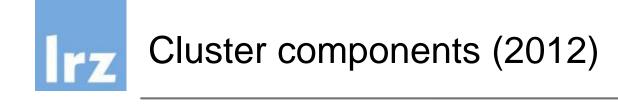


Using the CoolMUC-3 Cluster at LRZ Dr. Volker Weinberg

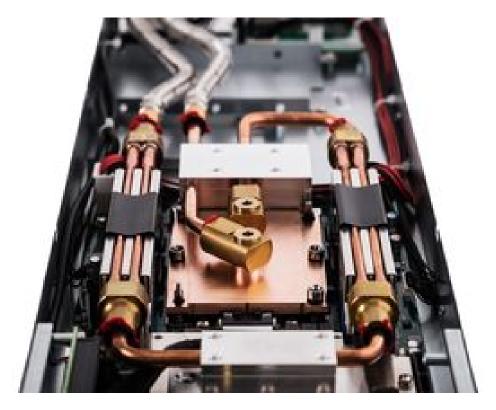


PRACE Workshop: VI-HPS Tuning Workshop, LRZ, 23.4.- 27.4.2018

First self-assembled Linux cluster (1999-2002)

SGI UltraViolet with air guides in front to improve cooling efficiency (2012)

CoolMUC-2 (2015): The six racks to the left



CoolMUC-3 (2017): Really Cool

Linux Cluster System Overview

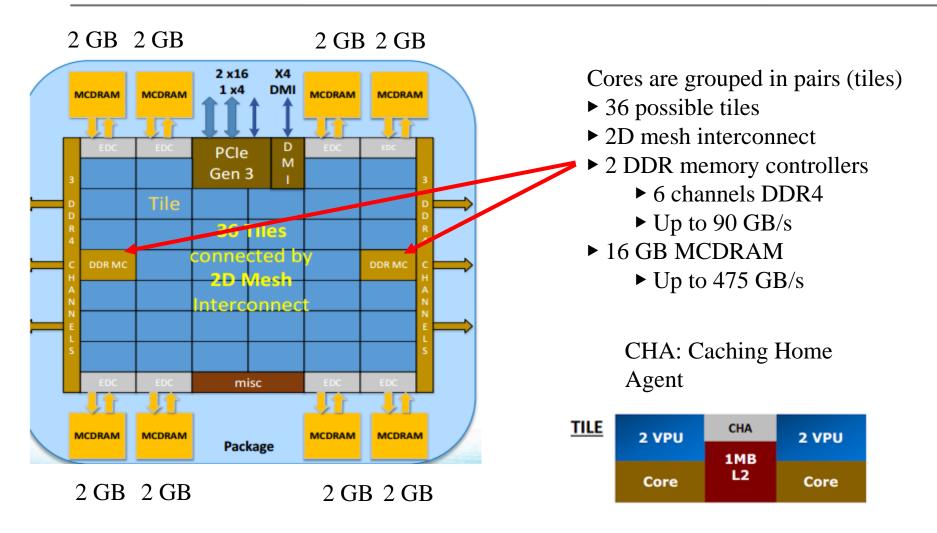
Architecture				Total Numbers		Max Job Limits				How to get access	
System Name	CPU	Cores per Node	RAM per Node [GB]	Nodes	Cores	Nodes	Cores	Wall Time	Max. aggreg. RAM		Login Node (job submission)
I Interview ('luctor	Intel Xeon E5-2697 v3 ("Haswell")	28	64	384	10752	60	1680	48h	3.8 TB	mpp2	lxlogin5.lrz.de, lxlogin6.lrz.de, lxlogin7.lrz.de
I Interview ('luctor	Intel Xeon E5-2697 v3 ("Haswell")	28	64	1	28	1	28	96h	64 GB	serial	Ixlogin5.Irz.de, Ixlogin6.Irz.de, Ixlogin7.Irz.de
Linux-Cluster Hugemem	Intel Xeon E5-2660 v2 ("Sandy Bridge")	20	240	7	220	1	20	168h	240 GB	hugemem	lxlogin5.lrz.de, lxlogin6.lrz.de, lxlogin7.lrz.de
I inux Cluctor	Intel Xeon E7- 8890 v4	96	6144	1	96	1	96	48h	6.1 TB	inter	lxlogin5.lrz.de, lxlogin6.lrz.de, lxlogin7.lrz.de
	Intel Xeon Phi (Knights Landing)	64	RAM:96 HBM:16	148	64	32	64	24h	RAM:288 0GB HBM:512 GB	mpp3	lxlogin8.lrz.de

- Consists of 148 computational many-core Intel "Knight's Landing (KNL)" nodes (Xeon Phi 7210-F hosts).
- Connected to each other via an Intel Omnipath high performance network in fat tree topology.
- Theoretical **peak performance** is **400 TFlop/s** and the **LINPACK performance** of the complete system is **255 TFlop/s**.
- Standard Intel Xeon login node for development work and job submission.

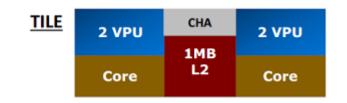
- CoolMUC-3 comprises of three warm-water cooled racks, using an inlet temperature of at least 40 C.
- Deployment of liquid-cooled power supplies and Omni-Path switches.
- Thermal isolation of the racks to suppress radiative losses.
- Liquid cooled racks operate **entirely without fans**.
- A complementary rack for aircooled components (e.g. management servers) uses less than 3% of the systems total power budget.
- With 4.96 GFlops/Watt (according to the strict Green500 level-3 measurement methodology) CoolMUC-3 is one of the most efficient x86 systems worldwide.
- Result of an established partnership between LRZ and Megware.

Hardware							
Number of nodes	148						
Cores per node	64						
Hyperthreads per core	4						
Core nominal frequency	1.3 GHz						
Memory (DDR4) per node	96 GB (Bandwidth 80.8 GB/s)						
High Bandwidth Memory per node	16 GB (Bandwidth 460 GB/s)						
Bandwidth to interconnect per node	25 GB/s (2 Links)						
Number of Omnipath switches (100SWE48)	10 + 4 (each 48 Ports)						
Bisection bandwidth of interconnect	1.6 TB/s						
Latency of interconnect	2.3 µs						
Peak performance of system	394 TFlop/s						
Infrastructure							
Electric power of fully loaded system	62 kVA						
Percentage of waste heat to warm water	97%						
Inlet temperature range for water cooling	30 50 °C						
Temperature difference between outlet and inlet	4 6 °C						
Software (OS and development environment)							
Operating system	SLES12 SP2 Linux						
MPI	Intel MPI 2017, alternativ OpenMPI						
Compilers	Intel icc, icpc, ifort 2017						
Performance libraries	MKL, TBB, IPP, DAAL						
Tools for performance and correctness analysis	Intel Cluster Tools						

Knights Corner vs. KNL



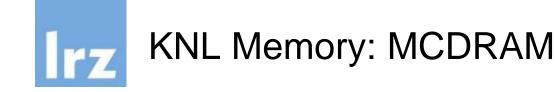
- Intel Many Integrated Cores (MIC) is the code name for Intel's range of manycore CPUs
- Intel Xeon Phi code-named Knights Corner (KNC)
 - 1st generation of Xeon Phi 2012 LRZ SuperMIC
 - Coprocessor
 - supporting 512 bit vectors
 - IMCI Instruction set
- Intel Xeon Phi code-named Knights Landing (KNL)
 - 2nd generation of Xeon Phi 2016 LRZ CoolMUC-3
 - Processor
 - supporting 512 bit vectors
 - Intel AVX-512 Instruction set

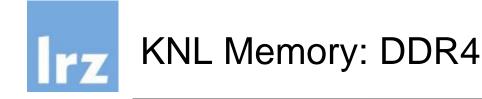


KNL Block Diagram

• Basic unit for replication

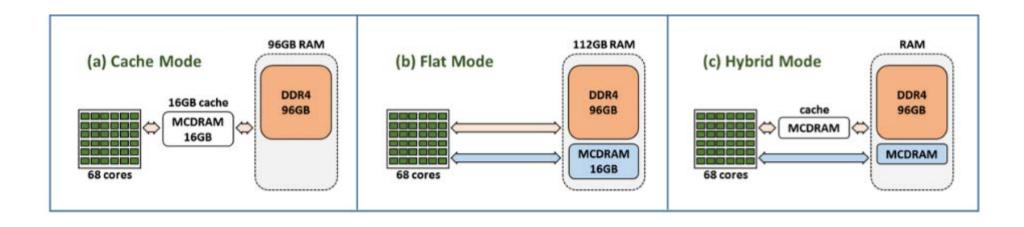
Tile


- Each tile consists of 2 cores, 2 vector-processing units (VPU) per core, a 1 MB L2 Cache shared between the 2 cores
- **CHA** (caching/home agent)
 - Serves as the point where the **tile connects to the mesh**
 - Holds a portion of the **distributed tag directory structure**



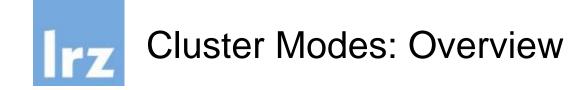
- Memory hierarchy on KNL:
 - DDR4 (96 GB)
 - MCDRAM (16 GB)
 - Tile L2 (1 MB)
 - Core L1 (32 KB)
- **Tile**: set of 2 cores sharing a 1MB L2 cache and connectivity on the mesh
- **Quadrant/Hemisphere**: virtual concept, not a hardware property. Way to divide the tiles at a logical level.
- **Tag Directory**: tracks cache line locations in all L2 caches. It provides the block of data or (if not available in L2) a memory address to the memory controller.

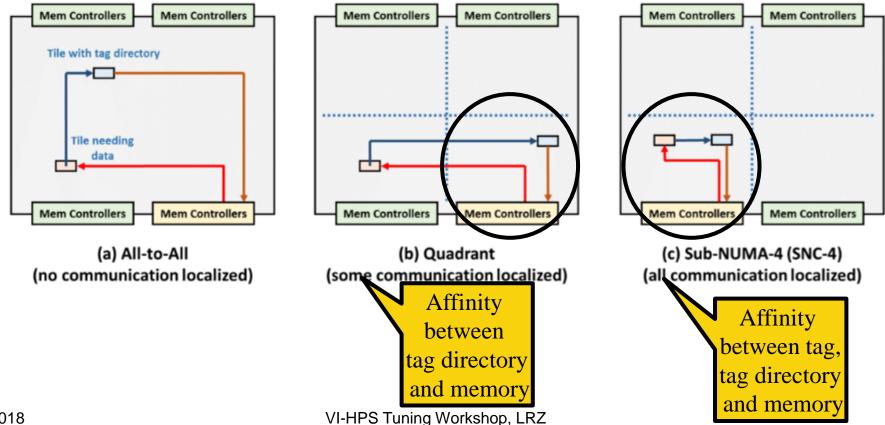
- High-bandwidth memory integrated on-package
- 8 MCDRAM devices on KNL, each with 2 GB capacity -> total 16 GB
- Connected to EDC memory controller via proprietary on-package I/O: OPIO
- Each device has a separate read and write bus connecting it to its EDC (Embedded DRAM Controller)
- Aggregate Stream Triads Bandwidth for the 8 MCDRAMS is over 450 GB/s
- Slighter higher latency than main memory (~10% slower)

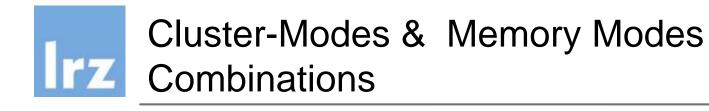


- High-capacity memory off-package
- KNL has direct access to all of main memory
- 2 DDR4 memory controllers on opposite sides of the chip, each controlling 3 DDR4 channels
- Maximum total capacity is 384 GB
- Aggregate Stream Triads Bandwidth from all 6 DDR4 channels is around 90 GB/s

KNL Memory Modes






- Cluster Modes modify the distance that L2 coherency traffic flows go through the mesh
- 5 Cluster Modes supported:
 - All-to-all
 - Quadrant / Hemisphere
 - 2 **Sub-NUMA Cluster** modes: SNC-4 / SNC-2
- Regardless of the cluster mode selected, all memory (all MCDRAM and all DDR4) is available to all cores, and all memory is fully cache-coherent.
- What differs between the modes is whether the view of MCDRAM or DDR is **UMA** (Uniform Memory Access) or **NUMA**.

Cluster modes modify the distance that coherency traffic flows through mesh!

- 5 Flat Memory Mode Variants:
 - Flat-A2A
 - Flat-Quadrant
 - Flat-Hemisphere
 - Flat-SNC4
 - Flat-SNC2
- 5 Cache Memory Mode Variants
 - Cache-A2A
 - Cache-Quadrant
 - Cache-Hemisphere
 - Cache-SNC4
 - Cache-SNC2
- $5 \times 3 = 15$ Hybrid Variants

For Cache friendly applications

Recommended for this Workshop!

Need NUMA-optimization

- use only DDR (default) numactl --membind=0 ./a.out
- use only MCDRAM in flat-quadrant mode numactl --membind=1 ./a.out
- use MCDRAM if possible in flat-quadrant mode; else DDR

```
numactl --preferred=1 ./a.out
```

- show numactl settings numactl --hardware
- list available numactl options numactl --help

- For reasonable optimization including SIMD vectorization for the KNL compute nodes, use options -03 -xmic-avx512
- To optimise both for Broadwell (AVX2) and KNL (AVX512) use options

-xcore-avx2 -axmic-avx512

ssh -Y Ixlogin5.lrz.de -I xxyyyzz ssh -Y Ixlogin6.lrz.de -I xxyyyzz ssh -Y Ixlogin7.lrz.de -I xxyyyzz gsissh -Y Ixgt2.lrz.de

ssh -Y lxlogin8.lrz.de -l xxyyyzz

Haswell (CoolMUC-2) login node Haswell (CoolMUC-2) login node Haswell (CoolMUC-2) login node login node for Gsi-SSH

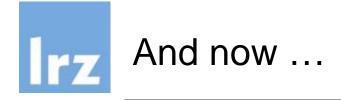
KNL Cluster (CoolMUC-3 login node)

- Linux-Cluster:
 - https://www.lrz.de/services/compute/linux-cluster/
- CoolMUC-3:
 - https://www.lrz.de/services/compute/linuxcluster/coolmuc3/initial_operation/
 - https://www.lrz.de/services/compute/linuxcluster/coolmuc3/overview/

- Using CoolMUC-3 for Training
- https://www.lrz.de/services/compute/courses/Using-CoolMUC-3/

https://goo.gl/pKJPwd

CoolMUC-3 SLURM


- Submit a job: sbatch --reservation=TuningWorkshop job.sh
- List own jobs: squeue -u hpckurs??
- Cancel jobs: scancel jobid
- Interactive Access:
- salloc --nodes=1 --time=02:00:00
- --constraint=cache,quad
- --reservation=TuningWorkshop
 --partition=mpp3_batch
- srun --reservation=TuningWorkshop --pty bash
 VI-HPS Tuning Workshop, LRZ

- -> /lrz/sys/courses/KNL/batch-cache-quad.sh
- #!/bin/bash
- #SBATCH -o /home/hpc/a2c06/hpckurs01/test.%j.%N.out
- #SBATCH -D /home/hpc/a2c06/hpckurs01/
- #SBATCH -J jobname
- **#SBATCH** --clusters=mpp3
- **#SBATCH** --get-user-env
- #SBATCH --time=02:00:00
- **#SBATCH** --constraint=cache,quad

commands

Enjoy the course!