
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Performance Analysis
with Callgrind and KCachegrind

27th VI-HPS Tuning Workshop
April 2018, Garching

Josef Weidendorfer
Leibniz Computing Centre, Garching, Germany



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Focus: Cache Simulation using a Simple Machine Model

Why simulation?
§ Reproducability
§ No influence of tool on results
§ Allows to collect information not possible with real hardware
§ No special permissions needed / cannot crash machine

Focus only on cache: is a simple model enough?
§ No: if real measurement shows cache issues, use simulation for details
§ If bad cache exploitation dominates: you can ignore other bottlenecks
§ Benefits of simple machine models:

§ easy to understand, still captures most problems, faster simulation…

WEIDENDORFER: CALLGRIND / KCACHEGRIND 2 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Outline

§ Background

§ Callgrind and {Q,K}Cachegrind
§ Measurement
§ Visualization

§ Hands-On
§ Example: Matrix Multiplication

WEIDENDORFER: CALLGRIND / KCACHEGRIND 3 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node Performance: Cache Exploitation is Important

§ „Memory Wall“

§ Worst-case (local) access latencies on modern x86 processors ~ 200 cycles
è AVX512 can do 200 * 8 (vector) * 2 (1 FMA unit) = 3200 DP-FLOPs

WEIDENDORFER: CALLGRIND / KCACHEGRIND

10

100

1000

10000

1990 2000 2020

CPU Peak Performance (clock & cores)
+ 40% / year

Main Memory Performance
+7% / year

Growing
Gap

4 / 30

2010



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node Performance: Cache Exploitation is Important

This will be true also in the future
§ Latency of main memory access does not improve
§ Bandwidth to main memory increases slower than compute power

§ Multicore, accelerators
§ Memory improvements: DDRx vs. GDDRx, HBMx (better bandwidth, fixed capacity) 

§ Power consumption  [Keynote Dongarra, PPAM 2011]
§ DP FMADD: 100 pJ (2011) è 10 pJ (2018)
§ DP Read DRAM: 4800 pJ (2011) è 1920 pJ (2018)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 5 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Caches do their Job transparently...

Caches work because programs expose access locality
§ Temporal (hold recently used data) / Spatial (work on blocks of memory) 

The “Principle of Locality” is not enough... è “Cache optimization”

Reasons for Performance Loss for SPEC2000
[Beyls/Hollander, ICCS 2004]

WEIDENDORFER: CALLGRIND / KCACHEGRIND 6 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to do Cache Optimization on Parallel Code

§ Analyze sequential code phases
§ Optimization of sequential phases always improve runtime
§ No need to strip down to sequential program

§ Influences of threads/tasks on cache exploitation
§ On multi-core: all cores share bandwidth to main memory
§ Use of shared caches:

cores compete for space  vs.  cores prefetch for each other
§ Slowdown because of “false sharing”

§ not easy to measure with hardware performance counters
§ research topic (parallel simulation with acceptable slowdown)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 7 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Going Sequential ...

§ Sequential performance bottlenecks
§ Logical errors (unneeded/redundant function calls)
§ Bad algorithm (high complexity or huge “constant factor”)
§ Bad exploitation of available resources (caches, vector units, pipelining,...)

§ How to improve sequential performance
§ Use tuned libraries where available
§ Check for above obstacles è by use of analysis tools

WEIDENDORFER: CALLGRIND / KCACHEGRIND 8 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

(Sequential) Performance Analysis Tools

§ Count occurrences of events
§ Resource exploitation is related to events
§ SW-related: function call, OS scheduling, ...
§ HW-related: FLOP executed, memory access, cache miss, time spent for an activity (like 

running an instruction)

§ Relate events to source code
§ Find code regions where most time is spent
§ Check for improvement after changes
§ „Profile data“: histogram of events happening at given code positions
§ Inclusive vs. Exclusive cost

WEIDENDORFER: CALLGRIND / KCACHEGRIND 9 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to measure Events

§ Target: real hardware
§ Needs sensors for interesting events
§ For low overhead: hardware support for event counting
§ May be difficult to understand because of unknown micro-architecture, overlapping and 

asynchronous execution

§ Target: machine model
§ Events generated by a simulation of a (simplified) hardware model
§ No measurement overhead: allows for sophisticated online processing
§ Simple models make it easier to understand the problem and to think about solutions

§ Both methods (real vs. model) have advantages & disadvantages,
but reality matters in the end

WEIDENDORFER: CALLGRIND / KCACHEGRIND 10 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Back to the Memory Wall: Improvements

Access latency
§ Exploit (fast) cache: improve locality of data
§ Allow hardware to prefetch data (use access patterns which are easy to predict)
§ Memory controller on chip (standard today) – be aware of NUMA

Low bandwidth
§ Share data in caches among cores
§ Keep working set in cache (temporal locality)
§ Use good data layout (spatial locality)
§ If memory accesses are unavoidable

§ Predictable access pattern (stream/strided) è exploit HW prefetcher
§ Memory affinity (duplicate data in NUMA nodes?)
§ Avoid data dependencies (linked list traversals)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 12 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (1): Reduce Number of Accesses

§ Use large data types (may be done by compiler)
§ Vectors instead of bytes

§ 1 cache line = 1 access: use full cache lines
§ Alignment: crossing cache line gives two accesses

§ (redundant) Calculation instead of memory access

§ Avoid unneeded writes
§ Check if a variable already has given value before writing
§ Writes result in higher bandwidth needs



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (2): Reorder Accesses

§ If possible, do sequential accesses (in inner loop level)
§ Exploit full cache line
§ Trigger hardware prefetcher

(small sequential accesses reduce accuracy of HW prefetcher)

§ Blocking: reuse data as much as possible
§ Instead of multiple large sweeps over large buffer,

split up into multiple small sweeps over buffer parts
§ Useful in 1d, 2d, 3d, …

§ Recursive (multi-level) blocking: “cache-oblivious”:
best use of multiple cache levels at once!

§ Multi-core: consecutive iterations on cores with shared cache



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (3): Improve Data Layout

§ Group data with same access frequency and access type (read vs. write)
§ Use every byte of a fetched cache line (unused data is wasted space + bandwidth)
§ AoS-to-SoA

§ Reorder data in memory according to traversal order in program

§ Avoid power-of-2 strides: may produce conflict misses
§ By padding



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Bandwidth Benchmark

16 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind

Cache Simulation with Call-Graph Capturing



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Based on Valgrind
§ Runtime instrumentation infrastructure (no recompilation needed)
§ Dynamic binary translation of user-level processes
§ Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM/ARM64, MIPS

§ Intel AVX512 support in development (expected for next release: 3.14)
§ Open source (GPL), www.valgrind.org

§ Includes correctness checking & profiling tools
§ “memcheck”: accessibility/validity of memory accesses
§ “helgrind” / ”drd”: race detection on multithreaded code
§ “cachegrind”/”callgrind”: cache & branch prediction simulation
§ “massif”: memory profiling

WEIDENDORFER: CALLGRIND / KCACHEGRIND 18 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Part of Valgrind (since 3.1)
§ Open Source, GPL
§ Callgrind vs. Cachegrind

§ Dynamic call graph
§ Simulator extensions
§ More control

§ Measurement
§ Profiling via machine simulation (simple cache model)
§ Instruments memory accesses to feed cache simulator
§ Hook into call/return instructions, thread switches, signal handlers
§ Instruments (conditional) jumps for CFG inside of functions

§ Presentation of results: callgrind_annotate / {Q,K}Cachegrind

WEIDENDORFER: CALLGRIND / KCACHEGRIND

Profile

Binary

2-level $ Simulator

Memory 
Accesses Event 

Counters

Debug Info

19 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Pro & Contra (i.e. Simulation vs. Real Measurement)

Usage of Valgrind
§ Driven only by user-level instructions of one process
§ Slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)

§ “fast-forward mode”: 2-3x
§ Serializes threads
§ Detailed observation
§ Does not need root access / can not crash machine

Cache model
§ “Not reality”: synchronous 2-level inclusive cache hierarchy

(size/associativity taken from real machine, always including LLC)
§ Reproducible results independent on real machine load
§ Derived optimizations applicable for most architectures

WEIDENDORFER: CALLGRIND / KCACHEGRIND 20 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrinds Cache Model vs. Xeon / Xeon Phi

§ Parameters: size, line size, associativity
§ L1 / LLC, inclusive, LRU, shared among threads
§ Write back vs. write through does not matter for hit/miss counts
§ Optional stream prefetcher

SuperMUC-2 node: 2x Intel Xeon (Haswell, 14 cores, 2x18 MB L3)
§ private L1 (D/I a 32kB) + L2 (256 kB) per core
§ L1/L2 strictly inclusive to L3, L3 shared

CoolMUC-3 node: 1x Intel Xeon Phi (KNL, 64 cores, 32x1MB L2)
§ private L1 (D/I a 32kB) + L2 (1 MB) per 2 cores (32 tiles)

Callgrind only simulates 2 levels (L1+LLC) è LLC hit count higher

WEIDENDORFER: CALLGRIND / KCACHEGRIND 21 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Advanced Features

§ Interactive control (backtrace, dump command, …)
§ “Fast forward”-mode to quickly get at interesting code phases
§ Application control via “client requests” (start/stop, dump)

Optional
§ Best-case simulation of simple stream prefetcher
§ Byte-wise usage of cache lines before eviction
§ Branch prediction
§ Dynamic context in function names (call chain/recursion depth)
§ Wallclock time spent in system calls (useful for MPI)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 22 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind Cheat-Sheet

§ “valgrind –tool=callgrind [callgrind options] <yourprogram> [args]”
§ Cache simulator: “--cache-sim=yes”
§ Specify cache sizes: “--L1/I1/LL=<size>,<assoc>,<linesize>"
§ Branch prediction simulation:  “--branch-sim=yes”
§ Enable for machine code annotation: “--dump-instr=yes”
§ Start in “fast-forward”: “--instr-atstart=yes”

§ Switch on event collection: “callgrind_control –i on”
§ Spontaneous dump: “callgrind_control –d [dump identification]”
§ Current backtrace of threads (interactive): “callgrind_control –b”
§ Separate output per thread: “--separate-threads=yes”
§ Jump-profiling in functions (CFG): “--collect-jumps=yes”
§ Time in system calls: “--collect-systime=yes”
§ Byte-wise usage within cache lines: “--cacheuse=yes”

WEIDENDORFER: CALLGRIND / KCACHEGRIND 23 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

{Q,K}Cachegrind

Graphical Browser for Profile Visualization



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Features

Open source, GPL, kcachegrind.github.io
§ https://github.com/KDE/kcachegrind
§ includes pure Qt version, able to run on Linux / OS-X / Windows

Visualization of
§ Call relationship of functions (callers, callees, call graph)
§ Exclusive/Inclusive cost metrics of functions

§ Grouping according to ELF object / source file / C++ class
§ Source/assembly annotation: costs + CFG
§ Arbitrary events counts + specification of derived events

Callgrind support: file format, events of cache model

WEIDENDORFER: CALLGRIND / KCACHEGRIND 25 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Usage

qcachegrind callgrind.out.<pid>

§ Left: “Dockables”
§ list of function groups

groups according to
§ library (ELF object)
§ source
§ class (C++)

§ list of functions with
§ inclusive
§ exclusive costs

§ Right: visualization panes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 26 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• List of event types
• List of callers/callees

• Treemap visualization
• Call Graph

• Source annotation
• Assemly annotation

Visualization panes for selected function

WEIDENDORFER: CALLGRIND / KCACHEGRIND 27 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Getting started

§ Try it out
§ On CoolMUC-3 login node / interactive job ...
§ “module load valgrind”
§ “cp -r /home/hpc/a2c06/lu23bun/kcg ~”
§ GUI (ssh -X hpckursXX@lxlogin8.lrz.de): “~/kcg/qcachegrind [file]”

§ Test: What happens in „/bin/ls“ ?
§ run “valgrind --tool=callgrind ls /usr/bin”
§ run “~/kcg/qcachegrind”
§ function with highest instruction execution count? Purpose?
§ where is the main function?

§ run with cache simulation: “--cache-sim=yes”

29 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

§ Kernel for C = A * B
§ Side length N è N3 multiplications + N3 additions

§ 3 nested loops (i,j,k): Best index order?
§ Optimization for large matrixes: Blocking

30 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND

BC A= *

i j
k

i
k j

c[k][i] = a[k][j] * b[j][i]



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

§ To try out...
§ “cd ~/kcg; make”
§ timing of orderings (e.g. size 512): “./mm 512”
§ cache behavior for small matrix (fits into cache):

“valgrind --tool=callgrind --cache-sim=yes ./mm 300”

§ How good is L1/L2 exploitation of the MM versions?
§ Warning: Login node has 35MB LLC (also used in simulation)

On KNL node (1MB LLC)
§ salloc --nodes=1 --tasks-per-node=1 -t 50
§ module load valgrind
§ srun ./mm 500
§ srun valgrind --tool=callgrind --cache-sim=yes ./mm 500

Other example: 2d Jacobi solver: jc / jc.c

WEIDENDORFER: CALLGRIND / KCACHEGRIND 31 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to run with MPI (Sorry, crashes on KNL > 1 tasks/node)

Example with interactive session (also works with job script)
§ Optional: reduce iterations in BT_MZ / use class A

§ sys/setparams.c, write_bt_info, class A: set niter = 5
§ make clean; make bt-mz CLASS=A NPROCS=2

§ salloc --nodes=2 --ntasks-per-node=1
§ export OMP_NUM_THREADS=2
§ module load valgrind
§ mpiexec –n 2 valgrind --tool=callgrind --cache-sim=yes \

--separate-threads=yes bin/bt-mz_A.2

§ load all profile dumps at once:
§ in directory you started mpiexec: “~/kcg/qcachegrind callgrind.out.*”

WEIDENDORFER: CALLGRIND / KCACHEGRIND 32 / 30



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

WEIDENDORFER: CALLGRIND / KCACHEGRIND

Q A&
?

?

Josef Weidendorfer
LRZ

weidendo@lrz.de

33 / 30


