

BSC Tools Hands-On

Judit Giménez, Lau Mercadal (lau.mercadal@bsc.es)

Barcelona Supercomputing Center

Extrae

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Extrae features

- Parallel programming models
 - MPI, OpenMP^(*), pthreads, OmpSs, CUDA, CUPTI, OpenCL, Java, Python...
- Platforms: Intel, Cray, BlueGene, Fujitsu Sparc, MIC, ARM, Android...
- Performance Counters
 - Using PAPI and PMAPI interfaces
- Link to source code
 - Callstack at MPI routines
 - OpenMP outlined routines and their containers
 - Selected user functions
- And more: Sampling, IO, memory allocation...
- User events (Extrae API)

No need to recompile / relink!

Extrae overheads

	Average values	CoolMUC-3
Event	150-200 ns	130 ns
Event + PAPI	750 ns – 1 us	850 ns
Event + callstack (1 level)	600 ns	1.3 us
Event + callstack (6 levels)	1.9 us	3.1 us

How does Extrae work?

- Symbol substitution through LD_PRELOAD
 - Specific libraries for each combination of runtimes
 - MPI
 - OpenMP
 - OpenMP+MPI
 - OmpSs
 - ...
- Dynamic instrumentation
 - Based on DynInst (developed by U.Wisconsin/U.Maryland)
 - Instrumentation in memory
 - Binary rewriting

Static link (i.e., PMPI, Extrae API)

Using Extrae in 3 steps

- 1. Adapt the job submission script
- 2. [Optional] Tune the Extrae XML configuration file
 - Examples distributed with Extrae at \$EXTRAE_HOME/share/example
- 3. Run with instrumentation

- For further reference check the Extrae User Guide:
 - <u>https://tools.bsc.es/tools_manuals</u>

Log in and copy the examples to your work directory

@ your laptop

- > ssh -Y <USER>@lxlogin8.lrz.de
- > cp -r /home/hpc/a2c06/lu23vet/tools-material ./

Step 1: Adapt the job script to load Extrae with LD_PRELOAD

> vi \$HOME/tools-material/extrae/job.slurm

#!/bin/sh

```
#SBATCH -J lulesh2
#SBATCH -o lulesh2_%j.out
#SBATCH -e lulesh2_%j.err
#SBATCH --ntasks=64
#SBATCH --ntasks-per-core=1
#SBATCH --time=00:15:00
#SBATCH --cluster=mpp3
#SBATCH --reservation=TuningWorkshop
#SBATCH --exclusive
export OMP_NUM_THREADS=1
# run the script
```

```
mpiexec ../apps/lulesh2.0 -i 10 -s 65 -p
```

Step 1: Adapt the job script to load Extrae with LD_PRELOAD

> vi \$HOME/tools-material/extrae/job.slurm

#!/bin/sh

```
#SBATCH -J lulesh2
#SBATCH -o lulesh2_%j.out
#SBATCH -e lulesh2_%j.err
#SBATCH --ntasks=64
#SBATCH --ntasks-per-core=1
#SBATCH --time=00:15:00
#SBATCH --cluster=mpp3
#SBATCH --cluster=mpp3
#SBATCH --reservation=TuningWorkshop
#SBATCH --exclusive
export OMP_NUM_THREADS=1
export TRACE_NAME=lulesh2_64p.prv
# run the script
mpiexec ./trace.sh)../apps/lulesh2.0_
```

Step 1: Adapt the job script to load Extrae with LD_PRELOAD

> vi \$HOME/tools-material/extrae/trace.sh

Step 1: LD_PRELOAD library selection

Library	Serial	MPI	OpenMP	OmpSs	pthread	CUDA
libseqtrace	\checkmark					
libmpitrace[f] ¹		\checkmark				
libomptrace			\checkmark			
libnanostrace				\checkmark		
libpttrace					\checkmark	
libcudatrace						\checkmark
libompitrace[f] ¹		\checkmark	\checkmark			
libnanosmpitrace[f] ¹		\checkmark		\checkmark		
libptmpitrace[f] ¹		\checkmark			\checkmark	
libcudampitrace[f] ¹		\checkmark				\checkmark

¹ include suffix "f" in Fortran codes

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Step 3: Run with instrumentation

@ CoolMUC-3

> cd \$HOME/tools-material/extrae

> sbatch job.slurm

• Check the state with:

@ CoolMUC-3

> squeue -u \${USER}

VIRTUAL/INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Step 2: Extrae XML configuration: extrae.xml

Step 2: Extrae XML configuration: extrae.xml (II)

```
<counters enabled="yes">
  <cpu enabled="yes" starting-set-distribution="cyclic">
    <set enabled="yes" domain="all" changeat-time="0">
      PAPI TOT INS, PAPI TOT CYC, PAPI L1 DCM
    </set>
    <set enabled="yes" domain="all" changeat-time="0">
      PAPI TOT INS, PAPI TOT CYC, PAPI BR INS
    </set>
    <set enabled="yes" domain="all" changeat-time="0">
      PAPI TOT INS, PAPI TOT CYC, PAPI BR MSP
    </set>
    <set enabled="ves" domain="all" changeat-time="0">
      PAPI TOT INS, PAPI TOT CYC, PAPI SR INS
    </set>
    <set enabled="yes" domain="all" changeat-time="0">
      PAPI TOT INS, PAPI TOT CYC, PAPI LD INS
    </set>
  </cpu>
  <network enabled="no" />
  <resource-usage enabled="no" />
  <memory-usage enabled="no" />
</counters>
```

Define which HW counters are measured

Step 2: Extrae XML configuration: extrae.xml (III)

V VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Check the resulting trace

After the execution you will get the trace (3 files):

@ CoolMUC-3

> ls -1 \$HOME/tools-material/extrae lulesh2_64p.pcf lulesh2_64p.prv lulesh2_64p.row

Copy these files to your computer

@ your computer

Paraver

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Installing Paraver

Download the Paraver binaries from our website

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Installing Paraver

Installing Paraver

• Uncompress the package into your home directory:

@ your computer

- > tar xf wxparaver-4.7.2-Linux_x86_64.tar.bz2
- > ln -s \$HOME/wxparaver-4.7.2-Linux_x86_64 \$HOME/paraver

Download Paraver tutorials and uncompress into the Paraver directory

https://tools.bsc.es/sites/default/files/documentation/paraver-tutorials-20150526.tar.gz

@ your computer

- > tar xf \$HOME/paraver-tutorials-20150526.tar.gz
- > mv paraver-tutorials-20150526 \$HOME/paraver/tutorials

VIRTUAL/INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Check that everything works

Start Paraver

> \$HOME/paraver/bin/wxparaver

Load the trace

Click on File → Load Trace Browse to "lulesh2_64p.prv" VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Tutorial

Check that everything works

Check that tutorials are available & follow #3

		Barcelona Supercomputing Center Centro Nacional de Supercomputación
Paraver		Index
File Hints Help	-	1. Introduction to Analysis with Paraver - MPI
Help Contents		2. Introduction to the Use of Dimemas
Workspaces Tutorials		3. Introduction to Paraver and Dimemas methodology
None About		4. Analysis with Paraver & Dimemas - Methodology
Window browser	Click on Help \rightarrow	5. HydroC Tutorial
All Traces	Tutorials	6. Paraver trace preparation
4 <u></u>		
		i∃ ← → Close

Measure the parallel efficiency

Click on the "mpi_stats.cfg"

Check the Average for the column labeled "Outside MPI"

Tutorials

MPI call profile @ lulesh2 64p.prv

Measure the computation time distribution

Close

Click on the "2dh_usefulduration.cfg"

Tutorials

- To **measure the parallel efficiency** load the configuration file <u>cfgs/mpi/mpi_stats.cfg</u> This configuration pops up a table with %time that every thread spends in every MPI call. Look at the global statistics at the bottom of the outside mpi column. Entry Average represents the application parallel efficiency, entry Avg/Max represents the global load balance and entry Maximum represents the communication efficiency. If any of those values are lower than 85% is recommended to look at the corresponding metric in detail. Open the control window to identify the phases and iterations of the code.
- To measure the computation time distribution load the configuration file cfgs/general/2dh usefulduration.cfg This configuration pops up a histogram of the duration for the computation regions. The computation regions are delimited by the exit from an MPI call and the entry to the next call. If the histogram does not show vertical lines, it indicates the computation time may be not balanced. Open the control window to look at the time distribution and visually correlate both views.
- To measure the computational load (instructions) distribution load the configuration file <u>cfgs/papi/2dh_useful_instructions.cfg</u> This configuration pops up a histogram of the instructions for the computation regions. The computation regions are delimited by the exit from an MPI call and the entry to the next call. If the histogram doesn't show vertical lines, it indicates the distribution of the instructions may be not balanced. Open the control window to look at the time distribution and correlate both views.
- To measure the serial regions performance look at the IPC timeline loaded with cfgs/general/2dh_usefulduration.cfg. What it's a reasonable IPC would depend on the machine used to run the application, but typically values lower than 1 identify poor performance sections. You can correlate the IPC with the computation time modifying the Statistic of the useful duration histogram to use correlate with metric and verify that the selected Metric is Instructions per cycle. Now the cell color corresponds to the IPC showing the correlation between duration (position) and IPC (color). Zooming into an unbalanced region of the histogram would allow you to verify if the unbalance is related to a different IPC. Change the Metric to Instructions to correlate the duration with

2DH useful duration correlated with @ lulesh2 64p.prv 30 ×X. 2 1/2 THREAD 1.42.1 [494,627.73..497,406.51) = 0 us

(con)

V VIRTUAL INSTITUTE -- HIGH PRODUCTIVITY SUPERCOMPUTING

Measure the computation time distribution

Click on the "2dh_useful_instructions.cfg"

Cluster analysis

Cluster-based analysis

Run clustering

@ CoolMUC-3

- > cd \$HOME/tools-material/clustering
- > ./clusterize.sh ../extrae/lulesh2_64p.prv

If you didn't get your own trace, find one at:

@ CoolMUC-3

> cd \$HOME/tools-material/traces

Looking at the clusters

Check the clustering scatter plot

@ CoolMUC-3

- > module load gnuplot
- > gnuplot lulesh2_64.clustered.IPC.PAPI_TOT_INS.gnuplot
- Identify main computing trends
 - Work (Y-axis), Performance (X-axis)
- See the elongated clusters?
 - Large IPC variability
 - Wide range of instructions
 - Indicate potential imbalances

Looking at the clustered trace

Copy and load the clustered trace with Paraver

- > scp <USER>@lxlogin8.lrz.de:\$HOME/tools-material/clustering/ \
 *.{pcf,prv,row} \$HOME
- File →Load Trace → Browse to \$HOME/tools-material/clustering/lulesh2_64.clustered.prv
- Display the distribution of clusters over time
 - File → Load configuration → Browse to \$PARAVER_HOME/cfgs/clustering/clusterID_window.cfg

Looking at the clustered trace

Correlate scatter-plots and timelines to detect imbalances

Dimemas

Simulating with Dimemas

- Simulate an ideal machine
 - > cd \$HOME/tools-material/dimemas
 - > ./dimemas.sh ../extrae/lulesh2_64p ideal.cfg

Copy the simulated trace to your computer

@ your computer

@ CoolMUC-3

Simulating with Dimemas

Improves?

- Compare the original and simulated trace with Paraver
 - Hints -> MPI -> MPI profile
 - Open control window
 - Copy and paste time from real to ideal

• No improvement: Not limited by network \rightarrow Check serializations

BSC Tools Hands-On

Judit Giménez, Lau Mercadal (lau.mercadal@bsc.es)

Barcelona Supercomputing Center

