VIRTUAL INSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P - A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

core-P

Scalable performance measurement
infrastructure for parallel codes

allinea #) J0LICH RWTHACHEN O s pee I [p—

Raroeiens awence Livermore TECHNISCHE Technische
C@ e Nationai Laboratory Syl TI.I.I.I”"'"’""“‘t 0 | PHIPSE R
Cantro Nacional de Supercomputacidn DARMSTADT Miinchen

SITY

UNIVER

TENNESSEE

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

= If you made it this far, you successfully used Score-P to
» instrument the application
= analyze its execution with a summary measurement, and
= examine it with one the interactive analysis report explorer GUIs

= ... revealing the call-path profile annotated with
» the “"Time"” metric
= Visit counts
= MPI message statistics (bytes sent/received)

= ... but how good was the measurement?

» The measured execution produced the desired valid result

= however, the execution took rather longer than expected!
= even when ignoring measurement start-up/completion, therefore
» it was probably dilated by instrumentation/measurement overhead

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 2

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

= 2.0 Summary experiment scoring
= 2.1 Summary measurement collection with filtering
= 2.2 Filtered summary analysis report examination

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 3

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

% scorep-score scorep bt-mz sum/profile.cubex - Report Scoring as textual
Estimated aggregate size of event trace: 160 GB Output

Estimated requirements for largest trace buffer (max buf): 6 GB

Estimated memory requirements (SCOREP TOTAL MEMORY) : 6 GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid
intermediate flushes when tracing. Set SCOREP TOTAL MEMORY=4G to get the
maximum supported memory or reduce requirements using USR regions filters.)

160 GB total memory

flt type max buf[B] visits time[s] time[%] time/visit[us] region
ALL 5,421,104,056 6,586,922,497 8268.20 100.0 1.26 ALL 6 GB per rank!
USR 5,407,570,350 6,574,832,225 3350.21 40.5 0.51 USR
oMP 15,783,372 10,975,232 4094.63 49.5 373.08 OMP
MPI 944,200 386,560 803.98 9.7 2079.83 MPI
coM 665,210 728,480 19.38 0.2 26.60 COM

= Region/callpath classification
COM

= MPI pure MPI functions
/ l \ = OMP pure OpenMP regions
COM USR = USR user-level computation
/ \ \ = COM “combined” USR+OpenMP/MPI

OMP MPI USR . Q/I::S/ALL aggregate of all region

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) I _

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

% scorep-score -r scorep bt-mz sum/profile.cubex

o] a a COM
flt type max buf [B] visits time[s] time[%] time/visit[us] region

ALL, 5,421,104,056 6,586,922,497 8268.20 100.0 1.26 ALL (:C)hﬂ USR
USR 5,407,570,350 6,574,832,225 3350.21 40.5 0.51 TUSR
OMP 15,783,372 10,975,232 4094.63 49.5 373.08 OMP g// \\\ \\
MPI 944,200 386,560 803.98 9.7 2079.83 MPI
COM 665,210 728,480 19.38 0.2 26.60 COM OMP MPI USR

[
USR 1,741,005,318 2,110,313,472 850.28 10.3 0.40 matvec sub
USR 1,741,005,318 2,110,313,472 1309.20 15.8 0.62 Dbinvcrhs
USR 1,741,005,318 2,110,313,472 1064.72 12.9 0.50 matmul sub_
USR 76,367,538 87,475,200 53.39 0.6 0.61 1lhsinit
USR 76,367,538 87,475,200 47 .67 0.6 0.54 binvrhs
USR 56,913,688 68,892,672 24.90 0.3 0.36 exact solution M_Ore than

A 5.4 GB just for these 6

regions

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 5)

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

= Summary measurement analysis score reveals
= Total size of event trace would be ~160 GB

= Maximum trace buffer size would be ~6 GB per rank

» smaller buffer would require flushes to disk during measurement resulting in substantial perturbation
= 99.9% of the trace requirements are for USR regions
= purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel
regions
= These USR regions contribute around 39% of total time
= however, much of that is very likely to be measurement overhead for frequently-executed small routines

= Advisable to tune measurement configuration

= Specify an adequate trace buffer size

= Specify a filter file listing (USR) regions not to be measured

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 6

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

% cat ../config/scorep.filt n Report scoring with
SCOREP REGION NAMES BEGIN _ _ o
EXCLUDE prospective filter listing 6
binvcrhs* .
T e USR regions

matvec sub*
exact solution*
binvrhs*
lhs*init*
timer *

0.5 GB of memory in total,
SCOREP REGION NAMES END

25 MB per rank!

(o)

% scorep-score -f ../config/scorep.filt -c 2 \
scorep bt-mz sum/profile.cubex (Including 2 metric values)

Estimated aggregate size of event trace:

Estimated requirements for largest trace buffer (max buf):
Estimated memory requirements (SCOREP TOTAL MEMORY) :
(hint: When tracing set SCOREP TOTAL MEMORY=25MB to avoid
intermediate flushes or reduce requirements using USR regions
filters.)

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

% scorep-score -r —-f ../config/scorep.filt \ » Score report breakdown
scorep bt-mz_ sum/profile.cubex
flt type max buf [B] visits time[s] time[%] time/visit[us] region by reg|0n
= ALL 5,421,104,056 6,586,922,497 8268.20 100.0 1.26 ALL
= USR 5,407,570,350 6,574,832,225 3350.21 40.5 0.51 USR
= OMP 15,783,372 10,975,232 4094.63 49.5 373.08 OMP
= MPI 944,200 386,560 803.98 9.7 2079.83 MPI
= COM 665,210 728,480 19.38 0.2 26.60 COM
ALL 17,390,726 12,138,209 4918.03 59.5 405.17 ALL-FLT
+ FLT 5,407,531,376 6,574,784,288 3350.17 40.5 0.51 FLT
= OMP 15,783,372 10,975,232 4094.63 49.5 373.08 OMP-FLT
= MPI 944,200 386,560 803.98 9.7 2079.83 MPI-FLT
s COM 665,210 728,480 19.38 0.2 26.60 COM-FLT
B USR 38,974 47,937 0.04 0.0 0.93 USR-FLT
+ USR 1,741,005,318 2,110,313,472 850.28 10.3 0.40 matvec_s Filtered
+ USR 1,741,005,318 2,110,313,472 1309.20 15.8 0.62 binvcrhe routines
+ USR 1,741,005,318 2,110,313,472 1064.72 12.9 0.50 matmul s marked with
4 USR 76,367,538 87,475,200 53.39 0.6 0.61 1lhsinit ‘!
s USR 76,367,538 87,475,200 47.67 0.6 0.54 Dbinvrhs
4 USR 56,913,688 68,892,672 24.90 0.3 0.36 exact so
= OMP 1,259,064 411,048 0.57 0.0 1.38 !Somp pa

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 8

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

% cd bin.scorep » Set new experiment
% vi scorep.sbatch .
directory and re-run

measurement with new

export SCOREP EXPERIMENT DIRECTORY=scorep bt-mz sum filter filter confi guration
export SCOREP TIMER='gettimeofday'

export SCOREP FILTERING FILE=../config/scorep.filt
#export SCOREP TOTAL MEMORY=25M

fexport SCOREP METRIC PAPI=PAPI TOT INS,PAPI TOT CYC
#export SCOREP ENABLE TRACING=true

run the application
mpiexec SEXE

% sbatch scorep.sbatch

= Submit job

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 9

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

$ cat ../config/scorep.filt . Fllterlng by source file name
SCOREP REGION NAMES BEGIN . L :
EXCLUDE - - = All regions in files that are excluded by the filter are

binvcrhs*
matmul sub*
matvec sub*
exact solution*

ignored

Region name

fiter block = Filtering by region name

P - using wildcards = All regions that are excluded by the filter are ignored
lhs*init* » Overruled by source file filter for excluded files
timer *]

SCOREP REGION NAMES END = Apply filter by

% export SCOREP_FILTERING_FILE=\ Apph/ﬁker = exporting SCOREP_FILTERING FILE environment
../config/scorep.filt variable

= Apply filter at

= Run-time
= Compile-time (GCC-plugin only)
» Add cmd-line option --instrument-filter
= No overhead for filtered regions but recompilation

T —
27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 10

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

= Keywords # This is a comment
SCOREP_ FILE NAMES BEGIN
by default, everything is included
= SCOREP_FILE NAMES BEGIN, SCOREP_FILE NAMES END EXCLUDE */foo/bar*
INCLUDE */filter test.c
SCOREP_FILE NAMES END

= Case-sensitive

= Define the source file name filter block

» Block contains EXCLUDE, INCLUDE rules

= EXCLUDE, INCLUDE rules
= Followed by one or multiple white-space separated source file names
= Names can contain bash-like wildcards *, 2, []

» Unlike bash, * may match a string that contains slashes

» EXCLUDE, INCLUDE rules are applied in sequential order

= Regions in source files that are excluded after all rules are evaluated, get filtered

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 11

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

= Keywords # This is a comment
SCOREP REGION NAMES BEGIN

= Case-sensitive # by default, everything is included

= SCOREP REGION NAMES BEGIN, EXCLUDE *
INCLUDE bar foo
SCOREP REGION NAMES END baz
» Define the region name filter block main

» Block contains EXCLUDE, INCLUDE rules SCOREP_REGION NAMES_END

= EXCLUDE, INCLUDE rules
= Followed by one or multiple white-space separated region names

» Names can contain bash-like wildcards *, ?, []

= EXCLUDE, INCLUDE rules are applied in sequential order

= Regions that are excluded after all rules are evaluated, get filtered

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 12

Region name filter block, mangling

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

= Name mangling
» Filtering based on names seen by the measurement

system
» Dependent on compiler

= Actual name may be mangled
" scorep-score hames as starting point
(e.g. matvec sub)
= Use * for Fortran trailing underscore(s) for
portability
» Use ? and * as needed for full signatures or

overloading

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

void bar (int* a) {
*a++;

}

int main() {
int 1 = 42;
bar (&i) ;
return O;

filter bar:

for gcc-plugin, scorep-score
displays ‘void bar (int¥*)’,

other compilers may differ

SCOREP_ REGION NAMES BEGIN
EXCLUDE void?bar (int?)
SCOREP_REGION NAMES END

13

Further information

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

= Community instrumentation & measurement infrastructure
» Instrumentation (various methods)
» Basic and advanced profile generation
= Event trace recording

= Online access to profiling data
= Available under New BSD open-source license
= Documentation & Sources:

= http://www.score-p.org

= User guide also part of installation:

" <prefix>/share/doc/scorep/{pdf,html}/
» Support and feedback: support@score-p.org

= Subscribe to news@score-p.org, to be up to date

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

14

VIRTUAL INSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:
Specialized Measurements and Analyses <

core-P

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems <

= Hooking up the Score-P instrumenter scorep into complex build environments like
Autotools or CMake was always challenging

= Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)

= Autotools and CMake need the used compiler already in the configure step, but
instrumentation should not happen in this step, only in the build step

= Example: using Score-P wrapper in the configure step of a CMake project

SCOREP WRAPPER=off \ — Disable instrumentation in the

cmake .. \ configure step

-DCMAKE C_COMPILER=scorep-icc \

-DCMAKE CXX COMPILER=scorep-icpc Specify the wrapper scripts as
the compiler to use

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 16

o\°

vV V V

Mastering build systems

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

= Using the wrapper in the build step

% scorep-icc COMPILER FLAGS ...

will expand to the following call

% scorep $SCOREP WRAPPER INSTRUMENTER FLAGS \
gcc $SCOREP WRAPPER COMPILER FLAGS \
COMPILER FLAGS ...

= Example

5 make SCOREP WRAPPER INSTRUMENTER FLAGS=--verbose

Enable verbose output of

will result in the execution of

instrumentation in the
build step

% scorep --verbose icc ...

» Run scorep-wrapper —--help for a detailed description and the available wrapper

scripts of the Score-P installation

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

17

Mastering C++ applications

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

= Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

= Novel combination of sampling events and instrumentation of MPI, OpenMP, ...
= Sampling replaces compiler instrumentation (instrument with —-nocompiler to further reduce

overhead) => Filtering not needed anymore

» Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies
= Supports profile and trace generation

% export SCOREP_ENABLE UNWINDING=true
use the default sampling frequency
% #export SCOREP_ SAMPLING EVENTS=perf cycles@2000000

oo

o\

OMP NUM THREADS=4 mpiexec -np 4 ./bt-mz W.4

= Set new configuration
variable to enable
sampling

= Available since Score-P 2.0, only x86-64 supported currently

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

18

VAIRTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications <

File Edit Chart Filter Window Help

[N e R ek M O A% MUY A

”D..tra(ir\q/tra(e;.... | = = —— _

O-...

Os
Maste...ead:0 -
Maste...ead:1 -
Maste...ead:2 -
Maste...ead:3 -
Maste...ead:4 -
Maste...ead:5 -
Maste...ead:6 -
Maste...ead:7 -
Maste...ead:8 -
Maste...ead:9 -
Maste...ad:10 - — =
Maste...ad:11 -
Maste...ad:12 -

- - .
Less disturbed

Maste...ad:14 -

Maste...ad:15 - : ‘ meaSU rement

Maste...ead:0 -
Maste...ead:1 -
Maste...ead:2 -
Maste...ead:3 -
Maste...ead:4 -
Maste...ead:5 -
Maste...ead:6 -
Maste...ead:7 -
Maste...ead:8 -
Maste...ead:9 -
Maste...ad:10 -
Maste...ad:11 -
Maste...ad:12 -
Maste...ad:13 -
Maste...ad:14 -
Maste...ad:15 -

Ef
All Processes, Accumulated Exclusive Time per Function G... Average Message Data Rate All Processes, Accumulated Exclusive Time per Function ...™ Average Message Data Rate

Receiver Receiver
OMP_P...ALLEL [70.138 s R
2.19 GiB/s OM...NC [97.358 s

e e e e e e m e e e - - - 2.19 GiB/s
1.88 GiB/s
1.56 GiB/s

1.88 GiB/s
Adaol G600 I . 156GiB/s

1.25 GiB/s

0.94 GiB/s

. CCdocoooo ooooo o 1.25 GiB/s

LI Ss - 0.94 GiB/s
0...P[1,105.374 5] e . - . = = = - 0.62GiB/s
SILTILITIIIIITILT 031GBs

hac-fococs - - - 062GiBs
ity 0B/s

Matrix View

0...C [433.836 5]

A...n[130.525 s]

ender

0...P[721.179 5]

=, o rao.cio oo OGS

Mastering application memory usage

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

= Determine the maximum heap usage per process
= Find high frequent small allocation patterns
= Find memory leaks

= Support for:

= C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

= Profile and trace generation (profile recommended)
= Memory leaks are recorded only in the profile
= Resulting traces are not supported by Scalasca yet

% export SCOREP_MEMORY RECORDING=true
% export SCOREP MPI MEMORY RECORDING=true

% OMP_NUM THREADS=4 mpiexec -np 4 ./bt-mz W.4

= Available since Score-P 2.0

= Set new configuration
variable to enable
memory recording

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

20

W RTUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage <

Restore Setting ™ Save Settings

[Absolute =] [Absolute =] [Absolute =]
lMetric tree l ‘Call tree l Flatwew I ‘System tree I .IBoxPlnt I

1041 Visits (occ) - - -

0.24 Time (sec) [- PER PROCESS METRICS [1 - node bmo

[J 0.00 Minimum Inclusive Time (sec) E 2.90e5 MPI Rank 0

0.06 Maximum Inclusive Time (sec) e 2.87e5 MPI Rank 1

(] 0 bytes_put (bytes) ¥ 2.87e5 MPI Rank 2

[J 0 bytes_get (bytes) <[l 2.87e5 MPI Rank 3

2.22e6 ALLOCATION_SIZE (bytes)

2.21e6 DEALLOCATION_SIZE (bytes)

3136 bytes_leaked (bytes)

2.90e5 Process memory usage (Bytes)

1.00e4 bytes_sent (bytes)

1.00e4 bytes_received (bytes)

Different maximum
heap usages per
ranks

N o
_H L _IJ |AII (8 elements) j

|D 2.90e5 (100.00%) 2.90e5 ‘D.OD.‘ 2.90e5 (-0.00%)... -179769313486231570814527423731704356798070567525844996538917...(|0.00 2.90e5|

Selected "main”

W RTUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage <

Restore Setting ™ Save Settings

[Absolute =] [Absolute =] [Absolute =]
lMetric tree l ‘Call tree l Flatwew I ‘System tree I .IBoxPlnt I
1041 Visits (occ) [= 0 TestloSys =l Bl
0.24 Time (sec) (] 0 MPI_Comm_group [- node bmo
[J 0.00 Minimum Inclusive Time (sec) (] 0 MPI_Group_range_incl «[l 3088 MPI Rank 0
0.06 Maximum Inclusive Time (sec) (] 0 MPI_Comm_create +l 16 MPI Rank 1
(] 0 bytes_put (bytes) =[] 0 CountTasksPerNode ¥ 16 MPI Rank 2
[J 0 bytes_get (bytes) (1 0 malloc «[l 16 MPI Rank 3
2.22e6 ALLOCATION_SIZE (bytes) 1 0 AijoriBind
2.21e6 DEALLOCATION_SIZE (bytes) =[] 0 ShowSetup
O 0 puts
2.90e5 maximum_heap_memory_allocated (bytes) 1 0 printf
2.90e5 Process memory usage (Bytes) [1 0 putchar
1.00e4 bytes_sent (bytes) =[] 0 HumanReadable
1.00e4 bytes_received (bytes)
] 0 fflush
1 0 HogMemory
[] 0 GetTimeStamp Memory Ieaks
[1 0 fputc
(] O fwrite

(] 0 MPI_Bcast
[] 0 test_time_elapsed

=[] 0 GetTestFileName
=[] 0 ParseFileName
[1 0 DelaySecs

=[] 0 RemoveFile &
(] 0 MPI_Barrier

=[] 0 MPIIO_Create

=[] 0 WriteOrRead

=[] 0 MPIIO_Close

=[] 0 MPIIO_GetFileSize

=[] 0 CheckFileSize B J—‘

3136

=[] 0 ReducelterResults <
_H _IJ |AII (8 elements)

L

|D.00 3136.00 (100.00%) 3136.00 ‘D 3136 (100.00%)

Selected "malloc”

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications <

= Record CUDA applications and device activities
5 export SCOREP_CUDA ENABLE=gpu,kernel,6 idle

= Record OpenCL applications and device activities
5 export SCOREP_OPENCL ENABLE=api, kernel

= Record OpenACC applications

5 export SCOREP_OPENACC ENABLE=yes

= Can be combined with CUDA if it is a NVIDIA device
5 export SCOREP_CUDA ENABLE=kernel

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 23

\A-'—IPS VARTUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

<

File Edit Chart Filter Window Help

EEE%&QEEE“*EH.!@._%@Q

Timeline
+90 us

0.270444 s +30 us
* Master thread
CUDAL0:13]

Master thread

(]

Function Summary
All Processes, Accumulated Exclusive Time per Function

40 us 20 us 0s

53.934 us (26.48%) . - acc_data_constru...ion_openacc.c:42

30.708 us (15.08%)" | cuLaunchKernel
25.424 us {12 48%) [| cuStreamSynchronize

23.962 us (11.76%) E cuMemcpyHtoDAsync_v2
22.5?ﬁ5us (11.08%) E cuMemcpyDtoHAsync_v2

Context View

ﬂ &= Master Timeline @ ‘

Property Value

-5

Function
Function Group . CUDA_KERNEL
Interval Begin 0.270573s
Interval End 0.270576 s

[reduceAddOpenACC_kernel_43_gy

(4

Function Legend
B OMP_PARALLEL
™ oMP_LOOP

™ oMP_SYNC

B OMP_API

M Application

™ CUDA_API

M OPENACC

M CUDA_KERNEL

(«[]

Host-Device
memory
transfers

Device activities

OpenACC
directives

CUDA API calls

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters <

» Record metrics from PAPI:

% export SCOREP METRIC PAPI=PAPI TOT CYC
% export SCOREP METRIC PAPI PER PROCESS=PAPI L3 TCM

= Use PAPI tools to get available metrics and valid combinations: Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

oo

papi_avail
% papi_native avail

= Record metrics from Linux perf:

5 export SCOREP METRIC PERF=cpu-cycles
5 export SCOREP METRIC PERF PER PROCESS=LLC-load-misses

» Use the perf tool to get available metrics and valid combinations:

% perf list

= Write your own metric plugin
= Repository of available plugins: https://github.com/score-p

O O ————

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 25

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API &

= No replacement for automatic compiler instrumentation

= Can be used to further subdivide functions

= E.g., multiple loops inside a function

= Can be used to partition application into coarse grain phases

= E.g., initialization, solver, & finalization

= Enabled with --user flag to Score-P instrumenter

= Available for Fortran / C / C++

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 26

Score-P user instrumentation API (Fortran)

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

<

#include "scorep/SCOREP User.inc"

subroutine foo(..)
! Declarations
SCOREP_USER_REGION_DEFINE(solve)

! Some code..
SCOREP USER REGION BEGIN(solve, “<solver>", \
SCOREP USER REGION TYPE LOOP)

do 1=1,100

end do
SCOREP USER REGION END (solve)
! Some more code..

end subroutine

= Requires processing by
the C preprocessor
» For most compilers, this can
be automatically achieved by
having an uppercase file

extension, e.g., main.F Or
main.F90

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

27

Score-P user instrumentation API (C/C++)

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

#include "scorep/SCOREP User.h"

void foo ()

{
/* Declarations */
SCOREP_USER_REGION_DEFINE(solve)

/* Some code.. */
SCOREP USER REGION BEGIN(solve, “<solver>",

SCOREP USER REGION TYPE LOOP)
i < 100;

for (1 = 0; i++)

{

}
SCOREP USER REGION END(solve)

/* Some more code.. */

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

28

Score-P user instrumentation API (C++)

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

#include "scorep/SCOREP User.h"

void foo ()

{

// Declarations

// Some code..

{
SCOREP USER REGION(“<solver>",

SCOREP_USER REGION TYPE LOOP)
for (i = 0; 1 < 100; i++)
{

}

// Some more code..

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

29

Score-P measurement control API

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

= Can be used to temporarily disable measurement for certain intervals

= Annotation macros ignored by default
= Enabled with --user flag

#include “scorep/SCOREP User.inc”

subroutine foo(..)
! Some code..
SCOREP RECORDING OFF ()
! Loop will not be measured
do i=1,100

end do

SCOREP_ RECORDING ON ()

! Some more code..
end subroutine

#include “scorep/SCOREP User.h”

void foo(..) {
/* Some code.. */
SCOREP RECORDING OFF ()
/* Loop will not be measured */
for (1 = 0; 1 < 100; i++) {

}
SCOREP_RECORDING ON ()

/* Some more code.. */

Fortran (requires C preprocessor)

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

C/C++

30

VIRTUAL INSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:
Conclusion and Outlook <

core-P

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Project management

= Ensure a single official release version at all times which will always work with the
tools

= Allow experimental versions for new features or research

= Commitment to joint long-term cooperation
= Development based on meritocratic governance model
= Open for contributions and new partners

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 32

URTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Future features

= Scalability to maximum available CPU core count
= Support for emerging architectures and new programming models

= Features currently worked on:
= User provided wrappers to 3" party libraries
Hardware and MPI topologies
Basic support of measurements without re-compiling/-linking
I/O recording
Java recording
Persistent memory recording (e.g., PMEM, NVRAM, ...)

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

33

