
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

 If you made it this far, you successfully used Score-P to
 instrument the application

 analyze its execution with a summary measurement, and

 examine it with one the interactive analysis report explorer GUIs

 ... revealing the call-path profile annotated with
 the “Time” metric

 Visit counts

 MPI message statistics (bytes sent/received)

 ... but how good was the measurement?
 The measured execution produced the desired valid result

 however, the execution took rather longer than expected!
 even when ignoring measurement start-up/completion, therefore

 it was probably dilated by instrumentation/measurement overhead

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

 Report scoring as textual

output

 Region/callpath classification

 MPI pure MPI functions

 OMP pure OpenMP regions

 USR user-level computation

 COM “combined” USR+OpenMP/MPI

 ANY/ALL aggregate of all region

types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 160 GB

Estimated requirements for largest trace buffer (max_buf): 21 GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 21 GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid

 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the

 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 21,518,477,680 6,591,910,441 2825.52 100.0 0.43 ALL

 USR 21,431,996,118 6,574,793,529 1166.25 41.3 0.18 USR

 OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP

 COM 2,351,570 723,560 2.33 0.1 3.22 COM

 MPI 288,136 33,928 123.94 4.4 3653.01 MPI

150 GB total memory

21 GB per rank!

USR

USR

COM

COM USR

OMP MPI

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

 Score report breakdown by region

% scorep-score -r scorep_bt-mz_sum/profile.cubex

 [...]

 [...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 21,518,477,680 6,591,910,441 2825.52 100.0 0.43 ALL

 USR 21,431,996,118 6,574,793,529 1166.25 41.3 0.18 USR

 OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP

 COM 2,351,570 723,560 2.33 0.1 3.22 COM

 MPI 288,136 33,928 123.94 4.4 3653.01 MPI

 USR 6,883,222,086 2,110,313,472 359.08 12.7 0.17 matmul_sub_

 USR 6,883,222,086 2,110,313,472 263.79 9.3 0.12 matvec_sub_

 USR 6,883,222,086 2,110,313,472 501.53 17.8 0.24 binvcrhs_

 USR 293,617,584 87,475,200 11.75 0.4 0.13 binvrhs_

 USR 293,617,584 87,475,200 21.75 0.8 0.25 lhsinit_

 USR 224,028,792 68,892,672 8.36 0.3 0.12 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

20 GB just for these 6

regions

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

 Summary measurement analysis score reveals

 Total size of event trace would be ~160 GB

 Maximum trace buffer size would be ~21 GB per rank

 smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

 99.9% of the trace requirements are for USR regions

 purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

 These USR regions contribute around 39% of total time

 however, much of that is very likely to be measurement overhead for frequently-executed small routines

 Advisable to tune measurement configuration

 Specify an adequate trace buffer size

 Specify a filter file listing (USR) regions not to be measured

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 6

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Report scoring with

prospective filter listing 6

USR regions

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% scorep-score -f ../config/scorep.filt –c 2 \

 scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 1624MB

Estimated requirements for largest trace buffer (max_buf): 203MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 215MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=215MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

1.6 GB of memory in total,

203 MB per rank!

(Including 2 metric values)

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 7

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Score report breakdown

by region

% scorep-score -r –f ../config/scorep.filt \

 scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 - ALL 21,518,477,680 6,591,910,441 2825.52 100.0 0.43 ALL

 - USR 21,431,996,118 6,574,793,529 1166.25 41.3 0.18 USR

 - OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP

 - COM 2,351,570 723,560 2.33 0.1 3.22 COM

 - MPI 288,136 33,928 123.94 4.4 3653.01 MPI

 * ALL 86,513,568 17,126,753 1659.27 58.7 96.88 ALL-FLT

 + FLT 21,431,964,112 6,574,783,688 1166.25 41.3 0.18 FLT

 - OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP-FLT

 * COM 2,351,570 723,560 2.33 0.1 3.22 COM-FLT

 - MPI 288,136 33,928 123.94 4.4 3653.01 MPI-FLT

 * USR 32,006 9,841 0.00 0.0 0.27 USR-FLT

 + USR 6,883,222,086 2,110,313,472 359.08 12.7 0.17 matmul_sub_

 + USR 6,883,222,086 2,110,313,472 263.79 9.3 0.12 matvec_sub_

 + USR 6,883,222,086 2,110,313,472 501.53 17.8 0.24 binvcrhs_

 + USR 293,617,584 87,475,200 11.75 0.4 0.13 binvrhs_

 + USR 293,617,584 87,475,200 21.75 0.8 0.25 lhsinit_

 + USR 224,028,792 68,892,672 8.36 0.3 0.12 exact_solution_

 - OMP 6,715,008 617,472 0.15 0.0 0.24 !$omp parallel @exch_qbc.f:215

Filtered
routines

marked with
‘+’

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

 Set new experiment

directory and re-run

measurement with new

filter configuration

 Submit job

% cd bin.scorep

% cp ../jobscript/inti/scorep.msub .

% vim scorep.msub

PROCS=8

CLASS=C

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_TOTAL_MEMORY=100M

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC

#export SCOREP_ENABLE_TRACING=true

launch

EXE=./bt-mz_$CLASS.$PROCS

ccc_mprun -n $PROCS $EXE

% ccc_msub ./scorep.msub

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

 Filtering by source file name

 All regions in files that are excluded by the filter are

ignored

 Filtering by region name

 All regions that are excluded by the filter are ignored

 Overruled by source file filter for excluded files

 Apply filter by

 exporting SCOREP_FILTERING_FILE environment

variable

 Apply filter at

 Run-time

 Compile-time (GCC-plugin only)

 Add cmd-line option --instrument-filter

 No overhead for filtered regions but recompilation

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name
filter block

using wildcards

Apply filter

10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

This is a comment

SCOREP_FILE_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE */foo/bar*

 INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

 Define the source file name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated source file names

 Names can contain bash-like wildcards *, ?, []

 Unlike bash, * may match a string that contains slashes

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions in source files that are excluded after all rules are evaluated, get filtered

11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

This is a comment

SCOREP_REGION_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE *

 INCLUDE bar foo

 baz

 main

SCOREP_REGION_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

 Define the region name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated region names

 Names can contain bash-like wildcards *, ?, []

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions that are excluded after all rules are evaluated, get filtered

12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block, mangling

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

void bar(int* a) {

 *a++;

}

int main() {

 int i = 42;

 bar(&i);

 return 0;

}

 Name mangling

 Filtering based on names seen by the measurement

system

 Dependent on compiler

 Actual name may be mangled

 scorep-score names as starting point

(e.g. matvec_sub_)

 Use * for Fortran trailing underscore(s) for

portability

 Use ? and * as needed for full signatures or

overloading

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods)

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under New BSD open-source license

 Documentation & Sources:

http://www.score-p.org

 User guide also part of installation:

<prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

 26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 14

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

 26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

Less disturbed
measurement

18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

19

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

Different maximum
heap usages per

ranks

20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

Memory leaks Memory leaks

21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

23

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

% papi_avail

% papi_native_avail

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 No replacement for automatic compiler instrumentation

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 25

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

 ! Declarations

 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 do i=1,100

 [...]

 end do

 SCOREP_USER_REGION_END(solve)

 ! Some more code…

end subroutine

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 26

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

#include "scorep/SCOREP_User.h"

void foo()

{

 /* Declarations */

 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */

 SCOREP_USER_REGION_BEGIN(solve, “<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 SCOREP_USER_REGION_END(solve)

 /* Some more code… */

}

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 27

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

#include "scorep/SCOREP_User.h"

void foo()

{

 // Declarations

 // Some code…

 {

 SCOREP_USER_REGION(“<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 }

 // Some more code…

}

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 28

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

 ! Some code…

 SCOREP_RECORDING_OFF()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 SCOREP_RECORDING_ON()

 ! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

 /* Some code… */

 SCOREP_RECORDING_OFF()

 /* Loop will not be measured */

 for (i = 0; i < 100; i++) {

 [...]

 }

 SCOREP_RECORDING_ON()

 /* Some more code… */

}

Fortran (requires C preprocessor) C / C++

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 29

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Conclusion and Outlook

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Project management

 Ensure a single official release version at all times which will always work with the

tools

 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation
 Development based on meritocratic governance model

 Open for contributions and new partners

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 31

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future features

 Scalability to maximum available CPU core count

 Support for emerging architectures and new programming models

 Features currently worked on:
 User provided wrappers to 3rd party libraries

 Hardware and MPI topologies

 Basic support of measurements without re-compiling/-linking

 I/O recording

 Java recording

 Persistent memory recording (e.g., PMEM, NVRAM, …)

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 32

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

26TH VI-HPS TUNING WORKSHOP (TERATEC, 16-20 OCT 2017) 33

