e VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

;1101
B 101107 8%
10191

MAQAO uNIversiTE DE N2
Performance Analysis and Optimization Tool

[\

VERSAILLES «=>

SAINT-QUENTIN-EN-YVELINES

Emmanuel OSERET - emmanuel.oseret@uvsq.fr
Performance Evaluation Team, University of Versailles S-Q-Y
Andres S. CHARIF RUBIAL - ascr@pexl.eu - PeXL
http://www.magao.org
VI-HPS 26t Bruyeres-le-Chatel — France - 16-20 October 2017 G PeXL

o Technische G UNIVERSITE DE
_— ﬂﬂm Universitat 28 Universitat Stuttgart VERSAILLES
BRI for Simulation Sciences Miinchen i ST-QUENTIN-EN-YVELINES

#) JULICH |8 aurence Livermore G0 BRRErs o T

9
I

http://www.maqao.org/

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Performance analysis (1/2)

Characterizing application performance:
= Profiling application
= Pinpointing the performance bottlenecks

» Complex multicore and manycore CPUs
= Complex memory hierarchy

= Making best use of the machine features

Facing a multifaceted problem:

= How to determine the dominant issues?
= Algorithms choice
= Implementation
» Parallelization

= Maximizing the number of views

=> Need for dedicated and complementary tools

e
MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 2

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Performance analysis (2/2)

Motivating example: loop ~10% walltime

Variable number of iterations Source code and associated issues:
/ Non-unit stride accesses
do j = ni+nvaluel,nato 1) High number of statements
I" njl = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel . .
ool ul = x11 - %(nj1) ; u2 = x12 - x(nj2) : u3 = x13 - x(nj3) 2) Non-unit stride accesses
*qc'; ! rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*qEold(j)]
g = | rij = demi*(rvwi+rvwalc1(j)) 3) Indirect accesses
9 L_rB : drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2) «—DIV/SQRT
%@l Eq=aglqq()drtest 4) DIVISQRT
5 P ! ntj = nti + ntype(j) Indirect
O Ed = ceps(ntj)*drtest2*drtest2*drtest? = :
% ; | EqC EQREE £Q : Enhob B Ephob BE accesses | 5) Reductions
| . .
SO gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 | l
£ ulg = ul*gE ; u2g = U2*gE ; u3g = u3*gE Reductions 6) Vector vs Scalar
o | glc =glc-ulg; g2c =g2c-u2g; g3c =Qg3C-u3g .] .
o gr(nj1,thread_num) = gr(njl,thread_num) + ulg 7) Variable number of iterations
! grinj2,thread_num) = gr(nj2,thread_num) + u2g F--——--—- i
L gr(nj3,thread_num) = gr(nj3,thread_num) + u3g i

end do Non-unit stride accesses

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 3

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:

= Performance characterization of HPC applications
= Focus optimization efforts

= Estimation of R.O.I.

Main functionalities:
= Profiling and hardware counters collection
= Code quality analysis

Characteristics:

= Modular tool

= Support for Intel x86-64 and Xeon Phi
= LGPL3 Open Source software

= Developed at UVSQ since 2004

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 4

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Introduction
Partnerships

MAQAO was funded by UVSQ, Intel and CEA (French department of energy) through Exascale
Computing Research (ECR) and the French Ministry of Industry through various FUI/ITEA projects

(H4H, COLOC, PerfCloud, ELCI, etc...) onversiTé ot [/-7
VERSAILLES &= intel

SAINT-QUENTIN-EN-YVELINES

Provides core technology to be integrated with other tools:

= TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
= ATOS bullxprof with MADRAS through MIL

» Intel AmplifierXE

= INRIA Bordeaux HWLOC

PeXL ISV also contributes to MAQAO:
= Commercial performance optimization expertise G P XL
* Training and software development

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 5

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Success stories

MAQAO was used for optimizing industrial and academic HPC applications:
= QMC=CHEM (IRSAMCQC)

= Quantum chemistry
= Speedup: > 3x
= Yales2 (CORIA)
= Computational fluid dynamics
= Speedup: up to 2,8x
= Polaris (CEA)
= Molecular dynamics
= Speedup: 1,5x - 1,7x
= AVBP (CERFACS)

= Computational fluid dynamics
= Speedup: 1,08x - 1,17x

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 6

Introduction
Some MAQAO Collaborators

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Prof. William Jalby

Prof. Denis Barthou

Prof. David J. Kuck

Andrés S. Charif-Rubial, Ph D
= Jean-Thomas Acquaviva, Ph D
= Stéphane Zuckerman, Ph D

= Julien Jaeger, Ph D

= Souad Koliai, Ph D

= Cédric Valensi, Ph D

Eric Petit, Ph D

Zakaria Bendifallah, Ph D
Emmanuel Oseret, Ph D
Pablo de Oliveira, Ph D

= Tipp Moseley, Ph D

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

= David C. Wong, Ph D

= Jean-Christophe Beyler, Ph D
= Mathieu Tribalat

= Hugo Bolloré

= Jean-Baptiste Le Reste

= Sylvain Henry, Ph D

= Salah Ibn Amar

= Youenn Lebras

= Othman Bouizi, Ph D

= José Noudohouennou, Ph D

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: Analysis at binary level

Advantages of binary analysis:
= Compiler optimizations increase the distance between the executed code and the source
= Source code instrumentation may prevent the compiler from applying some transformations

|II

We want to evaluate the “real” executed code: What You Analyze Is What You Run

Main steps:
= Reconstruct the program structure

= Relate the analyses to source code } Source
= A single source loop can be compiled as multiple assembly loops

~ Peel/Prolog ~Loop 2
@ Hain Loop 4 F
@ Tail/Epilog

Loop 5 J

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 8

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO Main Structure

g A

+ Characteristics
Internal

Representation 4(

Application

Lua API

R

Introduction
MAQAO methodology

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Decision tree

Profiling

Loops of interest

Analysis

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

CPU oriented

Code Quality Analysis

Differential analysis

Value Profiling

Memory oriented

Memory behaviour
characterization

Differential analysis

10

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler

Time categorization - mz-mpich-3.1.sp-mz.C.8 v Hotspots - Functions
X
[] Application 8
[] MPI
OpenMpP 6
| | Math
[| System 4 -
M %Time
| | Pthread
|| 10 2
M String manipulation
Memaory operations jo -
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|] Others
—_exacl_solufion__- d@exaci_solution T 0.21 0.03

x_unpack_solve_info__ - 114@x_solve.{ 014 0.03

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Introduction

Lightweight localization of application hotspots

Multiple measurement methods available:
= Sampling (default)

= Hardware counters (through perf_event_open system call)
= Non intrusive, low overhead

» Instrumentation: for targeting specific issues
= Binary rewriting
= Extra overhead

Runtime-agnostic

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

12

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Time categorization

Parallelization overhead: i bbbl S S
« Shared: Pthreads, OpenMP, etc ... Time categorization - mz-mpich-3.1.sp-mz.C.8

» Distributed: MPI, etc...

[Application

_ MPI
Programming: -

. pen
= JO operations -

. . d
= String operations
System

= Memory management

. . . . Pthread
= External libraries such as libm / libmkl

10

User time breakdown: String manipulation

= Functions
= Loops

Memory operations

[| Others

MAQAO LProf: Lightweight Profiler
Function and loop hotspots (1/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Focusing on user time:
= Function hotspots
= Load balancing across the nodes

com pute_rhs_
y_solve_
z_solve_

¥_solve_

RADIM ~H2 Drnnvace

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

Mame

Hotspots -

Functions

Median Excl %Time
30.88
15.51
15.34
15.07

C &1

Deviation
0.14
014
014
014

n1aAa

14

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Function and loop hotspots (2/3)

Focusing on user time:
= Function hotspots
= Load balancing across the nodes

M %Time

Name

compute_rhs_

y_solve_

z_solve_

¥_solve_ 15.07 014

RADIM ~H2 Drnnvace C &1 n1aAa

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Function and loop hotspots (3/3)

Analyzing the time spent at loop level:
* Finding the most time consuming
= Providing direct link to MAQAO CQA analyses

dauvergne - Process #14213 - Thread #14201

Name Excl %Time Excl Time (s)
binvcrhs - 206@solve_subs.f 17.27 2.23
MPIDI_CH3I_Progress 15.24 1.96
poll_active_fboxes 13.71 1.77
y_solve_.omp_fn.0 - 45&@y_solve.f 8.47 1.09

loops 2.47

Loop 121 - v_solve f&@45 0

Loop 122 - y_solve f@45 0.16

Loop 124 - yv_solve f@45 0.14

_s-::lve.f@ME 5.12

Loop 126 y_solve f@55

Loop 123 - y_solve.f@45 1.02
x_solve_.omp_fn.0 - 48&@x_solve.f 8.23 1.06

loops 2.23

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 16

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

| Gain | Potential gain | Hints | Experts only

quality analysis

Source loop ending at line 682
~ MAQADO binary loop id: 238

The loop is defined in MPI/BT/x_solve.f:519-682
15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
By fully vectorizing your loop, you can lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup).
Since your execution units are vector units, only a fully vectorized loop can use their full power
Proposed solution(s):
Two propositions:

Try another compiler or update/tune your curent one:
- Remove inter-iterations dependences from your loop and make it unit-stride.

By removing all these bottlenecks, you can lower the cost of an iteration from 190.00 to 143.00 cycles (1.33x speedup)

Source loop ending at line 734

17

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Introduction

Improving performance of the user code

Performing static analysis of assembly code (no execution needed)
= Relies on a microarchitecture model

= Evaluates the quality of the compiler generated code

= Returns hints and workarounds to the developer

Focusing on loops:
= In HPC most of the time is spent in loops

Targets compute bound codes

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 18

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Processor Architecture: Core level

Most of the time, applications only exploit at best 5% to 10% of the peak performance.

Concepts:

= Peak performance

= Execution pipeline

= Resources/Functional units Same instruction — Same cost

Key performance levers for core level efficiency: Process u
. p to
= Vectorizing 8X (SP) data

= Avoiding high latency instructions if possible ...-....

= Having the compiler generate an efficient code

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 19

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Output

High level reports:

» Reference to the source code
» Bottleneck descri ption Source loop ending at line 10
= Hints to improve performance > MAQAO MY op -2]
. . The loop is defined in Izhomelacademic/HLRS/xhp/xhpeo/TEST/matmul/kernel.c:9-10
. Reports Categorlzed by Conﬂdence Ievel 29% of pgak comﬁputational‘performance is usedr(>0.67 out of 32.00 FLOP Qer cy;le (1.67 GFLOPS@z.SOGHz?)
" galn, pOtentIaI galn ! Gain ! Potential gain g Hints | Experts only

LOW |eve| re po rt fo r pe rfo rm a n Ce eXpe rtS : Your loop Is processing FP elements b@ |sr NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization

By fully vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.38 cycles (8.00x speedup)
Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

No runtime cost/overhead

Two propositions:

- Try another compiler or update/tune your current one:

- Remove inter-iterations dependences from your loop and make it unit-stride

* I your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly

C storage order is row-major: for(i) for(j) afjj{i] = b)][i]: (slow, non stride 1) => for(i) for(j) a[i)(j] = bi][]]: (fast, stride 1)
* If your loop streams arrays of structures (A0S), try to use structures of arrays instead (SoA)
for(i) afi].x = b[i].x: (slow, non stride 1) => for(l) a.x[i] = b.x[i]. (fast, stride 1)

P —

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 20

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Compiler and programmer hints

Compiler can be driven using flags and pragmas:

= Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
= Forcing optimization (unrolling, vectorization, alignment, ...)

= Bypassing conservative behavior when possible (e.g. 1/X precision)

Implementation changes

= Improve data access
= Loop interchange
= Changing loop strides

= Avoid instructions with high latency

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 21

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 22

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
Introduction

Automatizing the full analysis process
» Invocation of the MAQAO modules
= Generation of aggregated performance views as HTML or XLS graphs

Configuration 4 Reports A
file
Application n
\)

- o)

Other
prof = L =

_ MAQAO analysis modules .

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 23

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample (1/3)

- N

Functions Speedups

Functions Speedups

L loopshndex]

Name Coverage (%) NbThreads Deviation
Loop Id Source Lines Source Flle Source Function Coverage (%)
binverhs 2413 4 231
~ compute_rhs_._omp_fn.0 13.03 4 1.63 Loop 183 145 => 308 y_sclvef y_solve_._omp_fn.0 _
~ Loop 130 - rhs.f:4-178 3.43
Loop 187 146 => 309 z_solve.f z_solve_._omp_fn.0
~ Loop 120 - rhs.f:4-132 2.04
© Loop 119 - ths.:4-132 2.04 Loop 186 55=> 137 z_solve.f z_solve_._omp_fn.0 _
+ Loop 126 - rhs.f:155-161 1.13
= 3 " n.o
+ Loop 123 - 1hs.f:139-151 e Loop 157 397 => 399 x_solve.f x_solve_._omp_fn _
O e B) 0.09 Loop 155 146 => 309 x_solve.f %_solve_._omp_fn.0 _
» Loop 118 - rhs.1:4-288 3.12
+ Loop 134 - ths.1:64-67 178 Loop 162 55=> 137 y_solve.f y_solve_._omp_fn.0 _
» Loop 104 - s.f:4-349) Loop 190 417 => 419 z_solve.f z_solve_._omp_fn.0 _
» Loop 81 - rhs.f:39-50 1.56
+ Loop 98 - rhs.1:386-392 1.00 Loop 165 396 => 398 y_solve.f y_solve_._omp_fn.0 _
» Loop 88 - rhs.f:430-433 0.26
Loop 154 57 => 139 x_solve.f x_solve_._omp_fn.0
+ Loop 94 - rhs.1:402-406 0.13
» Loop 91 - rhs.f:415-419 0.09 Loop 119 4=>132 rhs.t compute_rhs_._omp_fn.0 _
» z_solve_._omp_fn.0 12.63 4 0.89
Loop 105 4=>238 rhs.f compute_rhs_._omp_fn.0
» y_solve_._omp_fn.0 11.94 4 0.83
matmul_sub 11.41 4 0.7 Loop 131 66 => 67 rhs.f compute_rhs_._omp_fn.0 _
» x_solve_._omp_fn.0 10.42 4 0.88
omp_get_num_procs 5.86 " 0.51 Loop 102 4=> 349 rhs.f compute_rhs_._omp_fn.0 _
L 3.78 4 02 Loop 79 40=>50 ths.f compute_ths_._omp_fn.0 _
MPIDI_CH3_iStartMsgv 126 2 0.44
» add_._omp_fn.0 082 " 019 Loop 124 156 => 161 the.f compuite_ths_._omp_fn.0 _
» Ihsinit 0.65 4 0.33
MPID_nem_tcp_connpoll 0.43 2 0.51
Loop 195 26 => 28 add.f add_._omp_fn.0
Unknown functions 0.39 4 0.21
» COpY_X_face_._omp_n.3 0.22 3 0.08 Loop 188 313=> 318 z_solve.f z_solve_._omp_fn.0 _
» copy_x_face_._omp_fn.2 0.13 3 [i]
Pl Sonsion 0.09 2 0 Loop 37 228 => 234 initialize.f Ihsinit _
MPID_nem_network_poll 0.09 1 0
MPID_nem_tcp_cleanup_on_error 0.04 1 0 Loop 184 337 => 360 y_solve.f y_salve_._omp_fn.0 _
s o : - o 201 RUETYY) e i et _
s/magao_2017-03-22_16-18-01/RESULTS/one_html/fcts_and_loops.html 0.04 1 0 s/maqao_2017-03-22_16-18-01/RESULTS/one_html/loops_index.html

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample (2/3)

Functions Speedups

Coverage 2.04%

Function compute_rhs__omp_fn.0

Source lines and file 4,132@rhsf

r Source Code
Assembly Code

- CQA Report

The loop is defined in /homel/cvalensi/Documents/Magao/Tests/samples/NPB3 .3 1-MZ/NPB3.3-MZ-MPIBT-MZirhs f4-132
In the binary file, the address of the loop is: 406bbf

- Path 1

19% of peak computational performance is used (1.54 out of .00 FLOP per cycle (GFLOPS @ 1GHz))

lgaln potential | hint | expert J

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them
you can lower the cost of an iteration from 61.00 to 58.00 cycles (1.05x speedup)
To reference allocatable arrays, use "allocatable” instead of "pointer” pointers or qualify them with the "contiguous”

aftribute (Fortran 2008). For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b
setto a%b before this loop

Your loop is probably not vectorized (store and arithmetical SSE/AVX instructions are used in scalar mode and, for
others, atleast one is in vector mode). Only 29% of vector length is used

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
By fully vectorizing your loop, you can lower the cost of an iteration from 61.00 to 19.25 cycles (3.17x speedup).
\ \
+ Try anather compiler or update/une your current one
© ifnot already done, recompile with O3 to enable the compiler vectorizer. In case of reduction loop, use
Ofast instead of O3 or add ffastmath,
* Remove inter-iterations dependences from your loop and make it unit-stride
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and
otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i do j a(i,j) = bij)
(slow, non stride 1) == do i do j a(j,i) = bii) (fast, stride 1)
© Ifyour loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i a(i)%x
= b{i)%x (slow, non stride 1) == do i a%x(i) = b%x(i} (fast, stride 1)

Performance is bounded by instruction throughput (loading/decoding program instructions to execution core) (front-end
is a bottleneck).

Advanced COA metrics

Memory Groups

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 25

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample (3/3)

Ordered Speedups If FP Vectorized

1107
aaaaa
ooooo

CQA Potential Speedups

Ordered Speedups If Fully Vectorized

Ordered Speedups If Code Clean

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 26

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention!

Questions ?

UNIVERSITE DE
Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

i
§
|
®
|

Technische
RWRHER e
Miinchen

o . TECHNISCHE
#) JULICH |88 kzurence Liverrmore) SRSt O

FORSCHUNGSZENTRUM

