
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

OpenMP Runtime Error Detection with ARCHER

At the 26nd VI-HPS Tuning Workshop

Joachim Protze, Simone Atzeni

RWTH Aachen University, University of Utah

October 2017

+

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Data race example in OpenMP

static double farg1,farg2;

#define FMAX(a,b) (farg1=(a),farg2=(b),farg1>farg2?farg1:farg2)

1619: #pragma omp parallel for shared(bar, foo, THRESH)

1620: for (x=0; x<1000; x++)

1621: T = FMAX(0.1111*foo*bar[x],THRESH);

Tool flags a write-write race in line 1621

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 2

What could
possibly go

wrong?

Double checked scoping of variables:
everything seems to be fine

What could
possibly go

wrong?

To avoid side effects, the arguments
are copied to temporary storage

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 3

Deadlocks
Data
Races

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects – Deadlock

A circular wait condition exists in the system that causes two or more parallel units to wait indefinitely

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 4

#pragma omp parallel sections
{

#pragma omp section
{

omp_set_lock(&lock_a);
omp_set_lock(&lock_b);
omp_unset_lock(&lock_b);
omp_unset_lock(&lock_a);

}
#pragma omp section
{

omp_set_lock(&lock_b);
omp_set_lock(&lock_a);
omp_unset_lock(&lock_a);
omp_unset_lock(&lock_b);

}
}

Deadlocking
Execution

Order

• Thread 1 waits for lock_b owned by
thread 2

• Thread 2 waits for lock_a, owned by
Thread 1.

• Neither thread can free a lock and
both threads wait indefinitely.

set(lock_a)

Thread1

Thread2

set(lock_a) set(lock_b)

set(lock_b)

time

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects – Data Race

Program behavior dependent on execution order of threads/processes

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 5

int x,y;
#pragma omp parallel
{

x = omp_get_thread_num ();
#pragma omp barrier
#pragma omp master

printf (“Master is:%d” ,x);
}

int x,y;
#pragma omp parallel
{

#pragma omp master
sleep(5);

x = omp_get_thread_num ();
#pragma omp barrier
#pragma omp master

printf (“Master is:%d” ,x);
}

A write-write race on x If the master thread is intended to write x, it
will usually do so, due to the sleep; But

sometimes it may not …

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Definitions

Data race
▪ Two threads access the same shared

variable

▪ at least one thread modifies the variable

▪ the accesses are concurrent, i.e.

unsynchronized

▪ Leads to non-deterministic behavior

▪ Hard to find with traditional debugging

tools

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 6

Deadlock
▪ Two or more threads are waiting for

each other to release locks while

holding the lock the other leads to non-

deterministic behavior

▪ Program hangs

▪ May be non-deterministic

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Data race detection tools

Helgrind

▪ valgrind --tool=helgrind

▪ Many false alerts

▪ Misses synchronization information

▪ Binary instrumentation during execution

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 7

Intel Inspector (XE?)

▪ They rename the tool every other year ☺

▪ Less false alerts

▪ Especially for newer OpenMP

clauses/constructs

▪ High runtime overhead for detailed

analysis

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Data race detection tools
Archer

▪ Error checking tool for

▪ Memory errors

▪ Threading errors

(OpenMP, Pthreads)

▪ Based on ThreadSanitizer (runtime check)

▪ Available for Linux, Windows and Mac

▪ Supports C, C++ (Fortran in work)

▪ Modified OpenMP runtime improved for data

race detection

▪ More info: https://github.com/PRUNERS/archer

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 8

https://github.com/PRUNERS/archer

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Archer – Background

▪ Static Analysis

▪ Only for OpenMP programs

▪ Exclude race free regions and sequential code from runtime analysis to reduce overhead

▪ Runtime check

▪ Error detection only in software branches that are executed

▪ Low runtime overhead

▪ Roughly 2x - 20x

▪ Detect races in large OpenMP applications

▪ No false positives

▪ Compiler instrumentation

▪ Slower compilation process (apply different passes on the source code to identify race free

regions of code, instruments only the rest)

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Archer – Usage

▪ Compile the program with the –g compiler flag

▪ clang-archer myprog.c –o myprog

▪ Run the program under control of ARCHER Runtime

▪ export OMP_NUM_THREADS=...

./myprog

▪ Detects problems only in software branches that are executed

▪ Understand and correct the threading errors detected

▪ Edit the source code

▪ Repeat until no errors reported

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Archer – Result Summary

1 #include <stdio.h>

2

3 int main(int argc, char **argv) {

4 int a = 0;

5 #pragma omp parallel

6 {

7 if (a < 100) {

8 #pragma omp critical

9 a++;

10 }

11 }

12 }

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 11

WARNING: ThreadSanitizer: data race

Read of size 4 at 0x7fffffffdcdc by thread T2:

#0 .omp_outlined. race.c:7

(race+0x0000004a6dce)

#1 __kmp_invoke_microtask <null>

(libomp_tsan.so)

Previous write of size 4 at 0x7fffffffdcdc by

main thread:

#0 .omp_outlined. race.c:9

(race+0x0000004a6e2c)

#1 __kmp_invoke_microtask <null>

(libomp_tsan.so)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Using Archer on Inti

▪ Unfortunatelly not working on this

system

▪ None of the installed LLVM / GNU

compilers can successfully start

ThreadSanitizer

▪ Traced down to strange behavior of

dynamic library loader

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Fallback and usage for Fortran-code

▪ In cases, where compilation with clang-archer fails:

$ clang –sanitize=thread -fopenmp –g prime_omp.c

or

$ clang –sanitize=thread -fopenmp –g –c prime_omp.c

$ clang –sanitize=thread -fopenmp prime_omp.o

or

$ gfortran –sanitize=thread -fopenmp –g –c prime_omp.f

$ clang –sanitize=thread -fopenmp –lgfortran prime_omp.o

$ OMP_NUM_THREADS=2 ./a.out

For OpenMP programs, always use the clang delivered with ARCHER to avoid false alerts

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Conclusions

▪ Deadlocks:

▪ Avoid locks when possible

▪ Prefer critical/master/…

▪ Races:

▪ Often hard to detect, in many cases only visible from time to time

▪ Races manifesting only at large scale are often detectable by ARCHER at small scale

▪ (Fortran) consider: default(private)

▪ Use tools to detect defects as early as possible:

▪ During development + unit testing

▪ Development of ARCHER is ongoing effort, also porting to more architectures and OpenMP

runtimes.

08/07/2016JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

