
Multi-Application Online Profiling Tool

1

Vi-HPS

Julien ADAM, Antoine CAPRA

2

About MALP
• MALP is a tool originally developed in CEA and  

in the University of Versailles (UVSQ)
• It generates rich HTML views describing  

parallel programs 

• MALP relies on the on-line profiling approach  
(fine-grained events are reduced during the execution)

• MALP is currently MPI oriented with a focus on the  
topology and some temporal analysis

3

MALP’s trade-offs in the
Measurement Process

4

The Measurement Chain

Representing the state of millions of cores necessarily require  
a form of reduction, at least to acknowledge user’s cognitive
limitations.

5

The Measurement Chain

A chain collecting and valorizing data
Compromise between details and measurements’ scalability

Data
Volume Measure

Large (trace)

Small (Profile)

Fine-grained

Coarse-grained

Visibility

Detailed

Global

6

Trace-Based Approach
0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Report / Interface
• Scalasca
• Vampir Trace
• TAU

7

On-Line

0

1 2

3 4 5 6

Tree-Based Overlay  
Network (TBON)
- Periscope
- MrNet/Stat (Debug)
- MUST (Validation)
- DDT/Totalview/MAP

0 1 2

3 4 5

6 7 8

Profiles:
- Mpi-P
- Scalasca (partly)

8

MALP
0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Web
Interface

Application Measurement 
Infrastructure

User 
interface

Idea: allocate cores to analyze and valorize data (reduction).

9

Instrumentation Analysis Coupling  
Overview

COUPLING MULTIPLE APPLICATIONS 125

10.2 Coupling Multiple Applications

This section introduces the coupling method which is used by MALP in order to efficiently
achieve runtime coupling. This mechanism is used to realise the coupling of our instrumenta-
tion chain, with the originality of being able to couple multiple applications. After introducing
the architecture of our coupling mechanism, we detail its programming interface and provide
an example of N to one coupling, similar to what is done when instrumenting multiple pro-
grams. Eventually, we present some performance results related to this coupling mechanism.

As detailed in the rest of this section, in order to implement an on-line coupling method,
three conditions must be satisfied :

• Transparent cohabitation: two programs have to be able to run concurrently, in ac-
cordance with machine’s scheduler.

• Mapping: groups of processes must map to each other.

• Communication: each process has to efficiently communicate using a persistent asyn-
chronous data stream.

Figure 10.3: Overview of the runtime coupling mechanism.

As presented in Figure 10.3, these three requirements are satisfied in our implementation
using MPI in MPMD mode. In this purpose, we provide transparent cohabitation with MPI
virtualization, mapping with the VMPI_Map primitive and asynchronous communication with
VMPI_Streams.

10.2.1 Transparent Cohabitation (Virtualization)

Virtualization is achieved using a simple mechanism similar to the one implemented in
PNMPI’s virtual module [?]. It consists of replacing every references to MPI_COMM_WORLD

by a reference to a sub-communicator. This is done by intercepting every MPI calls through
the PMPI interface. Originally implemented over PNMPI, we had to rewrite our own virtu-
alization outside of PNMPI to provide an integrated library which can be preloaded on MPI
programs without code modification, recompilation or binary patch. Moreover, providing mod-
ule’s interface to the host application was not convenient as our library was divided in two,
separating streams and virtualization. Therefore, we decided to implement our library in a
single package which can be easily linked or preloaded in order to virtualize a program. To
do so, we wrote in C a MPI wrapper generator, very similar features as PNMPI’s python one,

MPI Virtualization: an original idea from the PNMPI paper

10

Coupling with the Interface

0 1 2

3 4 5

6 7 8
0

1 2

3 4 5 6

MALP_Trace.json

Node.JS 
(malp_server)

Application Reduction Engine

Analysis Client

Web Interface

Catalogue (˜/.malp)

11

Node.JS 
(malp_server)

Analysis Client

Analysis 1
TCP or File

HTTP

Closer look on the Interface Side

Dynamic Views

Analysis 2

12

MALP vs Others

• MALP is easy to use (preload only)
• Analysis is done online (small data footprint)
• Performance data rendering is done in a browser
• Some original topological analysis
• Overhead is relatively small

• Due to its approach MALP presents reduced data
• Exhaustive program behavior is not provided by MALP  

for this use a trace-based approach
• Extra processing power is required during the execution

Pros

Cons

13

Outputs from MALP

14

Closer look on the Interface Side

15

The Upload Form

16

The Meta-Data Form

17

Trace Uploaded !

18

The Performance Catalog

19

MPI Profile

20

« Per Rank » Analysis

21

« Rank Matrix » Analysis

22

« Time Matrix » Analysis

0 Sleep 1 Sleep 2

Consider this example where you send a message  
to your right rank after waiting

 MPI_Recv(&value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD, &status);
 usleep(XXX);
 if (rank < size - 1)
 MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);

23

« Time Matrix » Analysis

R

Sleep SleepS S Sleep

Sleep S SleepR

S Sleep

S SleepR S

Sleep SleepR SleepR

R Sleep S SleepR S SleepR

R Sleep S SleepR S SleepR

R

S

S

24

« Time Matrix » Analysis

25

« Interactive Topology » Analysis

26

« Interactive Topology » Analysis

MG BT LU

CG

27

Allinea MAP Support

28

MALP can consume MAP events

.so.so .so

Instrumentation

Application

Analysis
Collector

.JS Output

Interface

.so.so .so

.xml .xml .xml

.xml.xml.xml

MAP Plugins

MAP Plugins

Template Browser

29

MALP can consume MAP events

MAP Plugin MAP Plugin

Metric Metric Metric Metric

MAP Plugin Array

Polling Thread

Handler MALP 
MAP_Events

30

Sample MAP IO stat Collector

int rchar_collect(metric_id_t metric_id,
 struct timespec *in_out_sample_time,
 double *out_value)
{
 struct io_stat st;

 if(read_io_stat(&st))
 {
 allinea_set_metric_error_messagef(metric_id, errno,
 "Error opening /proc/self/io\n");
 return;
 }

 *out_value = (st.rchar - prev_values.rchar) / (1024.0 * 1024.0);
 prev_values.rchar = st.rchar;

}

31

MPI-IO Write Bandwith Example

IMB-IO
MALP « time matrix »  

and MAP timeline

32

How to use MALP ?

33

Measurement Process in MALP

Two applications have to be co-launched:
- The instrumented program (LD_PRELOAD)
- The analysis engine

Program

Instrum Library

Analysis

Measurement Process in MALP
malpl 16 8 CMD [ARGS]

Will launch 18 processes  
(16 processes plus an analysis process for 8 instrumented)

mpirun -np 16 malp CMD [ARGS] : -np 2 malp_an

Will launch 18 processes  
(same as above classical MPMD syntax)

Instrumenting Multiple-Applications
mpirun -np 16 malp ./a.out [ARGS] \

 : -np 16 malp ./b.out \
 : -np 4 malp_an

Will launch 36 processes

./a.out

Instrum Library Analysis

./b.out

Instrum Library

Enable MAP Plugin Support

export MAP_PLUGIN_PREFIX=$PREFIX/lib/malp_map_plugins/

Simply point MALP to your plugin directory:

You may change sampling frequency (milliseconds):

export MAP_PLUGIN_FREQ=10000

If correctly enabled the following should appear when
running the target program:

 ## Loading MAP plugins :
 Loading plugin 'interrupts.xml' ...
 Loading plugin 'io.xml' ...
 ## Done

37

Conclusion

• You may download MALP from:

http://malp.hpcframework.com 

You can now use MALP for MPI profiling on your own  
application or load one of the examples.  

http://malp.hpcframework.com

38

Future Work

• We are in the process of adding new MPI-T and OMP-T  
analysis inside MALP

• An OTF-2 consumer library is also to be released
• A Spack installer is to be released  

 

Short-term

Medium term

• We are adding call-stack context support inside MALP
• We want to provide time-line views in the browser
• The notion of phase will be used for temporal view  

Multi-Application Online Profiling Tool

39

Vi-HPS

Julien ADAM, Antoine CAPRA

