
© 2017 Arm Limited

Arm cross-
platform tools

VI-HPS platform

October 16, 2018

© 2017 Arm Limited 2

An introduction to Arm

Arm is the world's leading semiconductor intellectual
property supplier

We license to over 350 partners: present in 95% of smart phones,
80% of digital cameras, 35% of all electronic devices, and a total of
60 billion Arm cores have been shipped since 1990

Our CPU business model:

License technology to partners, who use it to create their own
system-on-chip (SoC) products

• We may license an instruction set architecture (ISA) such as
“Armv8-A”

• or a specific implementation, such as “Cortex-A72”

Partners who license an ISA can create their own implementation,
as long as it passes the compliance tests

…and our IP extends beyond the CPU

© 2017 Arm Limited 3

Leading in wearables and
the Internet of Things

Driving the transformation of
the network and data center to
an Intelligent Flexible Cloud

~85% share of
laptops, tablets,
and
smartphones

Partnering to deliver
data center efficiencyTaking mobile computing

to the next four billion people

Enabling innovation and creativity
with embedded intelligence

ARM’s mission
▪ Deploy energy-efficient ARM-based technology, wherever computing happens…

© 2017 Arm Limited 4

HPC strategy

Enablement
▪ Address gaps in computational capability

and data movement within Architecture

▪ Seed the software ecosystem with open
source support for Armv8 and SVE
libraries, tools, and optimized workloads

▪ Provide world class tools for compilation,
analysis, and debug at large scale

Co-Design
▪ Work with key end-customers in DoE,

DoD, RIKEN, and EU to design balanced
architecture, uArchitecture and SoCs
based on real-world workloads, not
benchmarks

▪ Develop simulation and modelling tools to
support co-design development with end-
customers, partners, and academia

Partnership
▪ Work with Architecture partners to bring

optimized solutions to market quickly

▪ Work with ATG & uArchitecture design
teams to steer future designs to be more
relevant for HPC, HPDA, and ML

▪ Work with key ISVs to enable mid-market

Mission:
Enable the world’s first Arm supercomputers

Enablement + Co-Design + Partnership

Strategy:
Strategy:

Enablement + Co-Design + Partnership

Building Blocks

© 2017 Arm Limited

Arm Allinea Studio

© 2017 Arm Limited 6

+ Arm-only Compiler
and Libraries

Cross-platform debug
and profile tools

Meets the requirements of HPC developers on Arm

| New commercial bundle

© 2017 Arm Limited 7

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2017 Arm Limited 8

DDT

Switch between
OpenMP threads

Display pending
communications

Visualise data
structures

Integrate to
continuous

integration tools

© 2017 Arm Limited 9

Arm MAP

Detect MPI load

imbalance

Identify regions

of high OpenMP

synchronisation

Understand CPU

usage

© 2017 Arm Limited 10

Arm Performance Reports

Very simple start-up

Fully scalable, very low overhead

Rich set of metrics

Powerful data analysis

© 2017 Arm Limited 11

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency

System
usage

Arm Performance Reports

© 2017 Arm Limited

Imbalance

© 2017 Arm Limited 13

Challenges

• Workload imbalance results in productivity loss

• Longer application
runtime

• Wasted CPU hours

• Less “science” done per
project

End-users

• Pressure to identify &
improve inefficient
workloads

• Translates the high
system usage into a need
for more hardware

System
Administrators • Smaller return on

investment

• Increased hardware costs
to absorb the demand

• Bigger energy bill

System
Owners

© 2017 Arm Limited 14

In practice

A

C

B

D E

F

A

B C D

E

F

sy
n

c

sy
n

c t
Worker 1

Worker 2

idle

© 2017 Arm Limited 15

MPI and OpenMP imbalance

• Clues: excessive synchronization
• MPI collective calls with no actual data transfer
• Idle cores where threads are stuck in locks/mutexes

© 2017 Arm Limited 16

MPI imbalance: barrier

max

min
avg

max

min
avg

© 2017 Arm Limited 17

MPI imbalance: barrier

© 2017 Arm Limited 18

IO imbalance

© 2017 Arm Limited 19

OpenMP imbalance: implicit synchronization

Multi-threaded
computation

Single-threaded
computation

Overhead /
Synchronisation

© 2017 Arm Limited 20

Understanding resource usage

• Memory accesses

Avg
Min

Max

Balanced Imbalanced

© 2017 Arm Limited

Vectorization

© 2017 Arm Limited 22

Analyze the results

Running Performance Reports
with CloverLeaf using 8 MPI tasks
indicates that:

• Time spent in scalar ops is 14.7%

• Time spent in vector ops 18.9%

© 2017 Arm Limited 23

How much of the code is vectorized?

© 2017 Arm Limited 24

Where is the code vectorized?

© 2017 Arm Limited 25

Follow Performance Reports advice

advec_mom_kernel.f90
...
144 DO k=y_min,y_max+1
145 DO j=x_min-1,x_max+1
146 IF(node_flux(j,k).LT.0.0)THEN
147 upwind=j+2
148 donor=j+1
149 downwind=j
150 dif=donor
151 ELSE
152 upwind=j-1
153 donor=j
154 downwind=j+1
155 dif=upwind
156 ENDIF
157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k))
158 width=celldx(j)
159 vdiffuw=vel1(donor,k)-vel1(upwind,k)
160 vdiffdw=vel1(downwind,k)-vel1(donor,k)
...

-fopt-info-vec-missed

advec_mom_kernel.f90:145: note: not vectorized: control flow in loop.
advec_mom_kernel.f90:145: note: bad inner-loop form.
advec_mom_kernel.f90:145: note: not vectorized: Bad inner loop.
advec_mom_kernel.f90:145: note: bad loop form.
Analyzing loop at advec_mom_kernel.f90:145

advec_mom_kernel.f90:145: note: not vectorized: control flow in loop.
advec_mom_kernel.f90:145: note: bad loop form.

© 2017 Arm Limited 26

How well is the compiler vectorizing?

advec_mom_kernel.f90
...
144 DO k=y_min,y_max+1
145 DO j=x_min-1,x_max+1
146 IF(node_flux(j,k).LT.0.0)THEN
147 upwind=j+2
148 donor=j+1
149 downwind=j
150 dif=donor
151 ELSE
152 upwind=j-1
153 donor=j
154 downwind=j+1
155 dif=upwind
156 ENDIF
157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k))
158 width=celldx(j)
159 vdiffuw=vel1(donor,k)-vel1(upwind,k)
160 vdiffdw=vel1(downwind,k)-vel1(donor,k)
...

-qopt-report=2

LOOP BEGIN at advec_mom_kernel.f90(145,9)
<Peeled loop for vectorization>

remark #25456: Number of Array Refs Scalar Replaced In Loop: 2
LOOP END

LOOP BEGIN at advec_mom_kernel.f90(145,9)
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at advec_mom_kernel.f90(145,9)
<Remainder loop for vectorization>
LOOP END

© 2017 Arm Limited 27

Analyze the results

Running Performance Reports
with CloverLeaf using 8 MPI tasks
indicates that:

• Time spent in scalar ops is 4.8%

• Time spent in vector ops 28.2%

© 2017 Arm Limited 28

Where is the code vectorized?

2929

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

© 2017 Arm Limited

