

MAQAO **Performance Analysis and Optimization Tool**

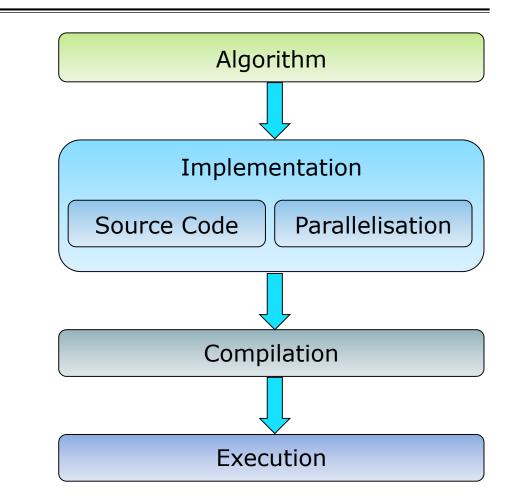
<u>Cédric VALENSI</u>, Emmanuel OSERET, Youenn LEBRAS {cedric.valensi, emmanuel.oseret, youenn.lebras}@uvsq.fr Performance Evaluation Team, University of Versailles S-Q-Y Andres S. CHARIF RUBIAL - ascr@pexl.eu - PeXL http://www.maqao.org

Performance analysis and optimisation

How much can I optimise my application?

- Can it actually be done?
- What would the effort/gain ratio be?

Where can I gain time?


• Where is my application wasting time?

Why is the application spending time there?

- Algorithm, implementation or hardware?
- Data access or computation?

How can I improve the situation?

- In which step(s) of the design process?
- What additional information do I need?

A multifaceted problem

Pinpointing the performance bottlenecks

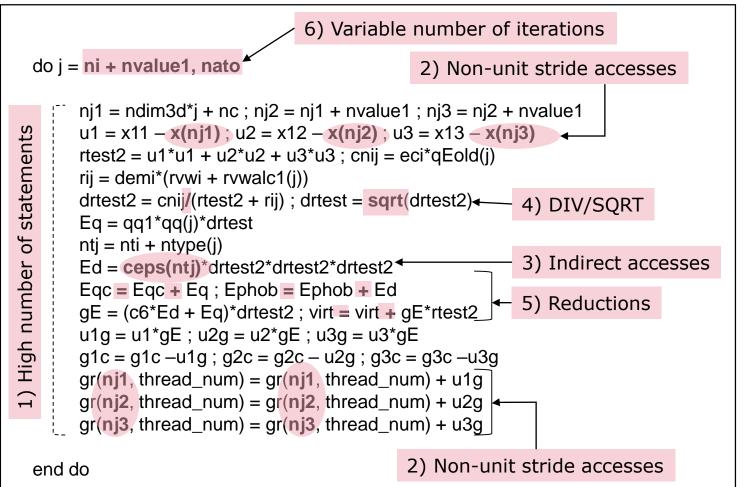
Identifying the dominant issues

Algorithms, implementation, parallelisation, ...

Making the **best use** of the machine features

- Complex multicore and manycore CPUs
- Complex memory hierarchy

Finding the **most rewarding** issues to be fixed


- 40% total time, expected 10% speedup
 - ➡ TOTAL IMPACT: 4% speedup
- 20% total time, expected 50% speedup
 - → TOTAL IMPACT: 10% speedup

=> Need for dedicated and complementary tools

Motivating example

Code of a loop representing ~10% walltime

Source code and associated issues:

- 1) High number of statements
- 2) Non-unit stride accesses
- 3) Indirect accesses
- 4) DIV/SQRT
- 5) Reductions
- 6) Variable number of iterations

MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:

- Characterizing performance of HPC applications
- Focusing on performance at the core level
- Guiding users through optimization process
- Estimating return of investment (R.O.I.)

Characteristics:

- Modular tool offering complementary views
- Support for Intel x86-64 and Xeon Phi
 - ARM under development
- LGPL3 Open Source software
- Developed at UVSQ since 2004
- Binary release available as static executable

Partnerships

MAQAO was funded by UVSQ, Intel and CEA (French department of energy) through Exascale Computing Research (ECR) and the French Ministry of Industry through various FUI/ITEA projects (H4H, COLOC, PerfCloud, ELCI, etc...)

Provides core technology to be integrated with other tools:

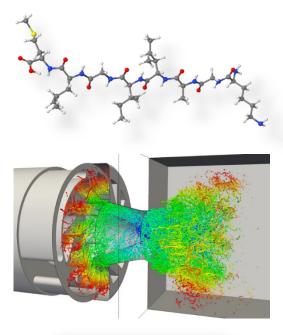
- TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
- ATOS bullxprof with MADRAS through MIL
- Intel Advisor
- INRIA Bordeaux HWLOC

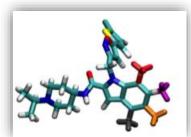
PeXL ISV also contributes to MAQAO:

- Commercial performance optimization expertise
- Training and software development

 $\mathcal{O}\mathcal{O}$

MAQAO team and collaborators


- Prof. William Jalby
- Prof. Denis Barthou
- Prof. David J. Kuck
- Andrés S. Charif-Rubial, Ph D
- Jean-Thomas Acquaviva, Ph D
- Stéphane Zuckerman, Ph D
- Julien Jaeger, Ph D
- Souad Koliaï, Ph D
- Cédric Valensi, Ph D
- Eric Petit, Ph D
- Zakaria Bendifallah, Ph D
- Emmanuel Oseret, Ph D
- Pablo de Oliveira, Ph D


- Tipp Moseley, Ph D
- David C. Wong, Ph D
- Jean-Christophe Beyler, Ph D
- <u>Mathieu Tribalat</u>
- <u>Hugo Bolloré</u>
- Jean-Baptiste Le Reste
- Sylvain Henry, Ph D
- Salah Ibn Amar
- Youenn Lebras
- Othman Bouizi, Ph D
- José Noudohouenou, Ph D
- Aleksandre Vardoshvili
- Romain Pillot

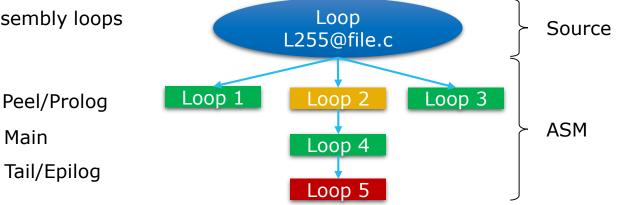
Success stories

MAQAO was used for optimizing industrial and academic HPC applications:

- QMC=CHEM (IRSAMC)
 - Quantum chemistry
 - Speedup: > 3x
 - Moved invocation of function with identical parameters out of loop body
- Yales2 (CORIA)
 - Computational fluid dynamics
 - Speedup: up to 2.8x
 - Removed double structure indirections
- Polaris (CEA)
 - Molecular dynamics
 - Speedup: **1.5x 1.7x**
 - Enforced loop vectorisation through compiler directives
- AVBP (CERFACS)
 - Computational fluid dynamics
 - Speedup: 1.08x 1.17x
 - Replaced division with multiplication by reciprocal
 - Complete unrolling of loops with small number of iterations

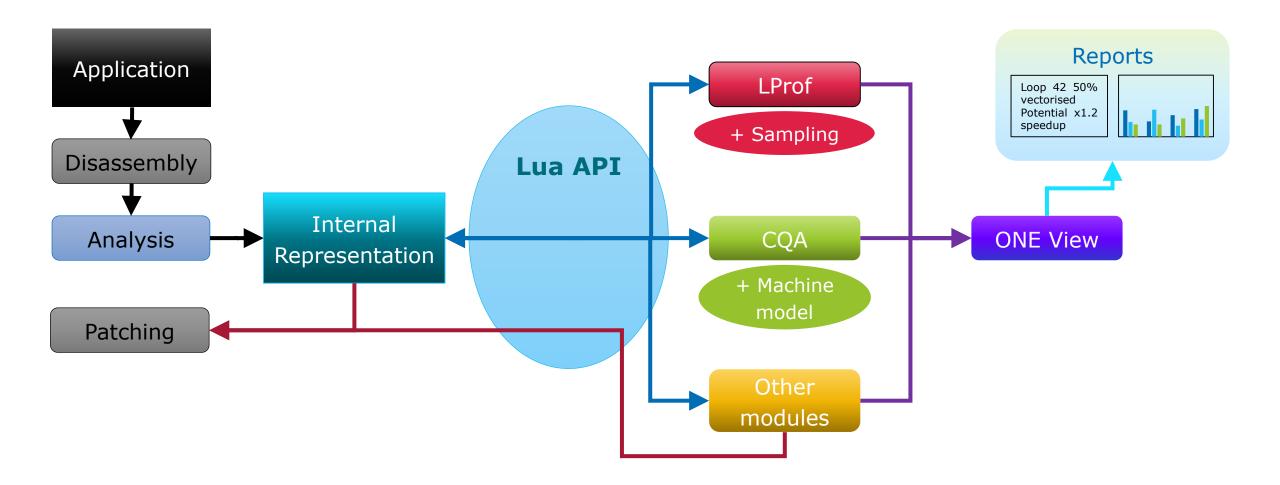
Analysis at binary level

Advantages of binary analysis:

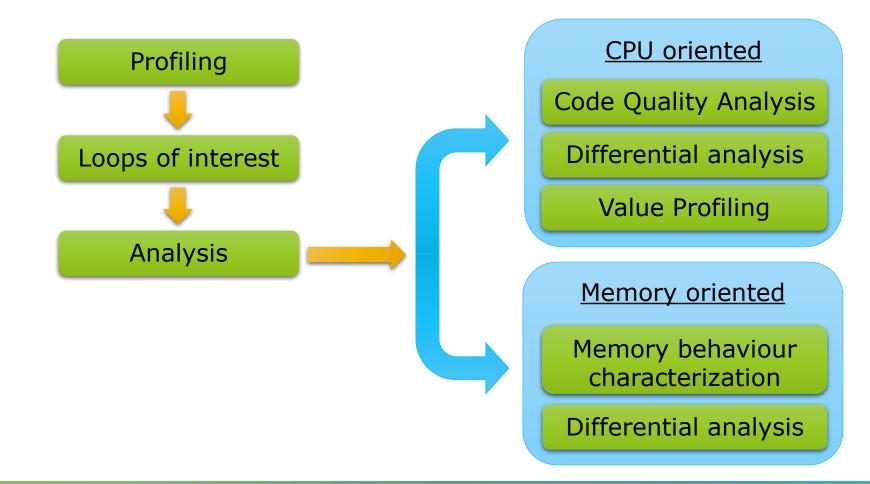

- Compiler optimizations increase the distance between the executed code and the source
- Source code instrumentation may prevent the compiler from applying some transformations

Main

We want to evaluate the "real" executed code: What You Analyse Is What You Run


Main steps:

- Reconstruct the program structure
- Relate the analyses to source code
 - A single source loop can be compiled as multiple assembly loops
 - Affecting unique identifiers to loops


VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Main structure

MAQAO Methodology

Decision tree

MAQAO LProf: Lightweight Profiler

Goal: Lightweight localization of application hotspots

Features:

- Sampling based
- Access to hardware counters for additional information
- Results at function and loop granularity

Strengths:

• Non intrusive: No recompilation necessary

Low overhead

Agnostic with regard to parallel runtime

MACAO Global Application Functions

Loops Help

Inctions and Loops

Right-click on a line to display the associated load balancing. Double click on a loop to display its analysis details.

Name						Module	<u>.</u>	Coverage (%)	Time (s)	Nb Threads	Deviation
 binvcrhs 						bt-mz.C.		23.19	13.66	64	1.73
▼ y_solve						bt-mz.C.	16	13.09	7.71	64	1.08
Loop 204 - y_solve.f:53-407 - bt-mz.C.16								12.84	7.56		
Loop 205 - y_solve.f:54-407 - bt-mz.C.16								12.84	7.56		
Loop 207 - y_solve.f:54-398 - bt-mz.C.16								12.84	7.56		
 Loop 211 - y_solve.f:145-307 - bt-mz.C.16 								7.06	4.16		
 Loop 213 - y_solve.f:55-137 - bt-mz.C.16 								4.43	2.61		
 Loop 206 - y_solve.f:394-398 - bt-mz.C.16 								0.88	0.52		
 Loop 209 - y_solve.f:337-360 - bt-mz.C.16 								0.33	0.19		
 Loop 210 - y_solve.f:145-307 - bt-mz.C.16 								0.09	0.05		
 Loop 212 - y_solve.f:55-137 - bt-mz.C.16 								0.05	0.03		
► x_solve						bt-mz.C.	16	12.49	7.35	64	1.02
 _INTERNAL_25src_kmp_barrier_cpp_ce635104::l kmp_info*, int, int, void*) 	kmp_hyper_b	arrier_r	elease(ba	rrier_typ	е,	libiomp5.	so	12.36	7.28	64	8.22
▶ matmul sub						bt-mz.C.	16	11.95	7.04	64	0.92
► z_solve						L		0.00	4 70	~ •	A 57
► compute_rhs					b	ot-mz.C.16 -	Loop (211			
▶ matvec_sub											
 MPIDI_CH3I_Progress 	٦										
◦ binvrhs						la sa s i					
► Ihsinit	7 -										
► add#omp_loop_0				_							
 system_call_after_swapgs 	6-										
 _INTERNAL_25src_kmp_barrier_cpp_ce635104; 	°-										
kmp_info*, int, int, void (*)(void*, void*), void*)											
 sysret_check 	5-										
okmp_yield											
 apic_timer_interrupt 	4 -										
 kmp_yield apic_timer_interrupt copy_x_face#omp_loop_0 											
► exact_solution	3-										
 update_curr 	3-										
 _audit_syscall_entry 											
◦schedule	2 -										
 task_tick_fair 											
copy_y_face#omp_loop_0	1-										
 cpuacct_charge 							TIL				
 intel_pstate_update_util 		TIII									
 ktime_get 		30954	30937	30983	30877 3	0942 30971	30979	30882 3	0940 309	37 30981	30887
						MAOAO thre	ad rank	C C			

MAQAO CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance

Features:

- Evaluates the **quality** of the compiler generated code
- Returns hints and workarounds to improve quality
- Focuses on loops
 - In HPC most of the time is spent in loops
- Targets compute-bound codes

Static analysis:

- Requires no execution of the application
- Allows cross-analysis

Static Reports

▼ CQA Report

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve.f:415-423

▼ Path 1

2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz)) gain potential hint expert

Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them, you can lower the cost of an iteration from 65.00 to 57.00 cycles (1.14x speedup).

Workaround

- Try to reorganize arrays of structures to structures of arrays
- Consider to permute loops (see vectorization gain report)
- To reference allocatable arrays, use "allocatable" instead of "pointer" pointers or qualify them with the "contiguous" attribute (Fortran 2008)
- For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b before this loop

Vectorization

Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

Workaround

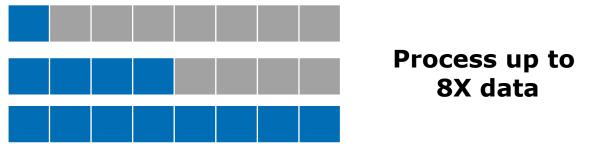
- Try another compiler or update/tune your current one:
- use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences", try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient", try the VECTOR ALWAYS directive.
- Remove inter-iterations dependences from your loop and make it unit-stride:
 - If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i do j a(i,j) = b(i,j) (slow, non stride 1) => do i do j a(j,i) = b(i,j) (fast, stride 1)
 - If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i a(i)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks.

MAQAO CQA: Main Concepts

Most of the time, applications only exploit at best 5 to 10% of the peak performance.


Main elements of analysis:

- Peak performance
- Execution pipeline
- Resources/Functional units

Key performance levers for core level efficiency:

- Vectorizing
- Avoiding high latency instructions if possible
- Having the compiler generate an efficient code
- Reorganizing memory layout

Same instruction – Same cost

MAQAO CQA: Compiler and programmer hints

Compiler can be driven using flags and pragmas:

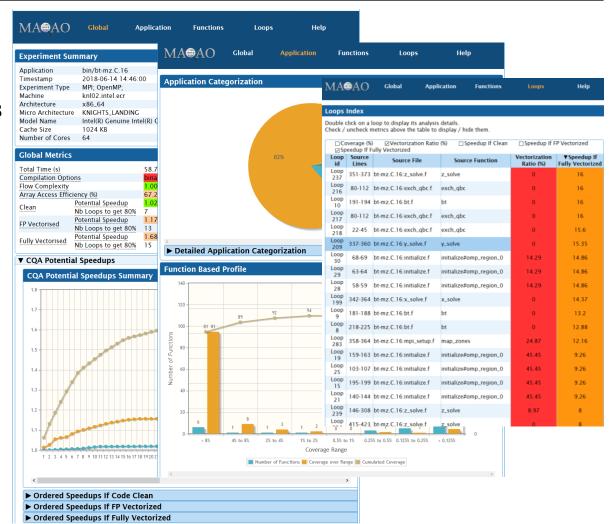
- Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
- Forcing optimization (unrolling, vectorization, alignment, ...)
- Bypassing conservative behaviour when possible (e.g. 1/X precision)

Implementation changes:

- Improve data access
 - Loop interchange
 - Changing loop strides
 - Reshaping arrays of structures
- Avoid instructions with high latency

MAQAO ONE View: Performance View Aggregator

Automating the whole analysis process


- Invocation of the required MAQAO modules
- Generation of aggregated performance views available as HTML files

Main steps:

- Invokes LProf to identify hotspots
- Invokes CQA on loop hotspots

Available results:

- Speedup predictions
- Global code quality metrics
- Hints for improving performance

Analysing an application with MAQAO

Execute ONE View

- Provide all parameters necessary for executing the application
 - Parameters can be passed on the command line or into a configuration file

```
$ maqao oneview --create-report=one --binary=bt-mz.C.16 --mpi_command="mpirun -n 16"
```

- Analyses can be tweaked if necessary
 - Report one corresponds to profiling and code quality analysis
- ONE View can reuse an existing experiment directory to perform further analyses
- Results available in HTML by default
 - XLS files or console output available

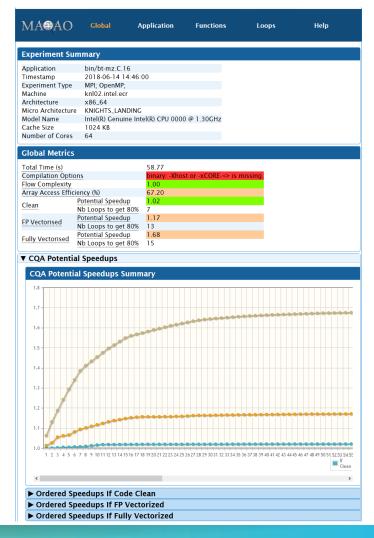
MAQAO modules can be invoked separately for advanced analyses

```
$ maqao lprof xp=exp_dir --mpi-command="mpirun -n 16" -- ./bt-mz.C.16 # Profiling
$ maqao lprof xp=exp_dir -df# Displays results
```

\$ maqao cqa loop=42 bt-mz.C.16

Global summary

Experiment summary


Characteristics of the machine where the experiment took place

Global metrics

- General quality metrics derived from MAQAO analyses
- Global speedup predictions

CQA potential speedups

- Speedup prediction depending on the number of vectorised loops
- Ordered speedups to identify the loops to optimise in priority

Application Characteristics

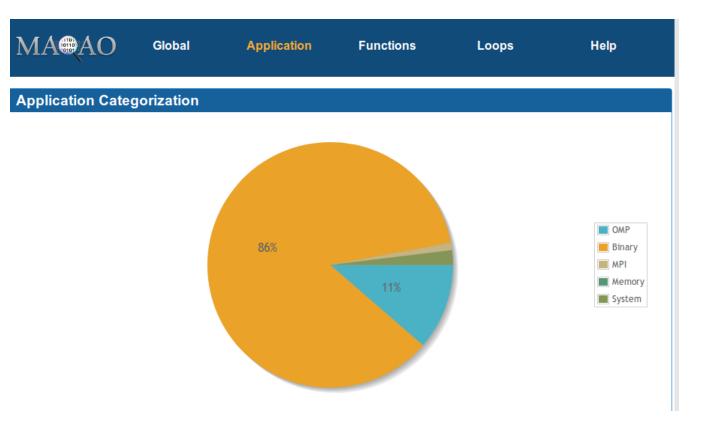
Application categorisation

Time spent in different regions of code

Function based profile

Functions by coverage ranges

Loop based profile


Loops by coverage ranges

Application Characteristics: Time Categorisation

Identifying at a glance where time is spent

- Application
 - Main executable
- Parallelization
 - Threads
 - OpenMP
 - MPI
- System libraries
 - I/O operations
 - String operations
 - Memory management functions
- External libraries
 - Specialised libraries such as libm / libmkl
 - Application code in external libraries

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Functions Profiling

Identifying hotspots

- Exclusive coverage
- Load balancing across threads
- Loops nests by functions

▼ matmul_sub

- Loop 230 solve_subs.f:71-175 bt-mz.C.16
- Loop 231 solve_subs.f:71-175 bt-mz.C.16
- ▼ z_solve

Loop 232 - z_solve.f:53-423 - bt-mz.C.16

- ▼ Loop 233 z_solve.f:54-423 bt-mz.C.16
 - ▼ Loop 236 z_solve.f:54-423 bt-mz.C.16
 - Loop 239 z_solve.f:146-308 bt-mz.C.16
 - Loop 235 z_solve.f:55-137 bt-mz.C.16
 - Loop 234 z_solve.f:415-423 bt-mz.C.16

Functions and Loops

0

0

Single

Outermost

Inbetween

Inbetween

Innermost

Right-click on a line to display the associated load balancing. Double click on a loop to display its analysis details.

13.66 7.71 7.56 7.56 7.56 2.61 0.52 0.19 0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64 64 64 64 64	1.73 1.08 1.02 8.22 0.92 0.57
7.56 7.56 4.16 2.61 0.52 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	1.02 8.22 0.92
7.56 7.56 4.16 2.61 0.52 0.19 0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
7.56 4.16 2.61 0.52 0.19 0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
4.16 2.61 0.52 0.19 0.03 7.35 7.28 7.04 4.73 1.96 1.09 0.29	64 64 64 64	8.22 0.92
2.61 0.52 0.19 0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
0.52 0.19 0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
0.19 0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
0.05 0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
0.03 7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
7.35 7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
7.28 7.04 4.73 4.53 1.96 1.09 0.29	64 64 64 64	8.22 0.92
7.04 4.73 4.53 1.96 1.09 0.29	64 64 64	0.92
4.73 4.53 1.96 1.09 0.29	64 64	
4.73 4.53 1.96 1.09 0.29	64 64	
4.53 1.96 1.09 0.29	64	
1.96 1.09 0.29		0.59
1.09 0.29		0.33
0.29	16	1.91
	64	0.05
0.26	64	0.04
0.19	64	0.03
0.13	63	0.12
		0.24
		0.08
		0.08
		0.02
		0.03
		0.01
		0.05
		0.08
		0.07
		0.02
		0.02
		0.05
		0.04
	198	
28286 281		
	28280 28	2010

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Loops Profiling Summary

Identifying loop hotspots

- Vectorisation information
- Potential speedups

ЛАQ	AO	Global Applicatio	on Functions	Loops	Help			
oops Ind	dex							
		o to display its analysis deta rics above the table to displ						
Cover		✓ Vectorization Ratio (%)	⊠Speedup If Clean	Speedup If F		edup If Fully Ve		
Loop id	Source Lines	Source File	Source Function	Coverage (%)	Vectorization Ratio (%)	Speedup If Clean	Speedup If FP Vectorized	Speedup If Fully Vectorized
Loop 211	145-307	bt-mz.C.16:y_solve.f	y_solve	7.06	45.13	1	1.22	5.52
Loop 201	146-308	bt-mz.C.16:x_solve.f	x_solve	7.06	45.13	1	1.22	5.52
Loop 230	71-175	bt-mz.C.16:solve_subs.f	matmul_sub	5.57	100	1.02	1.9	4
Loop 213	55-137	bt-mz.C.16:y_solve.f	y_solve	4.43	47	1.05	1.16	5.93
Loop 203	57-139	bt-mz.C.16:x_solve.f	x_solve	3.93	48.36	1.01	1.09	5.83
Loop 239	146-308	bt-mz.C.16:z_solve.f	z_solve	3.06	8.97	1.07	1.8	8
Loop 235	55-137	bt-mz.C.16:z_solve.f	z_solve	2.81	22.08	1.03	1.62	7.49
Loop 234	415-423	bt-mz.C.16:z_solve.f	z_solve	1.54	0	1.14	1.67	8
Loop 122	304-349	bt-mz.C.16:rhs.f	compute_rhs	1.32	71.26	1.33	1.92	5.36
Loop 148	194-238	bt-mz.C.16:rhs.f	compute_rhs	1.25	71.59	1.32	1.93	5.38
Loop 162	83-132	bt-mz.C.16:rhs.f	compute_rhs	1.23	71.59	1.24	1.87	5.26
Loop 231	71-175	bt-mz.C.16:solve_subs.f	matmul_sub	1.11	10.59	1	2.29	8
Loop 227	23-27	bt-mz.C.16:solve_subs.f	matvec_sub	0.97	100	1	1.95	4
Loop 206	394-398	bt-mz.C.16:y_solve.f	y_solve	0.88	0	1.04	1.73	8
Loop 196	395-399	bt-mz.C.16:x_solve.f	x_solve	0.84	0	1.04	2.02	8
Loop 229	23-27	bt-mz.C.16:solve_subs.f	matvec_sub	0.62	100	1	1.95	4
Loop 170	40-50	bt-mz.C.16:rhs.f	compute_rhs	0.4	73.33	1	1.82	4
Loop 105	388-391	bt-mz.C.16:rhs.f	compute_rhs	0.35	100	1.12	1.83	4
Loop	313-314	bt-mz.C.16:z_solve.f	z_solve	0.35	0	1	1	8

Loop Analysis Reports

High level reports

- Reference to the source code
- Bottleneck description
- Hints for improving performance
- Reports categorized by probability that applying hints will yield predicted gain
 - Gain: Good probability
 - Potential gain: Average probability
 - Hints: Lower probability

IAQAO	Global Applic	ation Functions	Loops	Нер
op 234				
verage	1.54%			
nction urce file and lines	z_solve z_solve.f:415-423			
dule	bt-mz.C.16			
Source Code				
/tmp/NPB3.3.1-MZ/N	B3.3-MZ-MPI/BT-MZ//z_s	lve.f: 415 - 423		
416: 417: 418: 419: > 420: 420: 421: 422:	enddo rhs(m,i,j,k) = rtmy enddo ddo	:c,k)*rtmp(n,k+1)		
Assembly Code	•			
tatic Reports				
CQA Report				
The loop is define	d in /tmp/NPB3.3.1-MZ	/NPB3.3-MZ-MPI/BT-MZ/z	_solve.f:415-423.	
The related sourc	e loop is not unrolled o	unrolled with no peel/tai	l loop.	
▼ Path 1				
		is used (0.77 out of 32.0	0 FLOP per cycle (G	FLOPS @ 1GHz))
gain potent	al hint expert			
Code clea	n check			
				ress computation). By removing them, you can lower
Workaro		o 57.00 cycles (1.14x spe	edup).	
• Try to	reorganize arrays of st	ructures to structures of a	arrays	
Consi	der to permute loops (s	ee vectorization gain repo	ort)	
	erence allocatable array an 2008)	rs, use "allocatable" instea	id of "pointer" pointe	ers or qualify them with the "contiguous" attribute
		direction. For example, u	se a_b%c instead of a	a%b%c with a_b set to a%b before this loop
Vectoriza	ion			,
		elements could be process	sed at once in vector	registers. By vectorizing your loop, you can lower the
	eration from 65.00 to 8	12 cycles (8.00x speedup		
workaro	una			
• Remo	use the vec-report optio VDEP directive. If, using ve inter-iterations depe f your arrays have 2 or oops accordingly: Fortr fast, stride 1)	IVDEP, "vectorization pos indences from your loop at more dimensions, check v an storage order is colum us of structures (AoS), try	ssible but seems ine nd make it unit-strid vhether elements are n-major: do i do j a(i	ized. If "existence of vector dependences", try the fficient", try the VECTOR ALWAYS directive. e accessed contiguously and, otherwise, try to permute (j) = b(i,j) (slow, non stride 1) => do i do j a(j,i) = b(i,j) f arrays instead (SoA): do i a())%x = b()%x (slow, non
Execution	units bottlenecks			
Found no su		expert reports for more c	omplex bottlenecks.	

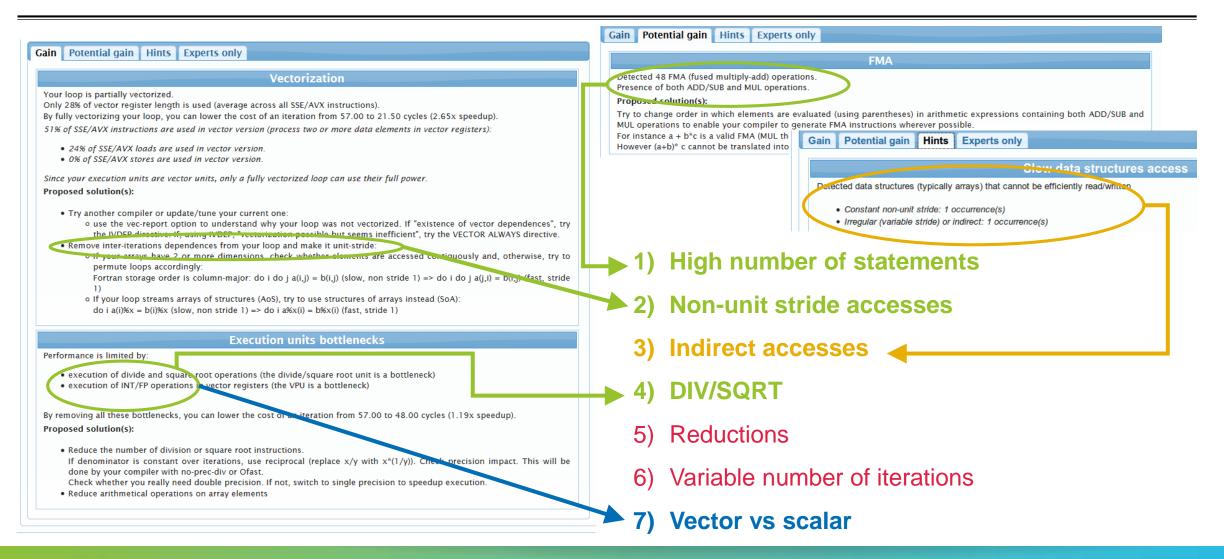
Loop Analysis Reports – Expert View

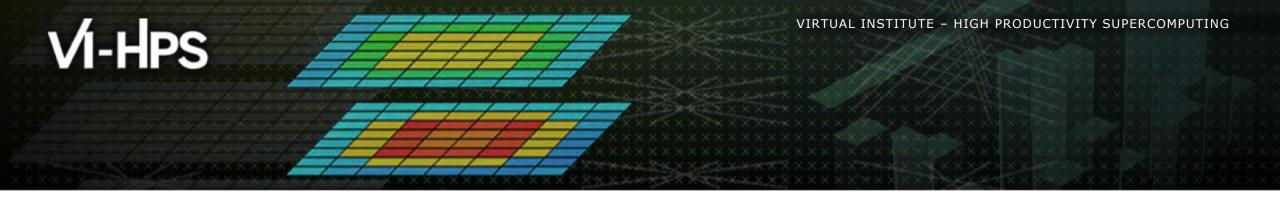
Low level reports for performance experts

- Assembly-level
- Instructions cycles costs
- Instructions dispatch predictions
- Memory access analysis

		Gain Potential g	ain Hints Exp	erts onl	y								
exr	perts					ASM	1 code						
		In the binary file, t	he address of the loo	p is: 421	409								
		Instruction		Nb Fl	J PO	P1	P2	P3	P4	P5	P6	Latenc	y Recip. throughput
		MOVAPS %XMM1	3,%XMM5	1	0.50	0.50	0	0	0	0	0	2	0.50
			1	0	0	0	0	1.50	0.50	0	1	► Other static metrics	
		0,%RDX,1),%XMM5	4	1	0	0.50	0.50	0	0	0		▼ Memory Groups	
		MOVAPS %XMM5	,%XMM15	1	0.50	0.50	0	0	0	0	0	2	0x426d7d MOVSD 0xe2b8(%R10,%RCX,1),%XMM4 [4]
		XMM15	1	0.50	0.50	0	0	0	0	0	6	0x426d87 INC %R9	
		0x12890(%R14)	1	0	0	0.50	0.50	0	0	1	2	0x426d8a MOVSD 0x5c30(%RSI,%RDX,1),%XMM5 [1] 0x426d93 MULSD %XMM4,%XMM5	
			0/2/14/F	•	0.50	0.50	^	^	^	0	0	6	0x426d97 MOVSD 0xe290(%R10,%RCX,1),%XMM10 [4]
▼ Ot	her static metrics									0	1	2	0x426da1 MOVSD 0xe2c0(%R10,%RCX,1),%XMM3 [4]
	Advanced static me	trics								0	1	2	0x426dab SUBSD %XMM5,%XMM10 0x426db0 MOVSD %XMM10,0xe290(%R10,%RCX,1) [4]
										0	1	2	0x426dba MOVSD 0x5c58(%RSI,%RDX,1),%XMM6 [1]
	▼ Path 1									0	1	2	0x426dc3 MULSD %XMM3,%XMM6
	Ν	Netric		Value	•					0	1	2	0x426dc7 MOVSD 0xe2c8(%R10,%RCX,1),%XMM2 [4] 0x426dd1 SUBSD %XMM6,%XMM10
	Coverage (% app. time	.)	0.51							0	1	2	0x426dd6 MOVSD %XMM10,0xe290(%R10,%RCX,1) [4]
	Time (s)		0.24							0	1	2	0x426de0 MOVSD 0x5c80(%RSI,%RDX,1),%XMM7 [1] 0x426de9 MULSD %XMM2,%XMM7
	CQA speedup if clean		1.14							0	0	5	0x426ded MOVSD 0xe2d0(%R10,%RCX,1),%XMM1 [4]
	CQA speedup if FP ari	th vectorized	1.66							0	0	5	0x426df7 SUBSD %XMM7,%XMM10
	CQA speedup if fully	/ectorized	8.00							0	0	6	0x426dfc MOVSD %XMM10,0xe290(%R10,%RCX,1) [4] 0x426e06 MOVSD 0x5ca8(%RSI,%RDX,1),%XMM8 [1]
	CQA speedup if no int	er-iteration dependency	NA							0	0	5	0x426e10 MULSD %XMM1,%XMM8
	CQA speedup if next l		1.02							õ	õ	6	0x426e15 MOVSD 0xe2d8(%R10,%RCX,1),%XMM0 [4]
	Source		z_solve.f:415-423							õ	o	2	0x426e1f SUBSD %XMM8,%XMM10 0x426e24 MOVSD %XMM10,0xe290(%R10,%RCX,1) [4]
	Source loop unroll info	D	not unrolled or unrolled with no peel/tail loop							õ	1	2	0x426e2e MOVSD 0x5cd0(%RSI,%RDX,1),%XMM9 [1]
	Source loop unroll cor		max							0	0	5	0x426e38 MULSD %XMM0,%XMM9
	Unroll/vectorization lo		NA							0	0	6	Dx426e3d MOVSD 0xe298(%R10,%RCX,1),%XMM5 [4] 0x426e47 SUBSD %XMM9,%XMM10
	Unroll factor		NA							0	-		0x426e4c MOVSD %XMM10,0xe290(%R10,%RCX,1) [4]
	CQA cycles		65.00							0	1	2	0x426e56 MOVSD 0x5c38(%RSI,%RDX,1),%XMM11 [1]
	CQA cycles if clean		57.00							-		2	Size: 5
	CQA cycles if FP arith	vectorized	39.23							0	0	-	Pattern: SSSSS [2] Span: 40
	CQA cycles if fully vec		8.12							0	0	6	Head: 0 [1)[4] Unroll factor: 5 12 [1]
	Front-end cycles	-	65.00							0	1	2	Stride status: Iteration not constant
	P0 cycles		25.00							0	1	2	Stride: 0 Accessed memory status: Success A111[4]
	P1 cycles		25.00							0	0	5	Accessed memory: 40
	P2 cycles 35.00									0	0	5	Accessed memory without overlapping: 40 11 [4] Accessed memory reused: 0 13 [1]
	P3 cycles		35.00							0	0	6	0x426eae MULSD %XNwr42,%XMM13
	P4 cycles		4.50							0	0	6	0x426eb3 MOV %R13,0x28(%R8,%RDI,1) [3]
	i i cyclos		1.50									111	0x426eb8 SUBSD %XMM13,%XMM5

Application to Motivating Example


Issues identified by CQA



CQA can detect and provide hints to resolve most of the identified issues:

- 1) High number of statements
- 2) Non-unit stride accesses
- 3) Indirect accesses
- 4) DIV/SQRT
- 5) Reductions
- 6) Variable number of iterations
- 7) Vector vs scalar

Application to Motivating Example

Thank you for your attention !

Questions ?

