - T — e —— -
° N
1 oo M 338 _ : - - - - - I
079G /s e - . e e T s e e — —— ———
. - R R - -
Mispredicted branch instructions *° — - !
szE o e e e e e~ B
o —_—
07:24:47-07:35:08 (620,719, 20.2% of total): Main thread compute 0.1 %, Pthreads 7.1 %, File /0 0.2 %, Syncheonisation %, Uncategorized 0.7 % Zoom®) = @
73 Vi
78 StepManager (Phase phases = 1, reporting::Timers * timers = NULL, bool separate concerns = false);
79
Understand CPU L= :
87 void Reaister(Phase phase. steps::Step step. Concern & concern. MethodLabel method): 3
Input/Output | Project Files = Main Thread Stacks | Functions |
u sag e Main Thread Stacks
Total core time A MPI Function(s) on line Source Position
= ¢ main { main.cc:16
File Edit View Metrics Window Help
Profiled: Discovar on 1 process, 1 node, 24 cores (24 per process) Sampled from: Wed jul 1 11:28:43 2015 for 478.1s Hide Metrics...

Application activity

ldentify regions
of high OpenMP
synchronisation

9 © 2017 Arm Limited a r m

Arm Performance Reports

10

© 2017 Arm Limited

MADbench2
16 processes, 1 node
a rm sandybridge2
PERFORMANCE Mon Nov 4 12:27:50 2013
otal time: 109 seconds (2 minutes)
REPORTS f ath Mtmp/MADbench2

12-core server / HDD / 16 readers + writers

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU 48% Time spent running application code. High values are usually good.
’ I This is low; it may be worth improving /O performance first.
Time spent in MPI calls. High values are usually bad.
MPIl 41.3% - This is average; check the MPI breakdown for advice on reducing it.
/o 53.9 Time spent in filesystem 1/O. High values are usually bad.
9% - This is high; check the IO breakdown section for optimization advice.

This application run was |/O-bound. A breakdown of this time and advice for investigating further is in the /O section below.

CPU

A breakdown of how the 4 5% total CPU time was spent:
Scalar numericops 4.9% |

Veclornumericops 0.1% |

Memory accesses 95.0% N

Other 0 |

The per-core performance is memory-bound. Use a profiler to
identify ime-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vedtorized.

110

A breakdown of how the 53 9% lotal /O time was spent:

Time in reads 7% |

Time in writes 9.3%

Estimated read rate 272 Mb/s [N

Estimated write rale 7.06 Mbis |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an 1O profiler to investigate which
write calls are affected.

MPI
Ofthe 41.3% total time spentin MPI calls:
Time in collective calls 100.0% I

Time in point-to-point calls 0.0% I

Estimated collective rate 4.07 bytes/s I

Estimated point-to-pointrate O bytes's |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [

Peak node memory usage 172% W

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

arm

Arm Performance Reports

Multi-threaded
parallelism

CPU
A breakdown of the 91.2% CPU time:
Single-core code 306% B

OpenMP regions %

Scalar numeric ops

nos |

Vector numeric ops

:/ parallelism
9.5% |

Memory accesses

MPI

The per-core perform|
identify time-consum

performance. Time in collective calls

No time is spent in v
compiler's vectorizat
be vectorized.

Time in point-to-point calls
Estimated collective rate

11 © 2017 Arm Limited

Estimated point-to-point rate

Of the 41.3% total time spentin MPI calls:

/0

A breakdown of h
Time in reads

Time in writes
Estimated read rate|
Estimated write rate|
Most of the time is ¢
transfer rate. This m

inefficient access p4
write calls are affect

Memory

Mean process memory usage

ow the 53 9% total I/O time was spent:

Per-process memory usage may also affect scaling:
160 Mb [N

Peak process mem

Peak node memory Lustre

The peak node men

Lustre file operations (per node)

All of the time is spent in col
This suggests a significant Iq
synchronization overhead. |
MPI profiler.

Energy

A breakdown of how the 32.3 Wh was used:
CPU 61.9% N

System 38.1%

Mean node power 94.1'W [N

Peak node power 95.0W [N

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

100.0% [the total number of Mean write |
0.0% | Load processes and morg
4.07 btes/s — . Peak write
07 bytes/s - imbalance Mean file o
0 bytes/s |
Mean metad
OpenMP
A breakdown of the 99.5% time in OpenMP regions:
Computation % - OM P
«— | A
synchronization 41.1% 1l eff|C|ency
Physical core utilization 100.0% [
« | System
system load 99.7% 1N — y

Significant time is spent synchronizing threads in parallel regions.

usage

Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

arm

+ + + + + + + + + + +

Irr]ba[anqe

+ + + + + * + *
+ + + + + + + + + + +
+ + + + + + + + + + +

2017 Arm Limited

arm

&+

Challenges

* Workload imbalance results in productivity loss

/

e Longer application
runtime

e Wasted CPU hours

project

e Less “science” done per

~

(4 sers

13 © 2017 Arm Limited

* Pressure to identify &
improve inefficient
workloads

e Translates the high
system usage into a need

(Administrators

for more hardware

N /

e Smaller return on
investment

* Increased hardware costs
to absorb the demand

e Bigger energy bill

arm

In practice

Worker 2

|
| |
worker 1. =L —
(&) (@] t
C C
> >
(7)) (V)]

14 © 2017 Arm Limited

arm

MPI and OpenMP imbalance

* Clues: excessive synchronization
- MPI collective calls with no actual data transfer
- Idle cores where threads are stuck in locks/mutexes

MPI
Of the 41.3% total time spentin MPI calls:
Time in collective calls 100.0% e

Time in point-to-point calls 0.0% |
Estimated collective rate 4.07 bytes/s 1IN <——
Estimated point-to-pointrate 0 bytes/s |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing
synchronization overhead. You can investigate this further with an
MPI profiler.

15 © 2017 Arm Limited

OpenMP

A breakdown of the 74.5% time in OpenMP regions:
Computation 53.6% [

Synchronization 46.4% BB +—
Physical core utilization 100.0% [

System load 78.0% IR

Significant time is spent synchronizing threads in parallel
regions. Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

arm

MPI imbalance: barrier

File Edit View Metrics Window Help

Profiled: slow f on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Tue Oct 2 2018 14:40:25 (UTC+01) for 51.7s

Main thread activity

CPU memory access
49.6 %

CPU fp vector
11.0 %

MPI call duration
5.78s

14:40:25-14:41:02 (37.372s, 72.3% of total): Main thread compute 60.7 %, MPI 39.3 %, File I/0 0.0 %

F slow.fo0 X

avg

Hide Metrics...

Time spent on line 111

zoom &1 = ®

106
107
108
109
110
a7.
2
=
2
39.

121

if(mod(pe,2).eq.0) then
do 1=1,50
do i=1,8000

ODO0Om

[v]

do j=1,7000
9 arr_out (i,)

sgrt(arr_in(i,j) - arr in(i,j)) + sqgrtlarr_in(i,j) + arr in(i,j))

arr_out (i,)
end do
end do
end do
else
=l do 1=1,50
B do j=1,7000
5] do i=1,8000
arr_out (i, J)
arr_out (i, J)
end do
end do
end do
endif

! wait for everyone

call MPI_BARRIER(MPI_COMM_WORLD, ierr}

if (pe == 0) print *,"stride answer",sum(arr_ out)

arr_out (i, j) * arr_out (i, j)

sgrt (arr_in (i, j)
arr_out (i, Jj)

— arr_in(i,j))
* arr_out (i, j)

+ sqrt(arr_in(i,j) + arr_in(i,j))

(]

Breakdown of the 47.8% time spent on this line:

Executing instructions 100.0%
Calling other functions 0.0%

Time in instructions executed:

——

Scalar floating-point 0.0%

Vector floating point 9.3%H

Scalar integer 0.0%

Memory access 90.7% I
Other instructions 0.0%

Showing data from 5,784 samples taken over 8 processes (723 per process)

16 © 2017 Arm Limited

Arm Forge 18.2.2 Connected to: mars & Main Thread View

arm

MPI imbalance: barrier

17

File Edit View Metrics Window Help

Profiled: slow f on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Tue Oct 2 2018 14:40:25 (UTC+01) for 51.7s

Main thread activity

CPU memory access
49.6 %

CPU fp vector
11.0 %

MPI call duration
5.78s

Hide Metrics...

14:40:25-14:41:02 (37.372s, 72.3% of total): Main thread compute 60.7 %, MPI 39.3 %, File I/0 0.0 %

F slow.fo0 X

Time spent on line 120

——

zoom &1 = ®

B

39.3%

130

121

ODO0Om

if(mod(pe,2).eq.0) then

do 1=1,50
do i=1,8000
do j=1,7000
arr_out (i, j)
arr_out (i,)
end do
end do
end do

sqrt (arr_in (i, j)
arr_out (i, Jj)

- arr_in(i,j)) + sqgrtlarr_in(i,j) + arr_in(i,]j))
* arr_out (i, j)

else

do 1=1,50
do 3=1,7000
do i=1, 8000

[v]

—

arr_out (i,7) sgrt (arr in(i,j) — arr_in(i,j)) + sgrt(arr in(i,j) + arr _in(i,q))

arr_out (i, J)
end do

end do
end do

arr_out (i, j) * arr_out (i, j)

endif

wait for everyone

call MPI_BARRIER(MPI_COMM_WORLD, ierr}

(pe == 0) print *,"stride answer",sum(arr out)

(]

Breakdown of the 8.1% time spent on this line:

Executing instructions 100.0%
Calling other functions 0.0%

Time in instructions executed:

Scalar floating-point 0.0%
Vector floating point 38.4% I
0.0%

Scalar integer

Memory access 61.6% I

Other instructions 0.0%

Showing data from 5,784 samples taken over 8 processes (723 per process)

© 2017 Arm Limited

Arm Forge 18.2.2 Connected to: mars & Main Thread View

arm

IO imbalance

File Edit View Metrics Window Help
Profiled: slow fon 8 processes, 1 node, 8 cores (1 per process) Samp

Main thread activity

CPU floating-point o I
21.2 %
[}
Lustre write rate D
51.8 MB/s

Lustre metadata operations 2

0.65 k /s

Lustre file opens 200

0.06 /s

o

23:39:15-23:40:20 (65.989s): Main thread compute 46.6 %, MPI 47.8 %, File /0 5.7 %

F slow.fo0 X

163
lo4
165

0.1% . 166 OPEN (UNIT=13, FILE="mat.dat", ACTION="write", STATUS="replace", FORM="unformatted")
s.ss ___ __ __ 161 WRITE (13) mat «
<0.1% 168 CLOSE (UNIT=13)
169 endif
170
29.8% ||] [] | [kl call MPI BARRIER (MPI COMM WORLD, ierr)
172
173 end subroutine chkpt
174

real (8) I

if(pe == 0) then

mat (10000, 10000)

Showing data from 8,000 samples taken over 8 processes (1000 per process)

18 © 2017 Arm Limited

Arm Forge 18.2.2 Connected to: mars & Main Thread View

arm

OpenMP imbalance: implicit synchronization

iEEI "J..;i..:n:i.l'_-cr o.o0
151 ENDIF
152
0.3%, . ve em i=m s+ 1. w 153 ener_flux{j.k)l-mass_flux_x{j.k] * (energyl (don
154
E u% 155 EMDDOC
LS Lkl el g £S5 MF END DO h
. ()\I(!f[\(?i!(i /, 157 ENDD
Multi-threaded . e
y_min,y_max
t t' SynChronlsatlon <0.1% , 1&0 !S50MP DO PRIVATE(pre_mass_s,post_mass_s,post_
Compu a |On 161 [00 jmx_min,x_max
0.2% .. T pre_mass_s=densityl{j. k) *pre_wvol{j.k]
0.2% .o L we o 163 post_mass_s=pre_mass_s+mass_Flux_x{j, k) -mas:
0. 0% et o e i 1EA post_ener_s={energyl{j, k) *pre_mass_s+ener_flu:
0.2% ., 185 advec_wol_s-pre_wol (j,k)+wol_flux_x{j, k] -wal
0.2% . 1&6& den=ityl{j,k)=post_ma==s_=/advec_wol_=
<0.1% | , 167 energyl {j. k) =post_ener_s
. . P 166 EMDDO
Application activity 248 il L st 269 o po <—
171
172 ELSEIF {dir.EQ.g_ydir) THEN
173
174 [IF (sweep_number . Bg. 1] THEH
- 175 = 00 k=y_min-2,y_max+Z
22:41:55-22:44:00 (125.788s): Main' thread compute 22.1 %, OpenM 176 '$oME Do
177 & DO je=x_min-2,x_msx+2
1 A T T & - pre_wolij.k)l=volume (j, k) +{wvol_flux_yij .k
<0.1% i . 179 post_wol i, kl-pre_wollj, k) - {wvol_flux_y i
1ED ENDDO

. LoB% Ll o dute Ll ig; :-.:::I-....:.:E- END DO h
Single-threaded 183

} k=y_min-2,y_maxt+

|

H <0.1% . 1B5 'E0ME DO
Computatlon 186 00 jm=x_min-2,x_max+2
Oor% il.. LBT pre_voli{j, k)l =volume{j, k) +wol_flux_y{j k-1
<0.1% , L. , 1EEB post_wol{j.k)l=volume{j. k)
1B9 ENDODOO
1A% Ll il 290 = END DO h
131
182 F
193
194 E| D0 k=y_min,y_max+2
<0.1% . . . tas[d !50MP DO PRIVATE (upwind, donor, downwind, dif, sigs

19 © 2017 Arm Limited z I I I i i

Understanding resource usage

* Memory accesses

Application activity

Application activity

CPU memory access 100 - — - P — — ax
59.7 % $___—— — ¥ — r— I — e MVI%

balancea mpbalancead

'F advec_mom_kernel.fo0 X | Time spent on line 177 ®
0.3% L AR - |/] !S0ME END DO (2] Breakdown of the 2.4% time spent on this line:
H =
s S Executing instructions 100.0% EEEG——
176 B 00 jox_min, x_max+1 calling other functions 0.0%
2088 | it Lo s };; 3[\]‘[’\;%1 (i, kl=(vell (,k)"node mass pre(j, k) +mom Flux(j-1 k} mom flux(j k)) /node mass post (i k) Time in instructions executed:
179 DDO . .
Scalar floating-| 14 0.0%
0.2t |, ,180 15017 END DO caar floating-point
181 (direction.EQ.2) Vector floating point 72.4% I
}SL; = (wEichE\Sel.m. 1) Scalar integer 0.0%
184 B key_min-2,y_max:2 Vector integer 0.0%
18568 min,x_max+1 Memory access* 97.4% I
186 ! nd staggered mesh mass fluxes and nodal masses and volumes. Branch -
0.3% e 187 8 node_flux (], k)=0.25_8% (mass_flux_y (j-1,k)+mass_flux_y(j ,k) & ! .)
1.0% ,, gL . .1l 188 smass_flux_y(i-1,k=1)+mass_flux v (3 ,k=1)) Other instructions 0.0%
igg e * 27.6% memory access instructions, 69.8% implicit
<0.1% | 191 END DO | memory accesses in other instructions, also counted in
S ‘ 192 o L their categories
193 8 _min-1,y_max+2 L4
1848 DO j=x_min,x_max+1
0.4% L = | nods_mass_post (3,k)=0.25_8% (densityl(§ ,k-1)*post_vol(j ,k-1) &
0.7% . v wiiar e o, 196 +densityl(j ,k)*post_wvol(j ,k) &
<0.18 |, . 197 +densityl(j-1,k-1) *post_vol(j-1,k-1) &
L R . 198 +densityl (3-1,k) *post_vol(i-L,k 1))
120%, 0 aow o oS node_mass_pre (j, k) =node_mass_post (j, k) -node_flux(j, k-1) +node_flux(j, k) =
200 o inlale) L4

20 © 2017 Arm Limited

+ + + + + + + + + + +

Ve+cto+riza+tiop

+ + + + * + *
+ + + + + + + + + + +
+ + + + + + + + + + +

© 2017 Arm Limited

arm

&+

Analyze the results

Summary: clover_leaf is Compute-bound in this configuration

Running Performance Reports

with Cloverleaf using 8 MPI tasks | compute os.ox | T o e e e o ot 820
indicates that:

Time spent in MPI calls. High values are usually bad.
6.6% I L b .
This is very low; this code may benefit from a higher process count

MPI

° T|me Spent in Scalar OpS is 147% |/O 0.0% ‘ Time spent in filesystem 1/0. High values are usually bad.

This is negligible; there's no need to investigate 1/0 performance

« Time Spent in vector ops 18.9% This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU = MPI

A breakdown of the 93.4% CPU time: A breakdown of the 6.6% MPI time:

Scalar numeric ops 14.7% [l Time in collective calls 20.9% W

Vector numericops 18.9% B <@ Time in point-to-point calls 79.1% 1N

Memory accesses 66.3% N Effective process collective rate 1.55 kB/s |
Effective process point-to-point rate 33.1 MB/s [

The per-core performance is memory-bound. Use a profiler to

identify time-consuming loops and check their cacha parformancs. Most of the time is spent in point-to-point calls with a low transfer

Little time is spent in vectorized instructions. Check the compiler's rate. This can be caused by inefficient message sizes, such as many
vectorization advice to see why key loops could not be vectorized. small messages, or by imbalanced workloads causing processes to
walit.

< /jf'll 1/
22 © 2017 Arm Limited a rh “J

How much of the code is vectorized?

Profiled: clover leaf on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu May 10 2018 10:05:51 (UTC+01) for|151.2s | ¢=——

File Edit View Metrics Window Help
Profiled: clover leaf on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu May 10 2018 10:05:51 (UTC+01) for 151.2s Hide Metrics...

Main thread activity

CPU floating-point 1oo

330 %

CPU fp vector 100

ﬁ 19.0 %

1]
Memory usage 65
763 MB
o
10:05:51-10:08:22 (151.229s): Main thread compute 93.8 %, MPl 6.2 % Zoom 1
Main Thread Stacks Main Thread Stacks
- | | N " Total core time TIMP\ IFunchnn{s) on line ISnurce
Total core time | MPI Functlon{s} on line Source T = clover leaf [program]
=& clover_leaf [program] & # clover_leaf PROGRAM clover_leaf
B ¢ clover |eaf PROGRAM clover_leaf Bhydro) CALL hydro
q - = advection_module::advection CALL advecticon()
533% Wm d : - - Eladvec_mom_driver_module: . CABLL advec_mom_driver(tile, xvel,direction, sweep_number)
16.5% |l sl ol Bl 2. 8% mestep_module:timestep CALL timestep|) el 11-1% bkl v
10.2% itttk i Lhad iy ©. 5% pdv_module::pdv CALL PAV({.TRUE.) 10.2% il b ’“‘I'”“‘ il gVEC_mﬂ”madﬂver_mgdlule 2 CALL advec mem_driver (tile, xvel,direction, sweep number)
. - . 8% Lyl ol advec_cell_driver_module::advec_... CALL advec_cell_driver (tile,sweep_number,direction)
6.4% ‘""'|'"‘||"""I"'"i""'"|'"”'Il"'hI"|"i|"‘I'u'""m'h'"l' 0.7% pdv_module::pdv CALL PAV(.FALSE.) 9.1% e ——————— advec_cell_driver_module:.advec_ ... CALL advec_cell_driver (tile,sweep_number,dirsction)
4.9%, 3 b e i ccelerate_module::accelerate CALL accelerate() 7.1% sk sttubothant ok advec_mom_driver_moduleadvec. .. CALL advec_meom_driver (£ile, ywel,direction, sweep number)
A.2% ottt bttt bk eset_field_module:reset field CALL reset_field() 6.6% il I Dttt advec_mom_driver_module::advec... CALL advec_mom_driveritile,yvel,direction, sweep_number)
3AY ux_calc_module: ﬂux_calc CALL flux_calc() :cl’;:’}o ;p;:i;t:l:sha\oimodule..updateihalo CALL update_halcifislds,2)
9%
12%' [R R 4 others 12.2% I ' Ftimestep_module: timestep CALL timestep(}
10.2% . rath ool il 0.4% # pdv_module::pdv CALL PAV(.TRUE.}
6.5% py bbbt balbbkoe, 0.7 % #pdv_module:pdv CALL P4V (.FALSE.)
4.8% il danLanliarfuatldi k| tdaccelerate_module::accelerate CALL accelerate()
42% mEreset field_module::reset_field CALL reset_field()
4.2% 1l " @ flux_cale_module: flux_calc CALL flux_calci)
0.6% P T T I 3 others
0.6%| B 1 other

Showing data from 8,000 samples taken over & processes (1000 per process)

23 © 2017 Arm Limited

Where is the code vectorized?

1E3 | F advec_mom_driverfoo || F advec_mom_kernel f90 [] F— Time spent on line 159 & x
i:'l' dlf denor Breakdown of the 0.1% time spent on this line:
152 upwind=9-1 Executing instructions 100 0% R
= donor=j Calling other functions ~ 0.0%
154 downwind=j+1
155 dif=upwind Time in instructions executed:
156 ENDIF : :
Scalar floating- t 63.6% I
157 sigma=ABS (node_flux(j,k))/ (node_mass_pre (donor, k catartioa .r'lg pCII.r‘I)
158 width-celldx () Vector floating point 0.0% <
153 vdiffuw=vell(donor, k) vell (upwind, k) C—— oo integer 12.2% I
1&0 vdiffdw=vell (downwind, k) -vell (donor,k)] - =
161 limiter=0.0 Vector integer - <
162 B [Fi{vdiffuw*vdiffdw.GT.0.0) THEN Memory access* B1.8% I
163 auw=ABS (vdiffuw) Branch
164 adw=ABS (vdi ffdw) . . .
165 wind=1.0_8 Other instructions 0.0%
166 [F(vdiffdw.LE.0.0) wind=-1.0_% * 18.2% memory access instructions, 63.6% implicit memory accesses in other
167 limiter-wind*MIN (width* {(2.0_8-sigma) *adw/widt| instructions, also counted in their categories
168 ENDIF
159 advec_wvel_s=vell(donor,k)+(l.0-sigma) *limiter
170 mom_flux(j,k)=advec_vel_s*node_flux(j, k)
171 I
172 El
173 1
174 I

24 © 2017 Arm Limited

Follow Performance Reports advice

25

advec_mom_kernel.f90

144 DO k=y_min,y_max+1
145 DO j=x_min-1,x_max+]l C——
146 IF(node_flux(j,k).LT.0.0)THEN

147 upwind=j+2
148 donor=j+1

149 downwind=j
150 dif=donor

151 ELSE

152 upwind=j-1
153 donor=j

154 downwind=j+1
155 dif=upwind
156 ENDIF

157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k))
158 width=celldx(j)

159 vdiffuw=vell(donork)-vell(upwind, k) ———
160 vdiffdw=vell(downwind,k)-vell(donor,k)

© 2017 Arm Limited

-fopt-info-vec-missed

advec_mom_kernel.f90:145

note: not vectorized: control flow in loop

advec_mom_kernel.f90:145:

note: bad inner-loop form.

advec_mom_kernel.f90:145

note: not vectorized: Bad inner loop.

advec_mom_kernel.f90:145:

note: bad loop form.

Analyzing loop at advec_mom_kernel.f90:145

advec_mom_kernel.f90:145

note: not vectorized: control flow in loop

advec_mom_kernel.f90:145:

note: bad loop form.

How well is the compiler vectorizing?

advec_mom_kernel.f90

144 DO k=y_min,y_max+1 -qopt-report=2

145 DO j=x_min-1,x_max+]l C——

146 IF(node_flux(j,k).LT.0.0)THEN LOOP BEGIN at advec_mom_kernel.f90(145,9)
147 upwind=j+2 <Peeled loop for vectorization>

148 donor=j+1 remark #25456: Number of Array Refs Scalar Replaced In Loop: 2
149 downwind=j LOOP END

150 dif=donor

151 ELSE LOOP BEGIN at advec_mom_kernel.f90(145,9)
152 upwind=j-1 remark #15300:|LOOP WAS VECTORIZED|
153 donor=j LOOP END

154 downwind=j+1

155 dif=upwind LOOP BEGIN at advec_mom_kernel.f90(145,9)
156 ENDIF <Remainder loop for vectorization>

157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k)) LOOP END

158 width=celldx(j)
159 vdiffuw=vell(donor,k)-vell(upwind,k)
160 vdiffdw=vell(downwind,k)-vell(donor,k)

26 © 2017 Arm Limited

Analyze the results

Running Performance Reports
with CloverLeaf using 8 MPI tasks
indicates that:

- Time spent in scalar ops is 4.8%

- Time spent in vector ops 28.2%

27 © 2017 Arm Limited

Summary: clover_leaf is Compute-bound in this configuration

C 92.9% _ Time spent running application code. High values are usually good.
OmDUte : This is very high; check the CPU performance section for advice

MPI 7 1% I Time spent in MPI calls. High values are usually bad.

) This is very low; this code may benefit from a higher process count
1/0 0.0% ‘ Time spent in filesystem /0. High values are usually bad.
/) This is negligible; there's no need to investigate 1/0 performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU MPI

A breakdown of the 92.9% CPU time: A breakdown of the 7.1% MPI time:

Scalar numericops 4.8% | Time in collective calls 24.4% B

Vector numericops 28.2% [l < Time in point-to-point calls 75.6% [N

Memaory accesses 67.0% R Effective process collective rate 1.35 kB/s |
Effective process point-to-point rate 33.9 MB/s |

The per-core performance is memory-bound. Use a profiler to

identify time-consuming loops and check their cache performance. Most of the time is spent in point-to-point calls with a low transfer

rate. This can be caused by inefficient message sizes, such as many
small messages, or by imbalanced workloads causing processes to
wait.

W
SN
o

a rF’I)

Where is the code vectorized?

Profiled: clover leaf on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu May 10 2018 09:41:23 (UTC+01) for 143.65 <

Time spent on line 159 ® X
02 | F advec_mom_driverfoo | | F advec_mom_kernel.fao [£] |
1: upwind=j-1 . . .
e B Breakdown of the 0.4% time spent on this line:
_di upwind

S Ing i ' % I
| sigma=ABS (node_flux(j,k))/ (node_mass_pre (donor,k)) ExECUtlng Instru':tluns 1':”:”:' A0
158 width=celldx (i) . 5
, 159 vdiffuw—vellid k) —vell] wind, k) ﬁ l:!_."
e Calling other functions 0.0%
limiter=0.0

- RS (ran it O Time in instructions executed:
adw=ABS (vdiffdw)
wind=1.0_8 5 5 .
[F(vdiffdw.LE.0.0) wind=-1.0_8 Scalar ﬂuatlng-pulnt 0.0%

limiter=wind*MIN (width* ([2.5_8 sigma) *adw/width+ (1.0_8+sigma) *auw/celldx(dif)) /6.0_8, auw, adw)

EE::c.i.‘Jé-:_‘xel_s vell (donor,k)+(1.0-sigma) *limiter UECtﬂr ﬂﬂahng pulnt L .0 _ <
m.om_flux (J,k)=advec_vel_s*node_flux(j, k) .
' Scalar integer 0.0%

3 ! i END DO
1] i Do 1
58 DO k=y_min,y_max+1l UECtDr |ntEgEr i
76 3 [j=x_min,x_max+1
j vell (3,k)=(wvell (j,k)*node_mass_pre(j,k)+mom_f£flux(j-1,k)-mom_f£flux(j, k)) node_mass_post (i, k) Memuw ECCEEE |:_:::

BN 00 . Branch

Fidirection.EQ.2)"

152 B [F (which_wvel.EQ.1) THEN . .
183 1 50MF DO Other instructions
154 = DO k=y_min-2,y maxtz2 Main Thread Stacks
o El - J=x_min,x_max+l Total core time TlMPI
Main Thread Stacks
Total core time 5 | MPI |Function(5) on line Source
B & clover_leaf [program] 1.0-9% btk | 1om_driver_mo . g ,dire :)
B # clover_leaf PROGRAM clover_leaf 9.7% it om bl bl dvec_mom_driver_mo _-.. CALL advec_mom_driver (tile,xvel,direction, sweep_number|
- hydro CALL hydr 8.9% wunluihi ool dvec_cell_driver_module::advec_ce... CALL advec cell driveritile, sween number,direction)
Hhy — - — = e - . 8.5% gl bood gl it dvec_cell_driv_er_module::advec_ce... CALL advec_cell driver(tile, sweep_number,direction)
56.6% W] ection_module 3 dvection ALL adwection() 6.8% oLkl oo advec_mom _driver_module::advec .. CALL adves mem driver (kils,yvel,dirsction, swesp _numbsr)
2. 2% gt G) 3.2% timestep_module:timestep CALL timestep() 6.2% Lyt it Bl ad\éEC_n’r\]o‘m_drI:er‘_mod;IE::a:\!IEC_-- CALL advec_mem driver (tile,yvel,direction, sweep number)
" .. - . 1.5% 1.4% Hupdate_hale_module::update_halo CALL update_halo(fields,2)
10.2% kaluultinobmolbohbyhanandnly ©-4% pdv_medule::pdv CALL PdV{(.TRUE.) : : e -
. - | ! 2 others
6.5% I||.I||||||||I.I||IJI|||iII|I|||||l|InI|I|I|.|IInIllmlllulhlul.l||I|.Il.|.| 0.7% pdv_module::pdv CALL PdAV(.FALSE.) ! 2.8% #timestep_module: timestep CALL timestep()
A4-8% 0t Do i accelerate_module :accelerate CALL accelerats() 10.2% il s bohtblbian iy 0.5% @ pdv_module: pdv CALL 2aV(.TRUE.)
8.2% et 1 el ok i i eset field module::reset field CALL reset_field() 6.4% iyttt b b 0.7 % # pdv_module:pdy CALL PdV(.FALSE.)
il - it = 4.9% |l b e) Waccelerate_ module::accelerate CALL accelerat=()
4.2% bl o0t kel ux_calc_module:flux_cale CALL flux ecalci) B T Hreset_field_module:reset field CALL reset_fisld()
6% [T S B BT | 3 others blthoans bl il @ flux_calc_module:flux_calc CALL flux_calc()
Showing data from 8,000 samples taken over 8 processes (1000 per process) cen el @4 others

28 © 2017 Arm Limited

Thank Youl!
ERI'EL
Merci
W57 |
HYMED!
Gracias!
Kiitos!

